JP2543077B2 - Optical system for focus detection - Google Patents

Optical system for focus detection

Info

Publication number
JP2543077B2
JP2543077B2 JP62111472A JP11147287A JP2543077B2 JP 2543077 B2 JP2543077 B2 JP 2543077B2 JP 62111472 A JP62111472 A JP 62111472A JP 11147287 A JP11147287 A JP 11147287A JP 2543077 B2 JP2543077 B2 JP 2543077B2
Authority
JP
Japan
Prior art keywords
lens
optical system
image forming
focus detection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62111472A
Other languages
Japanese (ja)
Other versions
JPS63276009A (en
Inventor
久志 谷井
嘉明 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62111472A priority Critical patent/JP2543077B2/en
Publication of JPS63276009A publication Critical patent/JPS63276009A/en
Application granted granted Critical
Publication of JP2543077B2 publication Critical patent/JP2543077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焦点検出用光学系に関する。The present invention relates to a focus detection optical system.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be Solved by Prior Art and Invention]

投影レンズにより形成される像を、瞳投影レンズと一
対の再結像レンズとから成る再結像光学系によって分割
してセンサ上に再形成し、これら二像の光強度分布を比
較演算する事によって二像の間隔を求めてピントズレ量
を得るような焦点検出用光学系は従来から数多く提案さ
れている。
The image formed by the projection lens is divided by a re-imaging optical system consisting of a pupil projection lens and a pair of re-imaging lenses to be re-formed on the sensor, and the light intensity distributions of these two images are compared and calculated. Conventionally, many focus detection optical systems have been proposed in which the distance between two images is obtained to obtain a focus shift amount.

このような例としては、特開昭52−82419号公報に記
載の「像の鮮明面の位置を光電的に決定する装置」,特
開昭55−118019号公報に記載の「合焦点検出装置」など
があるが、これらの装置はいずれも合焦検出系の基本的
構成が示されているにすぎない。
As such an example, "a device for photoelectrically determining the position of a clear surface of an image" described in JP-A-52-82419, and "a focus detection device" described in JP-A-55-118019. , Etc., all of these devices merely show the basic configuration of the focus detection system.

再結像光学系の照度分布特に周辺光量低下の問題に着
目した例に特開昭60−32014号公報に記載の「カメラの
焦点検出装置」があるが、この光学系においてはセンサ
上の二像の互いに対応する部分の光量が異なるという問
題点が残っている。第8図には、均一な輝度分布を有す
る被写体に対するセンサ面上での照度分布を模式的に示
した。図の様に照度分布の中心と像の中心C1,C2にズレ
が生じている。これを照度分布中心ズレと呼ぶことにす
る。この事が合焦精度を低下させる要因となっている。
As an example focusing on the problem of the illuminance distribution of the re-imaging optical system, especially the reduction of the peripheral light amount, there is a "camera focus detection device" described in JP-A-60-32014. The problem remains that the amount of light in different parts of the image is different. FIG. 8 schematically shows the illuminance distribution on the sensor surface for a subject having a uniform luminance distribution. As shown in the figure, there is a deviation between the center of the illuminance distribution and the centers C 1 and C 2 of the image. This is called the illuminance distribution center shift. This is a factor that reduces the focusing accuracy.

上記照度分布中心ズレの問題に注目したものとして、
特開昭55−155331号公報に記載の「焦点検出装置」があ
り、これは瞳投影レンズと再結像レンズの間に補助レン
ズを加えることで照度分布中心ズレを補正している。
尚、同様の構成をとったものに特開昭62−25715号公報
に記載の「焦点検出装置の光学系」がある。
Focusing on the problem of the illuminance distribution center deviation,
There is a "focus detection device" described in Japanese Patent Application Laid-Open No. 55-155331, which corrects the illuminance distribution center shift by adding an auxiliary lens between the pupil projection lens and the re-imaging lens.
An "optical system of a focus detection device" described in Japanese Patent Laid-Open No. 6225715 has a similar structure.

特開昭62−25715号公報に記載の光学系においては、
照度分布中心ズレの補正については達成しているが、co
s4乗則による周辺光量低下の問題については依然として
未解決である。周辺光量低下がある場合、特にデフォー
カス時の検出精度が劣化するという悪影響がある。
In the optical system described in JP-A-62-25715,
We have achieved correction of the illuminance distribution center deviation, but co
The problem of peripheral light reduction due to the s4 power law is still unsolved. If there is a decrease in the amount of peripheral light, there is an adverse effect that the detection accuracy deteriorates especially during defocusing.

即ち、光量低下分が誤差要因になるのみならず、デフ
ォーカス時は二次像のコントラストの低下があるため誤
差の影響度が更に大きくなる。即ち、大ボケ時には正確
なピントズレ量が得られないため、合焦点に至るまで数
回の合焦検出動作を繰り返す必要が生まれ、その結果合
焦速度の遅延を招く。例えば後ピン時のダークラインチ
ャートの二次像の様子を示したのが第9図であるが、像
の同一性が崩れているため相関演算における信頼性が劣
化したものになる。従って、出来るだけ周辺光量低下の
少ない再結像光学系が望ましく、例えば第10図のように
なる再結像光学系が望ましい。
That is, not only is the decrease in the amount of light an error factor, but the contrast of the secondary image is decreased during defocusing, so the influence of the error is further increased. That is, since an accurate focus shift amount cannot be obtained during large blurring, it becomes necessary to repeat the focus detection operation several times until reaching the focus point, resulting in a delay in the focus speed. For example, FIG. 9 shows a state of the secondary image of the dark line chart at the time of the rear focus. However, the reliability of the correlation calculation is deteriorated because the identity of the images is broken. Therefore, a re-imaging optical system in which the amount of peripheral light is reduced as little as possible is desirable, and for example, a re-imaging optical system as shown in FIG. 10 is desirable.

周辺光量の改善のために再結像レンズの形状を平凸レ
ンズとしたものが特開昭60−32014号公報に記載の光学
系であるが、これは単に前側主点と絞りとの間隔を広げ
ただけのもので、両凸レンズでも絞りを少しレンズから
離して前の方にもっていく事で同様の効果が得られるか
ら抜本的な対策とは言い難いものである。又、この光学
系においては、第8図に示したように照度分布の中心と
像の中心とのズレがある。又、これを補正するための補
助レンズを加えたのが特開昭55−155331号,特開昭62−
25715号の各公報に記載のものであるが、いずれも新し
くレンズを一枚加えているので、部品コスト及び組立コ
ストの増大を招いている。例えば、特開昭60−32014号
公報に記載の光学系では第11図に示した如く光学的部品
は瞳投影レンズ1と再結像レンズ2の二枚であるのに対
し、特開昭62−25715号公報に記載の光学系では第12図
に示した如く更に一枚の補助レンズ3が加わっている。
An optical system described in JP-A-60-32014 uses a plano-convex lens as the shape of the re-imaging lens to improve the amount of peripheral light, but this simply widens the distance between the front principal point and the diaphragm. It is a simple measure, and even if it is a biconvex lens, the same effect can be obtained by moving the diaphragm a little away from the lens and moving it toward the front, so it is hard to say that it is a drastic measure. Further, in this optical system, as shown in FIG. 8, there is a deviation between the center of the illuminance distribution and the center of the image. Further, an auxiliary lens for correcting this is added to JP-A-55-155331 and JP-A-62-
As described in Japanese Patent No. 25715, all of them add a new lens, which causes an increase in parts cost and assembly cost. For example, in the optical system disclosed in Japanese Patent Laid-Open No. 60-32014, as shown in FIG. 11, the optical components are the pupil projection lens 1 and the re-imaging lens 2, whereas in the optical system disclosed in Japanese Patent Laid-Open No. 62-32014. In the optical system described in the -25715 publication, one auxiliary lens 3 is further added as shown in FIG.

本発明は、上記問題点に鑑み、合焦検出精度が良好で
あって特に大ボケ時のデフォーカス検出精度が優れてい
ると共に、部品コスト及び組立コストが増大せずに済む
焦点検出用光学系を提供することを目的とする。
In view of the above problems, the present invention has good focus detection accuracy, particularly excellent defocus detection accuracy at the time of large blurring, and an optical system for focus detection that does not increase component costs and assembly costs. The purpose is to provide.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明による焦点検出用光学系は、結像レンズの予定
結像面付近に位置していて、該結像レンズの射出瞳を伝
送する瞳投影レンズと、前記結像レンズにより形成され
た一枚像を分割してセンサ上に再形成する一対の再結像
レンズとから成る焦点検出用光学系において、前記一対
の再結像レンズの前面は前記瞳投影レンズに共軸な補正
屈折面から成り、後面は前記センサ側に凸面が並列に形
成された一対の結像作用面から成ることにより、部品点
数を増加させることなく照度分布の不均一性を補正し得
るようにしたものである。
A focus detection optical system according to the present invention is located near a planned image forming surface of an image forming lens, and has a pupil projection lens for transmitting an exit pupil of the image forming lens, and a single lens formed by the image forming lens. In a focus detection optical system including a pair of re-imaging lenses that divides an image and re-forms it on a sensor, the front surfaces of the pair of re-imaging lenses include a correction refracting surface coaxial with the pupil projection lens. The rear surface is made up of a pair of image forming working surfaces in which convex surfaces are formed in parallel on the sensor side, so that the unevenness of the illuminance distribution can be corrected without increasing the number of parts.

即ち、合焦精度の確保のためにはセンサ面上での二像
の照度分布の不均一性を補正することが非常に重要にな
ってくる。換言すれば照度分中心ズレと周辺光量低下の
問題に対する適切な対策が必要である。
That is, it is very important to correct the non-uniformity of the illuminance distribution of the two images on the sensor surface in order to ensure the focusing accuracy. In other words, it is necessary to take appropriate measures against the problems of center deviation due to illuminance and reduction of peripheral light intensity.

照度分布中心ズレは補助レンズを一枚加える事で補正
されるが部品点数の増大を招く。そこで、第1図に示し
た如く補助レンズ部3′と再結像レンズ部2′を一体化
させると、照度分布中心ズレの補正という所望の目標が
達成されるのみならず、部品点数が増えず有効である。
The deviation of the illuminance distribution center is corrected by adding one auxiliary lens, but this leads to an increase in the number of parts. Therefore, by integrating the auxiliary lens unit 3'and the re-imaging lens unit 2'as shown in FIG. 1, not only the desired target of correcting the deviation of the illuminance distribution center but also the number of parts is increased. Effective.

又、周辺光量の低下は、主にcos4乗則によるもの即ち
画角をωとしたときcos4ωによる低下が主要因である。
再結像作用部の屈折力をψsとし、センサ上での有効像
高をIとすると、 cos4ω=(1−sin2ω)(1−tan2ω) =(1−ψs2I2 となる。
The decrease in the amount of peripheral light is mainly due to the cos 4 power law, that is, the decrease due to cos 4 ω when the angle of view is ω.
Assuming that the refracting power of the re-imaging acting portion is ψs and the effective image height on the sensor is I, cos 4 ω = (1-sin 2 ω) 2 (1-tan 2 ω) 2 = (1-ψs 2 I 2 ) 2 .

周辺光量の低下量は少なくとも10%以下である事が望
ましく、収差,ビグネッティング(口径食)等による劣
下を見込むとcos4ωについては少なくとも0.92以上であ
る事が望まれる。よって、 0.92<cos4ω(1−ψs2I2 ∴ψsI<0.202 となる。
It is desirable that the amount of reduction in the peripheral light amount be at least 10% or less, and considering deterioration due to aberrations, vignetting (vignetting), etc., it is desirable that cos 4 ω be at least 0.92 or more. Therefore, 0.92 <cos 4 ω (1-ψs 2 I 2 ) 2 ∴ψsI <0.202.

この条件を満たす事によって、合焦時の検出精度が向
上するのみならず、デフォーカス時でも正確な焦点ズレ
量を検出する事が可能となり、合焦駆動が迅速化され
る。
By satisfying this condition, not only the detection accuracy at the time of focusing can be improved, but also an accurate amount of defocus can be detected even at the time of defocusing, and the focusing drive can be speeded up.

ここで、照度分布中心ズレの補正は特に合焦精度の向
上に、周辺光量の改善はデフォーカス時の焦点ズレ量の
検出に夫々効果的であることを詳細に説明する。
Here, it will be described in detail that the correction of the illuminance distribution center shift is particularly effective for improving the focusing accuracy, and the improvement of the peripheral light amount is effective for detecting the focus shift amount during defocus.

二つのセンサ列をA列,B列とし、そのi番目の画素出
力をai,biとすると、その相関演算式は、例えば となり、sを変えて相関演算を繰り返すとF(s)の曲
線が得られる。再結像光学系に照度分布の不均一性がな
い時のダークラインチャートに対する二像の画素出力と
相関演算値のグラフを第2図に示した。ここで二つの像
の位相がδだけずれていると、F(s)のカーブの極値
をもつ位置もδとなり、極値そのものも0に極めて近く
なるため、像もδだけずれていることが明確にわかり、
これからデフォーカス量が計算できる。
If the two sensor rows are the A and B rows and the i-th pixel output is a i , b i , the correlation calculation formula is, for example, Then, if s is changed and the correlation calculation is repeated, a curve of F (s) is obtained. FIG. 2 shows a graph of the pixel output of two images and the correlation calculation value with respect to the dark line chart when the re-imaging optical system has no unevenness of the illuminance distribution. If the two images are out of phase by δ, the position of the F (s) curve having the extreme value is also δ, and the extreme value itself is very close to 0, so the images are also displaced by δ. Is clearly understood,
From this, the defocus amount can be calculated.

そこで、照度分布中心ズレのある場合の合焦時の二像
の画素出力と相関演算値のグラフを第3図に示した。照
度分布中心ズレがある場合、図の様にA,B像の形状が異
なる。A,B像を重ねて描いてみたのが第4図であり、完
全に重ならないのがわかる。即ち、相関演算値におい
て、たとえ極値となった場合でも、第4図の斜線部の面
積に相当する成分が残るためF(s)は0にならない。
それに、第4図の斜線部が完全に対称形となるのは被写
体が測距枠上の完全な中心にあり、量子化誤差が0であ
る等の特殊な条件が必要であって、現実的にはあり得な
い。即ち、この対称性が相関演算の極値が0の位置にな
るための必要条件であるが、上述した様に現実的ではな
い。つまり、第3図のF(s)のグラフが示すように誤
差Δδが必ず残存する。
Therefore, FIG. 3 shows a graph of the pixel output of two images and the correlation calculation value at the time of focusing in the case where the illuminance distribution center shifts. When the illuminance distribution center shifts, the shapes of A and B images differ as shown in the figure. Figure 4 shows the images A and B superimposed, and it can be seen that they do not completely overlap. That is, even if the correlation calculation value becomes an extreme value, F (s) does not become 0 because a component corresponding to the area of the hatched portion in FIG. 4 remains.
In addition, the shaded area in FIG. 4 is completely symmetrical because the subject is located at the perfect center of the distance measuring frame and the quantization error is 0. Can't be in. That is, this symmetry is a necessary condition for the extreme value of the correlation calculation to be at the position of 0, but it is not realistic as described above. That is, as shown in the graph of F (s) in FIG. 3, the error Δδ always remains.

又、周辺光量低下が大きい場合で二つの像の位相がδ
ズレて後ピンになっている場合の二像の画素出力と相関
演算値のグラフの様子を第5図に示した。図の様に、A
像についてはaK1〜aK2、B像についてはbK1+S〜bK2+S
出力範囲で比較した場合、A,B像は完全には一致しな
い。つまり、第3図,第4図の場合と同じ理由から、相
関演算値の極値は0とならず、しかも誤差Δδ′が残存
する。
In addition, the phase of the two images is
FIG. 5 shows a state of a graph of the pixel output of two images and the correlation calculation value in the case where the two images are displaced and are in the rear focus. A as shown
When comparing the output ranges of a K1 to a K2 for the image and b K1 + S to b K2 + S for the B image, the A and B images do not completely match. That is, for the same reason as in FIGS. 3 and 4, the extreme value of the correlation calculation value does not become 0, and the error Δδ ′ remains.

以上のように、照度分布の不均一性から上述の誤差が
生ずるのであり、本発明焦点検出用光学系はこの二次像
の照度分布に着目してその均一性を高める事により、合
焦能力の向上を達成しているのである。
As described above, the above-mentioned error occurs due to the nonuniformity of the illuminance distribution, and the focus detection optical system of the present invention focuses on the illuminance distribution of this secondary image to improve its uniformity, thereby improving the focusing ability. Has been achieved.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第6図は本発明による焦点検出用光学系の一実施例を
示したものである。11は例えば一眼レフレックスカメラ
の撮影レンズ等の結像レンズ、12は結像レンズ11の予定
結像面、13は結像レンズ11の射出瞳を再結像レンズ14の
直前の絞り15に投影させる瞳投影レンズ、16は光電変換
素子列である。
FIG. 6 shows an embodiment of the focus detecting optical system according to the present invention. 11 is an image forming lens such as a photographing lens of a single-lens reflex camera, 12 is a planned image forming surface of the image forming lens 11, 13 is an exit pupil of the image forming lens 11 and is projected on a diaphragm 15 immediately before the re-imaging lens 14. A pupil projection lens, 16 is a photoelectric conversion element array.

第7図は第6図の再結像レンズ14と光電変換素子列16
を拡大して示したものである。再結像レンズ14の前面は
絞り15の中心を通る光線を図のように光軸Oと平行にす
るための補正屈折面であり、光軸Oと共軸である。再結
像レンズ14の後面14b1,14b2は光電変換素子列16側を向
く一対の凸面として構成された、光電変換素子列16上に
二次像を形成するための再結像作用面である。
FIG. 7 shows the re-imaging lens 14 and the photoelectric conversion element array 16 shown in FIG.
Is enlarged. The front surface of the re-imaging lens 14 is a correction refracting surface for making a ray passing through the center of the diaphragm 15 parallel to the optical axis O as shown in the drawing, and is coaxial with the optical axis O. The rear surfaces 14b 1 and 14b 2 of the re-imaging lens 14 are configured as a pair of convex surfaces facing the photoelectric conversion element array 16 side, and are re-imaging action surfaces for forming a secondary image on the photoelectric conversion element array 16. is there.

第7図の再結像レンズ14の一数値例を下記表1に示
す。ただし再結像作用面14b1,14b2の屈折力ψsをψs
=1として規格化している。表1においてRは曲率半
径、Dは空気間隔及びレンズ肉厚、Ndはd線に対する屈
折率、νdはアッベ数、Iは光電変換素子列16上の有効
像高である。
A numerical example of the re-imaging lens 14 shown in FIG. 7 is shown in Table 1 below. However, the refracting power ψs of the re-imaging action surfaces 14b 1 and 14b 2 is ψs
Standardized as = 1. In Table 1, R is the radius of curvature, D is the air gap and lens thickness, Nd is the refractive index for the d-line, νd is the Abbe number, and I is the effective image height on the photoelectric conversion element array 16.

上記再結像レンズ14はプラスチックで一体成型され、
第7図のように前面側の側部に平面部を設けて絞り15の
受け面としている。
The re-imaging lens 14 is integrally molded of plastic,
As shown in FIG. 7, a flat surface portion is provided on the side portion on the front surface side to serve as a receiving surface for the diaphragm 15.

尚、再結像レンズ14b1,14b2の中心の間隔ΣはΣ=2I
=0.348である。cos4乗則による照度低下は最大像高で
約6.0%である。
The distance Σ between the centers of the re-imaging lenses 14b 1 and 14b 2 is Σ = 2I
= 0.348. The decrease in illuminance due to the cos4 power law is about 6.0% at the maximum image height.

他の数値列を下記表2に示す。 Other numerical sequences are shown in Table 2 below.

尚、Σ=2I=0.274であり、cos4乗則による照度低下
は最大像高で約3.7%である。
It should be noted that Σ = 2I = 0.274, and the decrease in illuminance due to the cos4 power law is about 3.7% at the maximum image height.

以上、本発明焦点検出用光学系によれば、補正屈折面
14aにより照度分布中心ズレが補正されると共に、再結
像作用面14b1,14b2の屈折力をψs、光電変換素子列16
上の有効像高をIとしたときψsI<0.2としたことによ
り周辺光量低下が極めて少なくなっている。従って、照
度分布の均一性が高いので合焦精度が大幅に向上する。
又、補正屈折面14aと再結像作用面14b1,14b2が再結像レ
ンズ14として一体化されているので、部品点数が増加せ
ず、その結果部品コストや組立コストが増加せずに済
む。
As described above, according to the focus detection optical system of the present invention, the correction refractive surface
The illuminance distribution center shift is corrected by 14a, and the refracting powers of the re-imaging action surfaces 14b 1 and 14b 2 are set to ψs, and the photoelectric conversion element array 16
When the effective image height is set to I, φsI <0.2, so that the peripheral light amount reduction is extremely small. Therefore, since the illuminance distribution is highly uniform, the focusing accuracy is significantly improved.
Further, since the correction refracting surface 14a and the re-imaging action surfaces 14b 1 and 14b 2 are integrated as the re-imaging lens 14, the number of parts does not increase, and as a result, the parts cost and the assembly cost do not increase. I'm done.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明による焦点検出用光学系は合焦精
度が良好であって特にデフォーカス時にも正確なピント
ズレ量が検出可能であると共に、部品コスト及び組立コ
ストが増大せずに済むという重要な利点を有している。
As described above, it is important that the focus detection optical system according to the present invention has good focusing accuracy, can detect an accurate focus deviation amount even at the time of defocusing, and does not increase the component cost and the assembly cost. It has many advantages.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による焦点検出用光学系の基本構成を示
す図、第2図は再結像光学系に照度分布の不均一性がな
い時の非合焦時のダークラインチャートに対する二像の
画素出力と相関演算値のグラフを示す図、第3図は照度
分布中心ズレがある場合の二像の画素出力と相関演算値
のグラフを示す図、第4図は第3図の二像を重ね合わせ
た図、第5図は周辺光量低下が大きい場合で非合焦時の
二像の画素出力と相関演算値を示す図、第6図は本発明
焦点検出用光学系の一実施例の構成を示す図、第7図は
第6図の要部拡大図、第8図は従来例における均一な輝
度分布を有する被写体に対するセンサ面上での照度分布
を示す図、第9図は従来例における非合焦時のダークラ
インチャートの二次像の照度分布を示す図、第10図は周
辺光量の低下が少ない場合の非合焦時のダークラインチ
ャートの二次像の照度分布を示す図、第11図及び第12図
は夫々従来例及び他の従来例の構成を示す図である。 11……結像レンズ、12……予定結像面、13……瞳投影レ
ンズ、14……再結像レンズ、14a……補正屈折面、14b1,
14b2……再結像作用面、15……絞り、16……光電変換素
子列。
FIG. 1 is a diagram showing a basic configuration of a focus detection optical system according to the present invention, and FIG. 2 is a two-image image for a dark line chart at the time of non-focus when the re-imaging optical system has no unevenness of illuminance distribution. FIG. 3 is a graph showing a pixel output and a correlation calculation value graph, FIG. 3 is a graph showing a pixel output and a correlation calculation value graph of two images when the illuminance distribution center shift is present, and FIG. 4 is the two images of FIG. FIG. 5 is a diagram showing the pixel output of two images and a correlation calculation value when out-of-focus when the peripheral light amount decrease is large, and FIG. 6 is an embodiment of the focus detection optical system of the present invention. FIG. 7 is an enlarged view of a main part of FIG. 6, FIG. 8 is a view showing an illuminance distribution on a sensor surface for an object having a uniform luminance distribution in the conventional example, and FIG. 9 is a conventional view. Fig. 10 is a diagram showing the illuminance distribution of the secondary image of the dark line chart when the subject is out of focus in Fig. 10. Shows an illuminance distribution of the secondary image of the dark line chart when unfocused cases have, FIG. 11 and FIG. 12 is a diagram showing the configuration of each prior art and other related art. 11 ... Imaging lens, 12 ... Planned imaging surface, 13 ... Pupil projection lens, 14 ... Re-imaging lens, 14a ... Correction refraction surface, 14b 1 ,
14b 2 ...... Re-imaging surface, 15 ...... diaphragm, 16 ...... Photoelectric conversion element array.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結像レンズの予定結像面付近に位置してい
て該結像レンズの射出瞳を伝送する瞳投影レンズと、前
記結像レンズにより形成された一次像を分割してセンサ
上に再形成する一対の再結像レンズと、明るさ絞りとか
ら成る焦点検出用光学系において、 前記一対の再結像レンズの前面は、前記瞳投影レンズに
共軸な凸レンズ面から成り、後面は前記センサ側に凸面
が並列に形成された一対の結像作用面から成り、前記明
るさ絞りを前記凸レンズ面の前面に設けたことを特徴と
する焦点検出用光学系。
1. A pupil projection lens located near a planned image forming surface of an image forming lens and transmitting an exit pupil of the image forming lens, and a primary image formed by the image forming lens is divided and placed on a sensor. In a focus detection optical system consisting of a pair of re-imaging lenses to be re-formed into, and an aperture stop, the front surface of the pair of re-imaging lenses comprises a convex lens surface coaxial with the pupil projection lens, and a rear surface. Is a pair of image forming surfaces in which convex surfaces are formed in parallel on the sensor side, and the aperture stop is provided on the front surface of the convex lens surface.
【請求項2】一対の結像作用面の屈折力をψ、センサ
上の二次像の有効像高をIとすると ψSI<0.2 である事を特徴とする特許請求の範囲(1)に記載の焦
点検出用光学系。
2. When the refractive power of the pair of image forming surfaces is ψ S and the effective image height of the secondary image on the sensor is I, then ψ S I <0.2 is satisfied. ) The optical system for focus detection according to [1].
JP62111472A 1987-05-07 1987-05-07 Optical system for focus detection Expired - Lifetime JP2543077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111472A JP2543077B2 (en) 1987-05-07 1987-05-07 Optical system for focus detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111472A JP2543077B2 (en) 1987-05-07 1987-05-07 Optical system for focus detection

Publications (2)

Publication Number Publication Date
JPS63276009A JPS63276009A (en) 1988-11-14
JP2543077B2 true JP2543077B2 (en) 1996-10-16

Family

ID=14562113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111472A Expired - Lifetime JP2543077B2 (en) 1987-05-07 1987-05-07 Optical system for focus detection

Country Status (1)

Country Link
JP (1) JP2543077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293709U (en) * 1989-01-10 1990-07-25

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679102B2 (en) * 1985-10-02 1994-10-05 キヤノン株式会社 Focus detection device
JPH0812321B2 (en) * 1985-07-26 1996-02-07 旭光学工業株式会社 Optical system of focus detection device
JP2514339B2 (en) * 1986-11-18 1996-07-10 旭光学工業株式会社 Optical system of focus detection device

Also Published As

Publication number Publication date
JPS63276009A (en) 1988-11-14

Similar Documents

Publication Publication Date Title
JP3240648B2 (en) Focus detection device
US10455142B2 (en) Focus detection apparatus and method, and image capturing apparatus
US8417106B2 (en) Focus detection device
US6112029A (en) Camera, exchangeable lens, and camera system
US4670645A (en) Focus detecting device with shading reduction optical filter
JP3345890B2 (en) System camera and rear conversion lens barrel
JPS63118112A (en) Focus detector
US6813442B2 (en) Autofocus system and camera system
US4370551A (en) Focus detecting device
JP5152021B2 (en) Imaging apparatus and focal position detection apparatus
JP2543077B2 (en) Optical system for focus detection
JP3039066B2 (en) Focus detection device
JP5272565B2 (en) Focus detection apparatus and imaging apparatus
JP5763415B2 (en) Photometric device for interchangeable lens camera
JP4938922B2 (en) Camera system
JP3230759B2 (en) Distance measuring device
JP2768459B2 (en) Focus detection device
JP2017219791A (en) Control device, imaging device, control method, program, and storage medium
US4322615A (en) Focus detecting device with shielding
JP2927047B2 (en) Focus detection device
JP2004198701A (en) Focus detecting optical system and camera provided with the same
JP2716526B2 (en) Optical system for focus detection
JP4585662B2 (en) Camera system and camera
JP2706932B2 (en) Focus detection device for camera
JP2600934B2 (en) Projection system for automatic focus detection

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11