JP2543390C - - Google Patents

Info

Publication number
JP2543390C
JP2543390C JP2543390C JP 2543390 C JP2543390 C JP 2543390C JP 2543390 C JP2543390 C JP 2543390C
Authority
JP
Japan
Prior art keywords
inorganic
weight
fibers
resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種建築材料、各産業分野に用いられる樹脂発泡断熱材の表面に用い
る無機質シートに関する。 [従来の技術] 従来、各種建築材料、各産業分野にフェノール樹脂系、ウレタン樹脂系発泡体
の軽量断熱材が使用されているが、その片面又は両面に発泡時の樹脂の保持及び
断熱材としての機械的強度付与或いは寸法安定性付与材として、木材パルプと水
酸化アルミニウム或いは炭酸カルシウムとの混抄紙、更にアスベスト紙又はアス
ベスト紙とガラス繊維の混抄紙などの無機質シートが使用されている。 [発明が解決しようとする課題] しかしながら、木材パルプと水酸化アルミニウム或いは炭酸カルシウムなどの
無機質充填材との混抄紙では充分な寸法安定性が得られず、断熱材のソリ、ネジ
レの原因となる。更にアスベスト繊維は、発泡断熱材製造時及び発泡断熱材施工
時と施工後に発生するアスベスト粉塵が健康上有害であるという問題点がある。 その上、樹脂発泡前の目止め性が不充分であるため、事前にアスファルトを含
浸塗工し、充分目止めを行う必要があった。 本発明は、上述の問題点、欠点を解消し、充分な目止め性と寸法安定性に優れ
た樹脂発泡断熱材用無機質シートを提供することを目的とする。 [課題を解決するための手段] 本発明は、樹脂発泡断熱材の片面又は両面に用いる無機質シートにおいて、無
機繊維30〜90重量%、有機繊維及び/又は有機結合剤10〜70重量%から
なる無機繊維不織布の片面又は両面に、無機質充填材70〜95重量%、有機結
合剤5〜30重量%からなる層を有する樹脂発泡断熱材用無機質シートである。 また、前記無機質シートの片面にポリエチレン樹脂層を有する樹脂発泡断熱材
用無機質シートである。 本発明に用いられる無機繊維としては、アスベスト繊維以外はすべて使用でき
るが、代表的なものとしてガラス繊維、ロックウール繊維、鉱滓綿繊維、セラミ
ック繊維等があげられる。 無機繊維の配合率は30〜90重量%が好ましく、30重量%未満では無機質
シートの充分な寸法安定性が得られない。一方、90重量%を越えると充分な機
械的な強度が得られなくなる。 有機繊維としては木材パルプ、ビニロン繊維、ポリエステル繊維、アクリル繊
維等が使用できる。 また、有機結合剤としては、ポリビニルアルコール、酢酸ビニル、スチレン−
プタジエン−ラバーラテックス(SBR)、ニトリル−ブタジェン−ラバーラテ
ックス(NBR)、アクリル、エポキシ、ポリエステル、ウレタン等の樹脂が粉
末又はエマルジョンの形で使用される。 有機質分の合計配合率としては10〜70重量%が好ましい。10重量%未満
では無機質シートに充分な機械的強度と樹脂目止め性を付与することができず、
70重量%を越えると充分な寸法安定性を得ることができない。有機繊維、有機
結合剤それぞれの配合率としては、0〜70重量%の範囲で組合わせて用いられ
る。 以上の無機繊維、有機繊維及び/又は有機結合剤を配合したスラリーを湿式抄
紙機にて常法により抄紙し、無機繊維不織布とする。 無機繊維不織布の上に設けられる無機充填材層には、無機質充填材としてカオ リン、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシ
ウム、タルク、シリカ、三酸化アンチモン等のうち1種又は2種以上を70〜9
5重量%と、有機結合剤としてポリビニルアルコール、酢酸ビニル、塩化ビニル
、SBR、NBR、アクリル、エポキシ、ポリエステル、ウレタン、メラミン、
尿素等の樹脂の水溶液又はエマルジョンのうち、1種又は2種以上を5〜30重
量%を配合した塗料が用いられる。 樹脂配合率が5重量%未満では無機質充填材の充分な接着性が得られず、一方
、30重量%を越えると、無機質シートと発泡樹脂との充分な接着性が得られな
い。 無機質充填材の層は、無機繊維不織布に前記配合の無機充填材と有機結合剤と
の混合物をオフマシンで塗工して形成する。良好な無機質充填材の塗工層を形成
できるコーターとしては、エアナイフコーター、ブレードコーター、ロッドコー
ター、スクイズコーター、リバースロールコーター、グラビアコーター、キスロ
ールコーター等が使用できる。 本発明においては、無機充填材と有機結合剤との混合物の層の形成は、基材で
ある無機繊維不織布を抄紙、乾燥後、オフマシンで行うことが肝要である。これ
をもし抄紙機の湿部で行うと塗料の内部浸透が起り、無機充填材と有機結合剤が
不織布内部に入り込み、本発明の目的とする表面の目止め性と平滑性を付与する
ためには、多量の塗料を塗工しなければならなくなる。 本発明のように一旦乾燥した後の無機繊維不織布に、無機充填材と有機結合剤
の混合物を塗工すると不織布の表面に良好な無機充填材と有機結合剤の層を作る
ことができ、抄紙機の湿部塗工と比較し、表面の目止め性、平滑性を付与するの
に、少ない塗工量で可能となる。 また、本発明は無機質シートの発泡樹脂に対する目止め性を更に向上するため
に、無機質シートの片面にポリエチレン樹脂層を設ける。ポリエチレン樹脂層は
、無機質シートの無機質充填材層の上に通常のポリエチレン押出ラミネーターに
より貼合して得られるが、その他の方法でポリエチレン樹脂フィルムを貼合して
もよい。厚さは5〜30μmが好ましい。 以上の各種構成材料により得られる本発明の樹脂発泡断熱材用無機質シートの
二、三の例を図面により示す。 第1図は本発明の配合によりなる無機繊維不織布1の片面に、無機質充填材と
有機結合剤の混合塗料を塗工することにより、無機質充填材層2を設けたもので
ある。第2図は第1図と同様にして、本発明の無機繊維不織布1の両面に無機質
充填材層2、2を設けたものである。 第3図は第2図の無機繊維不織布1の両面に無機質充填材層2、2を設けた一
方の無機質充填材層2の表面に、ポリエチレン押出ラミネーターによりポリエチ
レン樹脂層3を設けたものである。 [実施例] 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定され
るものではない。 製造例1 ガラス繊維(9μmφ×9mmL)48重量部、ロックウール繊維18重量部の
水性分散液に、マイカ粉末18重量部、木材パルプ・NBKP7重量部、ポリビ
ニルアルコール9重量部をそれぞれ配合して湿式抄紙し、坪量60g/m2の無
機繊維不織布を得た。この無機繊維不織布にオフマシンのロッドコーターにより
、クレー100重量部、アクリル樹脂10重量部、ポリビニルアルコール3重量
部、メラミン−ホルマリン樹脂1重量部、カーボンブラック5重量部、その他必
要に応じて少量の消泡剤、分散剤を配合した混合水分散無機質塗料を、塗布量両
面で60g/m2(固形分)になるよう塗工、乾燥し、無機質シートを得た。 実施例1 ガラス繊維(9μmφ×9mmL)100重量部の水性分散液に、木材パルプ・
NBKP11重量部、ポリビニルアルコール16重量部を配合して湿式抄紙機に
て常法により抄紙し、坪量30g/m2の無機繊維不織布を得た。 次にこの無機繊維不織布に、オフマシンのロッドコーターで水酸化アルミニウ
ム100重量部、三酸化アンチモン2重量部、塩化ビニル樹脂エマルジョン5重
量部(固形分)、ポリビニルアルコール水溶液3重量部(固形分)、メラミン−
ホルマリン樹脂1重量部、その他必要に応じて少量の消泡剤、分散剤を配合した
混合水分散無機質充填材塗料を無機質シートの両面に塗布量70g/m2(固形
分)となるように塗工、乾燥し、無機質シートを得た。 得られた無機質シートの片面に、押出ラミネーターにより、ポリエチレン樹脂
を溶融押出して厚さ20μmのポリエチレン樹脂層を設け、ポリエチレン樹脂層
を有する無機質シートを得た。 従来例1 市販のアスファルト含浸処理をした坪量80g/m2のアスベスト紙。 従来例2 市販の木材パルプと水酸化アルミニウムの混抄紙坪量160g/m2。 実施例、比較例、従来例それぞれの無機質シートについて物性及び適性試験を
行なった結果を表に表す。 試験方法 通気度 たばこ巻紙用通気度計により10mmH2Oに加圧された温度20℃の空気が試
料面積2cm2より1分間に通過する体積を測定した。 浸水伸度 JAPAN TAPPI NO.27 による。20℃の水に15分間浸漬した後の試料の伸び
を測定した。 ソリ ウレタン樹脂発泡断熱材(厚さ25mm、幅850mm、流れ600mm)を作成す
る際、試料無機質シートを片面に接着し、樹脂を発泡させて断熱材とした後、温
度50℃、RH10%雰囲気に2週間放置後、中央部のソリの高さを測定した。 表に示した結果によれば、本発明の実施例はいずれも無機繊維不織布及び無機
質充填材塗工層の配合組成が本発明の配合範囲内にあるときに、通気度で表され
る発泡樹脂に対する目止め性、浸水伸度、ソリで表される環境条件に対する寸法
安定性に優れている。片面にポリエチレン樹脂層を設けたもの(実施例1)は、
目止め性が格段にすぐれている。 これに対し、無機繊維が少なく、有機繊維、有機結合剤が多い(比較例1)と
無機質シートの充分な寸法安定性が得られず、一方無機繊維が多く、有機繊維、
有機結合剤が少ない(比較例2)と無機質シートに充分な樹脂目止め性を付与す
ることができず、また充分な機械的強度が得られなくなる。無機繊維不織布の無
機質充填材が多く(比較例3)ても機械的強度が低下するので好ましくない。無
機質充填材塗工層の無機質充填材が少なく、有機結合剤が多い(比較例4)と、
無機質シートと発泡樹脂との充分な接着性が得られない上、樹脂の目止め性も悪
化する。反対に無機質充填材が多く、有機結合剤が少ない(比較例5)と、無機
質充填材の無機質シートに対する充分な接着性が得られない。 従来のアスベスト紙(従来例1)は樹脂の目止め性が悪く、環境衛生上の問題
があり、木材パルプと水酸化アルミニウムの混抄紙(従来例2)は寸法安定性が
不充分で、断熱材のソリ、ネジレが大きくなる。 [発明の効果] 本発明は発泡樹脂断熱材に用いられる従来の無機質シートに比較して、発泡樹
脂に対する目止め性及び環境条件に対する寸法安定性に優れている。 充分な目止め性を有するので、従来アスベスト繊維を使用した際に行われてい
る目止め補強のためのアスファルトの含浸工程を必要とせず、断熱材メーカーに
おける製造効率の向上につながる。 また、寸法安定性に優れているので、従来の木材パルプと、無機質充填材との
混抄紙に比べて断熱材のソリ、ネジレによる不良率を大幅に低減させ得るため、
保存時或いは施工後の製品不良発生を防止することができる。 本発明の無機質シートは、無機繊維にアスベスト繊維を使用していないので、
近年問題となっているアスベスト繊維による環境、衛生への悪影響を全く心配す
る必要がなく、製造、施工、使用上いずれにも優れた無機質シートである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to various building materials, and inorganic sheets used for surfaces of resin foam insulation materials used in various industrial fields. [Prior art] Conventionally, lightweight insulation materials of phenolic resin-based and urethane resin-based foams have been used in various building materials and in various industrial fields. Inorganic sheets such as mixed paper of wood pulp and aluminum hydroxide or calcium carbonate, asbestos paper or mixed paper of asbestos paper and glass fiber are used as a material for imparting mechanical strength or dimensional stability. [Problems to be Solved by the Invention] However, a mixed paper made of wood pulp and an inorganic filler such as aluminum hydroxide or calcium carbonate cannot provide sufficient dimensional stability and causes warpage and twisting of the heat insulating material. . Furthermore, asbestos fibers have a problem in that asbestos dust generated during the production of the foamed insulation material and during and after construction of the foamed insulation material is harmful to health. In addition, since the sealing property before foaming of the resin is insufficient, it is necessary to impregnate and coat with asphalt in advance to sufficiently perform the sealing. An object of the present invention is to solve the above-mentioned problems and disadvantages and to provide an inorganic sheet for a foamed resin insulation material which is excellent in sufficient sealing property and dimensional stability. [Means for Solving the Problems] The present invention comprises an inorganic sheet used on one or both sides of a resin foam insulation, comprising 30 to 90% by weight of inorganic fibers and 10 to 70% by weight of organic fibers and / or an organic binder. An inorganic sheet for a resin foam insulation material having a layer composed of an inorganic filler of 70 to 95% by weight and an organic binder of 5 to 30% by weight on one or both sides of an inorganic fiber nonwoven fabric. Further, the present invention is an inorganic sheet for a resin foam insulation material having a polyethylene resin layer on one surface of the inorganic sheet. As the inorganic fibers used in the present invention, all can be used except for asbestos fibers, and typical examples include glass fibers, rock wool fibers, mineral wool fibers, ceramic fibers and the like. The mixing ratio of the inorganic fibers is preferably 30 to 90% by weight, and if it is less than 30% by weight, sufficient dimensional stability of the inorganic sheet cannot be obtained. On the other hand, if it exceeds 90% by weight, sufficient mechanical strength cannot be obtained. Wood pulp, vinylon fiber, polyester fiber, acrylic fiber and the like can be used as the organic fiber. Further, as the organic binder, polyvinyl alcohol, vinyl acetate, styrene-
Resins such as butadiene-rubber latex (SBR), nitrile-butadiene-rubber latex (NBR), acrylic, epoxy, polyester, urethane and the like are used in the form of powder or emulsion. The total compounding ratio of the organic matter is preferably from 10 to 70% by weight. If the content is less than 10% by weight, sufficient mechanical strength and resin sealing property cannot be imparted to the inorganic sheet,
If it exceeds 70% by weight, sufficient dimensional stability cannot be obtained. The compounding ratio of each of the organic fiber and the organic binder is used in combination in the range of 0 to 70% by weight. The slurry containing the above-mentioned inorganic fiber, organic fiber and / or organic binder is made into a paper by a conventional method using a wet paper machine to obtain an inorganic fiber nonwoven fabric. The inorganic filler layer provided on the inorganic fiber non-woven fabric includes one or two of inorganic fillers such as kaolin, clay, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, silica, antimony trioxide and the like. 70 to 9 or more species
5% by weight, as an organic binder, polyvinyl alcohol, vinyl acetate, vinyl chloride, SBR, NBR, acrylic, epoxy, polyester, urethane, melamine,
Among the aqueous solutions or emulsions of resins such as urea, paints containing 5 to 30% by weight of one or more kinds are used. If the resin content is less than 5% by weight, sufficient adhesion of the inorganic filler cannot be obtained, while if it exceeds 30% by weight, sufficient adhesion between the inorganic sheet and the foamed resin cannot be obtained. The layer of the inorganic filler is formed by applying a mixture of the inorganic filler and the organic binder having the above composition to an inorganic fiber nonwoven fabric using an off-machine. As a coater capable of forming a good inorganic filler coating layer, an air knife coater, a blade coater, a rod coater, a squeeze coater, a reverse roll coater, a gravure coater, a kiss roll coater and the like can be used. In the present invention, it is important that the formation of the layer of the mixture of the inorganic filler and the organic binder is performed off-machine after papermaking and drying the inorganic fiber nonwoven fabric as the base material. If this is performed in the wet part of the paper machine, the internal penetration of the paint occurs, the inorganic filler and the organic binder enter the inside of the nonwoven fabric, and in order to impart the surface filling property and the smoothness intended for the present invention. Requires a large amount of paint to be applied. When a mixture of an inorganic filler and an organic binder is applied to an inorganic fiber nonwoven fabric once dried as in the present invention, a layer of a good inorganic filler and an organic binder can be formed on the surface of the nonwoven fabric, and papermaking can be performed. Compared with the wet part coating of the machine, a small amount of coating is possible for imparting surface sealing properties and smoothness. In the present invention, a polyethylene resin layer is provided on one surface of the inorganic sheet in order to further improve the sealing property of the inorganic sheet against the foamed resin. The polyethylene resin layer is obtained by laminating the inorganic filler layer of the inorganic sheet on a usual polyethylene extrusion laminator, but a polyethylene resin film may be laminated by another method. The thickness is preferably 5 to 30 μm. A few examples of the inorganic sheet for resin foam insulation of the present invention obtained by the above various constituent materials are shown in the drawings. FIG. 1 shows a structure in which an inorganic filler layer 2 is provided by applying a mixed paint of an inorganic filler and an organic binder to one surface of an inorganic fiber nonwoven fabric 1 having the composition of the present invention. FIG. 2 shows an inorganic fiber nonwoven fabric 1 according to the present invention in which inorganic filler layers 2 and 2 are provided on both surfaces in the same manner as FIG. FIG. 3 shows an inorganic fiber nonwoven fabric 1 shown in FIG. 2 in which inorganic filler layers 2 and 2 are provided on both sides, and a polyethylene resin layer 3 is provided on the surface of one of the inorganic filler layers 2 by a polyethylene extrusion laminator. . EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. Production Example 1 A wet dispersion was prepared by blending 18 parts by weight of mica powder, 7 parts by weight of wood pulp / NBKP, and 9 parts by weight of polyvinyl alcohol with an aqueous dispersion of 48 parts by weight of glass fiber (9 μmφ × 9 mmL) and 18 parts by weight of rock wool fiber. Papermaking was performed to obtain an inorganic fiber nonwoven fabric having a basis weight of 60 g / m 2 . Using an off-machine rod coater, the inorganic fiber non-woven fabric was treated with 100 parts by weight of clay, 10 parts by weight of acrylic resin, 3 parts by weight of polyvinyl alcohol, 1 part by weight of melamine-formalin resin, 5 parts by weight of carbon black, and a small amount as necessary. A mixed water-dispersed inorganic paint containing an antifoaming agent and a dispersant was applied so as to have a coating amount of 60 g / m 2 (solid content) on both sides, and dried to obtain an inorganic sheet. Example 1 Wood pulp was added to 100 parts by weight of an aqueous dispersion of glass fiber (9 μmφ × 9 mmL).
11 parts by weight of NBKP and 16 parts by weight of polyvinyl alcohol were blended, and papermaking was performed by a wet paper machine by a conventional method to obtain an inorganic fiber nonwoven fabric having a basis weight of 30 g / m 2 . Next, 100 parts by weight of aluminum hydroxide, 2 parts by weight of antimony trioxide, 5 parts by weight of vinyl chloride resin emulsion (solid content), and 3 parts by weight of polyvinyl alcohol aqueous solution (solid content) are applied to the inorganic fiber nonwoven fabric using an off-machine rod coater. , Melamine-
A mixed water-dispersed inorganic filler paint containing 1 part by weight of formalin resin and other small amounts of an antifoaming agent and a dispersant, if necessary, is applied on both sides of the inorganic sheet so as to have an application amount of 70 g / m 2 (solid content). After processing and drying, an inorganic sheet was obtained. On one side of the obtained inorganic sheet, a polyethylene resin layer having a thickness of 20 μm was provided by melt-extruding a polyethylene resin using an extrusion laminator to obtain an inorganic sheet having a polyethylene resin layer. Conventional Example 1 Commercially available asphalt-impregnated asbestos paper having a basis weight of 80 g / m 2 . Conventional Example 2 A mixed paper made of commercially available wood pulp and aluminum hydroxide has a basis weight of 160 g / m 2 . The results of physical properties and aptitude tests performed on the inorganic sheets of Examples, Comparative Examples, and Conventional Examples are shown in the table. Test Method Air Permeability The volume at which air at a temperature of 20 ° C., which was pressurized to 10 mm H 2 O, passed through a sample area of 2 cm 2 per minute was measured by a cigarette wrapper air permeability meter. Inundation elongation According to JAPAN TAPPI NO.27. The elongation of the sample after immersion in water at 20 ° C. for 15 minutes was measured. When preparing a polyurethane foam insulation material (thickness 25 mm, width 850 mm, flow 600 mm), a sample inorganic sheet is adhered to one side, and the resin is foamed to form a heat insulation material. After standing for two weeks, the height of the sled at the center was measured. According to the results shown in the table, when the composition of the inorganic fiber nonwoven fabric and the inorganic filler coating layer is within the compounding range of the present invention, the foamed resin represented by the air permeability is used in the examples of the present invention. Excellent dimensional stability against environmental conditions represented by sealability, immersion elongation, and warpage. One having a polyethylene resin layer on one side (Example 1)
The sealability is much better. On the other hand, when the amount of the inorganic fiber is small and the amount of the organic fiber and the organic binder is large (Comparative Example 1), sufficient dimensional stability of the inorganic sheet cannot be obtained.
If the amount of the organic binder is small (Comparative Example 2), sufficient resin sealing property cannot be provided to the inorganic sheet, and sufficient mechanical strength cannot be obtained. It is not preferable that the amount of the inorganic filler in the inorganic fiber nonwoven fabric is large (Comparative Example 3) because the mechanical strength is reduced. When the amount of the inorganic filler in the inorganic filler coating layer was small and the amount of the organic binder was large (Comparative Example 4),
Sufficient adhesion between the inorganic sheet and the foamed resin cannot be obtained, and the sealing property of the resin also deteriorates. Conversely, when the amount of the inorganic filler is large and the amount of the organic binder is small (Comparative Example 5), sufficient adhesion of the inorganic filler to the inorganic sheet cannot be obtained. Conventional asbestos paper (conventional example 1) has poor sealing properties of resin and has a problem on environmental hygiene, and mixed paper of wood pulp and aluminum hydroxide (conventional example 2) has insufficient dimensional stability and heat insulation. Warpage and twisting of the material increase. [Effects of the Invention] The present invention is superior to the conventional inorganic sheet used for the foamed resin heat insulating material in the sealing property for the foamed resin and the dimensional stability against environmental conditions. Since it has sufficient filling properties, it does not require an asphalt impregnation step for reinforcing fillings, which is conventionally performed when asbestos fibers are used, which leads to an improvement in production efficiency at a heat insulating material manufacturer. In addition, because it has excellent dimensional stability, it is possible to significantly reduce the defect rate due to warpage and twisting of the insulation material compared to conventional wood pulp and mixed paper with inorganic filler,
It is possible to prevent the occurrence of product defects during storage or after construction. Since the inorganic sheet of the present invention does not use asbestos fibers for the inorganic fibers,
There is no need to worry about adverse effects on the environment and hygiene caused by asbestos fibers, which have become a problem in recent years, and the inorganic sheet is excellent in production, construction, and use.

【図面の簡単な説明】 第1図は本発明の発泡樹脂断熱材無機質シートの層構成の一例を示す部分拡大
断面図、第2図、第3図は他の層構成の例を示す部分拡大断面図である。 1・・・無機繊維不織布、2・・・無機質充填材層、 3・・・ポリエチレン樹脂層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially enlarged cross-sectional view showing an example of a layer structure of a foamed resin heat insulating material inorganic sheet of the present invention, and FIGS. 2 and 3 are partially enlarged views showing examples of other layer structures. It is sectional drawing. 1 ... inorganic fiber nonwoven fabric, 2 ... inorganic filler layer, 3 ... polyethylene resin layer.

Claims (1)

【特許請求の範囲】 1 樹脂発泡断熱材の片面又は両面に用いる無機質シートにおいて、無機繊維
30〜90重量%、有機繊維及び/又は有機結合剤10〜70重量%からなる無
機繊維不織布の片面又は両面に、無機質充填材70〜95重量%、有機結合剤5
〜30重量%からなる層を有する樹脂発泡断熱材用無機質シート。 2 無機繊維がガラス繊維、ロックウール繊維、鉱滓綿繊維、セラミッック繊
維である第1項記載の樹脂発泡断熱材用無機質シート。 3 ポリエチレン樹脂層を片面に有する第1項又は第2項記載の樹脂発泡断熱
材用無機質シート。
Claims 1 In an inorganic sheet used on one or both sides of a resin foam insulation material, one side of an inorganic fiber nonwoven fabric comprising 30 to 90% by weight of inorganic fibers and 10 to 70% by weight of organic fibers and / or an organic binder. 70-95% by weight of inorganic filler, organic binder 5 on both sides
An inorganic sheet for a resin foam insulation material having a layer consisting of up to 30% by weight. 2. The inorganic sheet for resin foam insulation according to claim 1, wherein the inorganic fibers are glass fibers, rock wool fibers, mineral wool fibers, and ceramic fibers. (3) The inorganic sheet for resin foam insulation according to (1) or (2), having a polyethylene resin layer on one surface.

Family

ID=

Similar Documents

Publication Publication Date Title
AU2004284423B2 (en) Interior wallboard and method of making same
FI81391B (en) Nonwoven fabric- or woven fabric-based covering layer material
US7807592B2 (en) Interior wallboard and method of making same
CN104245305B (en) Gypsum board suitable for wet or damp areas
US5112678A (en) Method and composition for coating mat and articles produced therewith
US7285183B2 (en) Making foam coated mats on-line
US7932193B2 (en) Coated mat products, laminates and method
KR101953694B1 (en) Mat and gypsum boards suitable for wet or humid areas
EP1462559B1 (en) Nonwoven fiber mats with good hiding properties, laminates and method
JP2543390B2 (en) Inorganic sheet for resin foam insulation
US20100279570A1 (en) Permeable glass mat and method of preparation
JPH0333838B2 (en)
US20030061768A1 (en) Composite mat product for roofing construction
JP2543390C (en)
JP4310715B2 (en) Sheet-shaped incombustible molded body
JP4240442B2 (en) Glass fiber mixed coated paper
ES2917207T3 (en) A fiber blanket, fiber blanket manufacturing process and bituminous roofing product
JPH1046485A (en) Coated paper made from mixed glass fiber
JPH0253557B2 (en)
CN117321260A (en) Coated nonwoven mats with conditioning properties
JPH0478532A (en) Construction material
CN115279843A (en) Coating formulations for curtain coating fibrous nonwoven mats
JP2019060030A (en) Base fabric for foamed resin based-thermal insulation facings