JP2541882C - - Google Patents
Info
- Publication number
- JP2541882C JP2541882C JP2541882C JP 2541882 C JP2541882 C JP 2541882C JP 2541882 C JP2541882 C JP 2541882C
- Authority
- JP
- Japan
- Prior art keywords
- group
- copper
- acid
- producing
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 55
- 239000010949 copper Substances 0.000 claims description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 39
- RWZYAGGXGHYGMB-UHFFFAOYSA-N Anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 claims description 36
- 229910052802 copper Inorganic materials 0.000 claims description 36
- 239000003054 catalyst Substances 0.000 claims description 34
- 239000002253 acid Substances 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 22
- VHUUQVKOLVNVRT-UHFFFAOYSA-N ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 20
- 239000011541 reaction mixture Substances 0.000 claims description 17
- -1 hydrazine compound Chemical class 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000005749 Copper compound Substances 0.000 claims description 13
- 150000001880 copper compounds Chemical class 0.000 claims description 13
- 125000005843 halogen group Chemical group 0.000 claims description 13
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 claims description 11
- 150000007513 acids Chemical class 0.000 claims description 10
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- QPLDLSVMHZLSFG-UHFFFAOYSA-N copper oxide Chemical group [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 150000001340 alkali metals Chemical group 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 claims description 6
- 239000011630 iodine Substances 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 6
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 125000004429 atoms Chemical group 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 5
- 239000005751 Copper oxide Substances 0.000 claims description 4
- 229910000431 copper oxide Inorganic materials 0.000 claims description 4
- VMQMZMRVKUZKQL-UHFFFAOYSA-N cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 claims description 4
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 4
- 238000007323 disproportionation reaction Methods 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 3
- ZGCHATBSUIJLRL-UHFFFAOYSA-N Hydrazine sulfate Chemical compound NN.OS(O)(=O)=O ZGCHATBSUIJLRL-UHFFFAOYSA-N 0.000 claims description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000012493 hydrazine sulfate Substances 0.000 claims description 2
- 229910000377 hydrazine sulfate Inorganic materials 0.000 claims description 2
- 230000001264 neutralization Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M isothiocyanate Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- JYYLQSCZISREGY-UHFFFAOYSA-N 2-amino-4-chlorobenzoic acid Chemical compound NC1=CC(Cl)=CC=C1C(O)=O JYYLQSCZISREGY-UHFFFAOYSA-N 0.000 description 15
- 235000011114 ammonium hydroxide Nutrition 0.000 description 15
- ATCRIUVQKHMXSH-UHFFFAOYSA-N 2,4-dichlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1Cl ATCRIUVQKHMXSH-UHFFFAOYSA-N 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- BERDEBHAJNAUOM-UHFFFAOYSA-N Copper(I) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000003638 reducing agent Substances 0.000 description 7
- 230000002194 synthesizing Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229960004643 Cupric oxide Drugs 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 238000005915 ammonolysis reaction Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reduced Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 229940112669 cuprous oxide Drugs 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QAOJBHRZQQDFHA-UHFFFAOYSA-N 2,3-dichlorobenzoic acid Chemical compound OC(=O)C1=CC=CC(Cl)=C1Cl QAOJBHRZQQDFHA-UHFFFAOYSA-N 0.000 description 3
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-Chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 3
- BWFPGXWASODCHM-UHFFFAOYSA-N Copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M Copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- ZURAKLKIKYCUJU-UHFFFAOYSA-O azanium;copper Chemical class [NH4+].[Cu+2] ZURAKLKIKYCUJU-UHFFFAOYSA-O 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 230000000875 corresponding Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229940045803 cuprous chloride Drugs 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LWUAMROXVQLJKA-UHFFFAOYSA-N 2-amino-3-chlorobenzoic acid Chemical compound NC1=C(Cl)C=CC=C1C(O)=O LWUAMROXVQLJKA-UHFFFAOYSA-N 0.000 description 2
- LWXFCZXRFBUOOR-UHFFFAOYSA-N 4-chloro-2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1O LWXFCZXRFBUOOR-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M Copper(I) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L Copper(II) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L Copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper(II) hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M Perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- JVBXVOWTABLYPX-UHFFFAOYSA-L Sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 201000002574 conversion disease Diseases 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- RFKZUAOAYVHBOY-UHFFFAOYSA-M copper(1+);acetate Chemical compound [Cu+].CC([O-])=O RFKZUAOAYVHBOY-UHFFFAOYSA-M 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000003872 salicylic acid derivatives Chemical class 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (Z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- CPIQIFZUPSNWNR-UHFFFAOYSA-N 1-chloronaphthalene-2-carboxylic acid Chemical compound C1=CC=CC2=C(Cl)C(C(=O)O)=CC=C21 CPIQIFZUPSNWNR-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- FUXMTEKFGUWSNC-UHFFFAOYSA-N 2,3,4,5-tetrachlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=C(Cl)C(Cl)=C1Cl FUXMTEKFGUWSNC-UHFFFAOYSA-N 0.000 description 1
- ALLSOOQIDPLIER-UHFFFAOYSA-N 2,3,4-trichlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C(Cl)=C1Cl ALLSOOQIDPLIER-UHFFFAOYSA-N 0.000 description 1
- CGFDSIZRJWMQPP-UHFFFAOYSA-N 2,3,5-trichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC(Cl)=C1Cl CGFDSIZRJWMQPP-UHFFFAOYSA-N 0.000 description 1
- PTFNNDHASFGWFI-UHFFFAOYSA-N 2,4,5-trichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=C(Cl)C=C1Cl PTFNNDHASFGWFI-UHFFFAOYSA-N 0.000 description 1
- RAFFVQBMVYYTQS-UHFFFAOYSA-N 2,4,6-trichlorobenzoic acid Chemical compound OC(=O)C1=C(Cl)C=C(Cl)C=C1Cl RAFFVQBMVYYTQS-UHFFFAOYSA-N 0.000 description 1
- KZCWJHUTTSVCRO-UHFFFAOYSA-N 2,4-dichloro-5-fluorobenzoic acid Chemical compound OC(=O)C1=CC(F)=C(Cl)C=C1Cl KZCWJHUTTSVCRO-UHFFFAOYSA-N 0.000 description 1
- QVTQYSFCFOGITD-UHFFFAOYSA-N 2,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC=C1Cl QVTQYSFCFOGITD-UHFFFAOYSA-N 0.000 description 1
- MRUDNSFOFOQZDA-UHFFFAOYSA-N 2,6-dichlorobenzoic acid Chemical compound OC(=O)C1=C(Cl)C=CC=C1Cl MRUDNSFOFOQZDA-UHFFFAOYSA-N 0.000 description 1
- CJNZAXGUTKBIHP-UHFFFAOYSA-N 2-Iodobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1I CJNZAXGUTKBIHP-UHFFFAOYSA-N 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N 2-Phenylphenol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- XRXMNWGCKISMOH-UHFFFAOYSA-N 2-bromobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Br XRXMNWGCKISMOH-UHFFFAOYSA-N 0.000 description 1
- HMEJVKGZESKXFC-UHFFFAOYSA-N 2-chloro-3-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1Cl HMEJVKGZESKXFC-UHFFFAOYSA-N 0.000 description 1
- CGFMLBSNHNWJAW-UHFFFAOYSA-N 2-chloro-4,5-difluorobenzoic acid Chemical compound OC(=O)C1=CC(F)=C(F)C=C1Cl CGFMLBSNHNWJAW-UHFFFAOYSA-N 0.000 description 1
- DTIJZEUKFYGSEC-UHFFFAOYSA-N 2-chloro-4-(trifluoromethyl)benzoic acid Chemical compound OC(=O)C1=CC=C(C(F)(F)F)C=C1Cl DTIJZEUKFYGSEC-UHFFFAOYSA-N 0.000 description 1
- GRPWQLDSGNZEQE-UHFFFAOYSA-N 2-chloro-4-fluorobenzoic acid Chemical compound OC(=O)C1=CC=C(F)C=C1Cl GRPWQLDSGNZEQE-UHFFFAOYSA-N 0.000 description 1
- WIPYZRZPNMUSER-UHFFFAOYSA-N 2-chloro-4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1Cl WIPYZRZPNMUSER-UHFFFAOYSA-N 0.000 description 1
- MYJUBDJLKREUGU-UHFFFAOYSA-N 2-chloro-4-methylbenzoic acid Chemical compound CC1=CC=C(C(O)=O)C(Cl)=C1 MYJUBDJLKREUGU-UHFFFAOYSA-N 0.000 description 1
- LEBWXJZAWTVKFL-UHFFFAOYSA-N 2-chloro-5-methylbenzoic acid Chemical compound CC1=CC=C(Cl)C(C(O)=O)=C1 LEBWXJZAWTVKFL-UHFFFAOYSA-N 0.000 description 1
- XNTIGDVFBDJLTQ-UHFFFAOYSA-N 2-chloro-6-fluorobenzoic acid Chemical compound OC(=O)C1=C(F)C=CC=C1Cl XNTIGDVFBDJLTQ-UHFFFAOYSA-N 0.000 description 1
- CEFMMQYDPGCYMG-UHFFFAOYSA-N 2-chloro-6-methylbenzoic acid Chemical compound CC1=CC=CC(Cl)=C1C(O)=O CEFMMQYDPGCYMG-UHFFFAOYSA-N 0.000 description 1
- ZPXGNBIFHQKREO-UHFFFAOYSA-N 2-chloroterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(Cl)=C1 ZPXGNBIFHQKREO-UHFFFAOYSA-N 0.000 description 1
- QUEKGYQTRJVEQC-UHFFFAOYSA-N 2516-96-3 Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC=C1Cl QUEKGYQTRJVEQC-UHFFFAOYSA-N 0.000 description 1
- YUDBKSANIWMLCU-UHFFFAOYSA-N 3,4-dichlorophthalic acid Chemical compound OC(=O)C1=CC=C(Cl)C(Cl)=C1C(O)=O YUDBKSANIWMLCU-UHFFFAOYSA-N 0.000 description 1
- PPINMMULCRBDOS-UHFFFAOYSA-N 3-chloro-2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(Cl)=C1O PPINMMULCRBDOS-UHFFFAOYSA-N 0.000 description 1
- JRQDVRIQJJPHEQ-UHFFFAOYSA-N 3970-35-2 Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1Cl JRQDVRIQJJPHEQ-UHFFFAOYSA-N 0.000 description 1
- MBDUKNCPOPMRJQ-UHFFFAOYSA-N 4-amino-2-chlorobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C(Cl)=C1 MBDUKNCPOPMRJQ-UHFFFAOYSA-N 0.000 description 1
- SQFLFRQWPBEDHM-UHFFFAOYSA-N 4-chloro-1-methyl-2-nitrobenzene Chemical compound CC1=CC=C(Cl)C=C1[N+]([O-])=O SQFLFRQWPBEDHM-UHFFFAOYSA-N 0.000 description 1
- APLYBKHRTXFIBT-UHFFFAOYSA-N 4-chlorobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(Cl)C(C(O)=O)=C1 APLYBKHRTXFIBT-UHFFFAOYSA-N 0.000 description 1
- WRZOMWDJOLIVQP-UHFFFAOYSA-N 5-Chloro-ortho-toluidine Chemical compound CC1=CC=C(Cl)C=C1N WRZOMWDJOLIVQP-UHFFFAOYSA-N 0.000 description 1
- GVCFFVPEOLCYNN-UHFFFAOYSA-N 5-amino-2-chlorobenzoic acid Chemical compound NC1=CC=C(Cl)C(C(O)=O)=C1 GVCFFVPEOLCYNN-UHFFFAOYSA-N 0.000 description 1
- ZJJGAQHIJKRZHA-UHFFFAOYSA-N 5-chlorobenzene-1,2,4-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1Cl ZJJGAQHIJKRZHA-UHFFFAOYSA-N 0.000 description 1
- QAYNSPOKTRVZRC-UHFFFAOYSA-N 99-60-5 Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1Cl QAYNSPOKTRVZRC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate dianion Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- NKNDPYCGAZPOFS-UHFFFAOYSA-M Copper(I) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N Copper(I) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N Copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- YRNNKGFMTBWUGL-UHFFFAOYSA-L Copper(II) perchlorate Chemical compound [Cu+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O YRNNKGFMTBWUGL-UHFFFAOYSA-L 0.000 description 1
- GQDHEYWVLBJKBA-UHFFFAOYSA-H Copper(II) phosphate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GQDHEYWVLBJKBA-UHFFFAOYSA-H 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L Copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 210000004940 Nucleus Anatomy 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Chemical compound C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N Phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N Sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- SXFNQFWXCGYOLY-UHFFFAOYSA-J [Cu+4].[O-]P([O-])(=O)OP([O-])([O-])=O Chemical compound [Cu+4].[O-]P([O-])(=O)OP([O-])([O-])=O SXFNQFWXCGYOLY-UHFFFAOYSA-J 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- BQVVSSAWECGTRN-UHFFFAOYSA-L copper;dithiocyanate Chemical compound [Cu+2].[S-]C#N.[S-]C#N BQVVSSAWECGTRN-UHFFFAOYSA-L 0.000 description 1
- PEVZEFCZINKUCG-UHFFFAOYSA-L copper;octadecanoate Chemical compound [Cu+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O PEVZEFCZINKUCG-UHFFFAOYSA-L 0.000 description 1
- QYCVHILLJSYYBD-UHFFFAOYSA-L copper;oxalate Chemical compound [Cu+2].[O-]C(=O)C([O-])=O QYCVHILLJSYYBD-UHFFFAOYSA-L 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- ZGSRGICQFXEMGO-UHFFFAOYSA-L diazanium;tetrachlorocopper(2-) Chemical compound [NH4+].[NH4+].Cl[Cu-2](Cl)(Cl)Cl ZGSRGICQFXEMGO-UHFFFAOYSA-L 0.000 description 1
- XGZRAKBCYZIBKP-UHFFFAOYSA-L disodium;dihydroxide Chemical compound [OH-].[OH-].[Na+].[Na+] XGZRAKBCYZIBKP-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drugs Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-M hydrosulfide Chemical compound [SH-] RWSOTUBLDIXVET-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxyl anion Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- STDMRMREKPZQFJ-UHFFFAOYSA-H tricopper;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O STDMRMREKPZQFJ-UHFFFAOYSA-H 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】
本発明は、医薬、農薬及び染料等の合成原料として有用なアントラニル酸類の
製造方法に関する。
【0002】
【従来の技術】
アントラニル酸の工業的製造法としては、無水フタル酸とアンモニアから得ら
れるフタルイミドを次亜塩素酸ナトリウム及び水酸化ナトリウムと反応させて得
る方法が知られているが、この方法では芳香核に置換基を有する各種のアントラ
ニル酸類に適用することは困難である。
【0003】
核に置換基を有するアントラニル酸、例えば4−クロロアントラニル酸の合成
法としては、2−ニトロ−4−クロロトルエンを出発原料として、これを還元し
て2−アミノ−4−クロロトルエンとし、続いてアミノ基のアセチル化、メチル
基の酸化、加水分解(脱アセチル化)の数段階の反応を経る方法が1946年発
行のジャーナル・オブ・アメリカン・ケミカルソサィエティー誌の第68巻、1
285〜1288ページに紹介されている。しかし、この方法では工程数が多い
ため、安価に高品質の目的化合物を得ることは難しい。
【0004】
一方、オルトハロゲノ安息香酸類を原料とし、これをアンモニア水中でアンモ
ノリシスしてアントラニル酸類を合成する方法はすでに知られているが、報告例
はあまり多くない。例えば Hoechst社の旧ドイツ特許(D.R.P.,14560
4,1902年)では銅粉を触媒として125℃のアンモニア水中で2−クロロ
安息香酸からアントラニル酸を合成している。しかし、この反応混合物から過剰
のアンモニアを除去したのち、そのまま鉱酸で酸析処理しても、得られた4−ク
ロロアントラニル酸は、水や有機溶剤に不溶性の銅化合物を多量に含んでいるた
め灰紫色から黄緑色に着色しており純度も低くなる。
【0005】
この原因として、これらオルトハロゲノ安息香酸類のアンモノリシスでは、触
媒として使用した金属銅や銅含有触媒が、反応後の反応混合物中に銅アンモニウ
ム錯化合物の形で溶解したまま残り、一部は反応生成物であるアントラニル酸類
と安定なキレート錯体化合物を形成するためと考えられる。銅アンモニウム錯化
合物として溶解した触媒を除去する方法としては、水酸化アルカリ水溶液で処
理して酸化銅として沈澱させ分離する、硫化アルカリや水硫化アルカリで処理
して硫化銅として沈澱させ分離する、イオン交換樹脂に銅を吸着させ分離する
、等が考えられるが、やの方法では水酸化アルカリや硫化アルカリ水溶液自
体が酸化銅や硫化銅を溶解させるため、酸化銅や硫化銅として完全には沈澱、分
離させることができない欠点があり、の方法でもイオン交換樹脂を多量に必要
とし脱着・再生等の操作が煩雑となる欠点があって実際的ではない。
【0006】
また、2,4−ジクロロ安息香酸を原料とし、4−クロロアントラニル酸を合
成する方法として、アンモニア水中での部分アンモノリシス法がサマント(Saman
t)により報告されいる〔Samant,Ber.,75B,1008(1942)〕。さらに最近の報告で
はヤコントフ(Yakhontov)らが同じルートで合成を試みている〔Yakhontov,L.N.
etal.Khim.- Farm.Zh.,21(1),38〜49(1987)〕。サマントは触媒に0価の金属
銅を単独に用いて、37%のアンモニア水中、120℃で4時間反応させており
、またヤコントフらは2価の銅化合物である酢酸銅を触媒として126〜129
℃で10時間反応させている。しかし、本発明者らがそれぞれの方法を追試した
結果、両者の方法とも反応転化率が低く、未反応の2,4−ジクロロ安息香酸が
多量に残るため、単離した製品の品質が低下することが確認された。収率を損な
わずに製品中に混入した未反応原料を除去して精製することは容易ではなく、安
価に4−クロロアントラニル酸を得るという当初の目的から外れる。また両者の
方法では反応温度と圧力が比較的高いため、本来のアミノ化反応以外に水酸基化
される副反応や生成物の熱分解の割合が増えるという欠点があり、さらに工業的
には反応容器の材質や装置の仕様にも大きな制約を受け好ましくない。
【0007】
【発明が解決しようとする課題】
従って、本発明の目的は、従来から工業的に実施されているルートとは別の新
しいルートで、一段の反応でオルトハロゲノ安息香酸類をアンモノリシスして対
応するアントラニル酸類を安価に、効率的に、高収率で製造する方法を提供する
ことにある。
【0008】
【課題を解決するための手段】
本発明者らはこうした従来のオルトハロゲノ安息香酸類をアンモノリシスして
対応するアントラニル酸類を合成する際の問題点を解決するために鋭意研究を重
ねた結果、意外にも酸化状態が0価の金属銅と第二銅との中間に位置する第一銅
が、オルトハロゲノ安息香酸類から対応するアントラニル酸を合成するための触
媒として極めて有効であることを見い出し、この知見に基づき本発明をなすに至
った。
【0009】
すなわち本発明は、
一般式(I)
【化11】
(式中、Yは水素原子、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基
、アセトキシ基、ニトロ基、アミノ基、スルホ基、カルボキシル基、トリフルオ
ロメチル基、またはアリール基を示し、Yは互いに同一であっても異なっていて
もよい。nは1〜4の整数を示す。Mは水素原子、アンモニウム基、アルカリ金
属原子、またはアルカリ土類金属原子の中から選ばれる。)
で表わされるアントラニル酸類を製造するに当り、
一般式(II)
【化12】
(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y、n及
びMは前記と同じ意味をもつ。)
で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させるアントラニル酸類の製造法であって、前記第一銅含
有触媒が、0価の金属銅と第二銅の酸化状態にある銅化合物を組合せて用い、価
数の不均化により実質的に第一銅の酸化状態にある、ことを特徴とするアントラ
ニル酸類の製造法、及び
一般式(I)−a
【化13】
(式中、Y1はハロゲン原子を示し、Mは一般式(I)と同じ意味をもつ。)
で表わされるアントラニル酸類を製造するに当り、
一般式(II)−a
【化14】
(式中、Y1は一般式(I)−aと同じ意味をもち、X及びMは一般式(II)と
同じ意味をもつ。)
で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させることを特徴とするアントラニル酸類の製造法を提供
するものである。
【0010】
以下、本発明を具体的に説明する。
本発明の方法で出発原料として用いられる、前記一般式(II)で表わされる化
合物は、具体的には2−クロロ安息香酸、2−ブロモ安息香酸、2−ヨード安息
香酸、2,3−ジクロロ安息香酸、2,4−ジクロロ安息香酸、2,5−ジクロ
ロ安息香酸、2,6−ジクロロ安息香酸、2−クロロ−4−フルオロ安息香酸、
2−クロロ−6−フルオロ安息香酸、2−クロロ−4,5−ジフルオロ安息香酸
、2,4−ジクロロ−5−フルオロ安息香酸、2,3,4−トリクロロ安息香酸
、2,3,5−トリクロロ安息香酸、2,4,5−トリクロロ安息香酸、2,4
,6−トリクロロ安息香酸、2,3,4,5−テトラクロロ安息香酸、2−クロ
ロ−4−メチル安息香酸、2−クロロ−5−メチル安息香酸、2−クロロ−6−
メチル安息香酸、2−クロロ−3−ヒドロキシ安息香酸、2−クロロ−4−ヒド
ロキシ安息香酸、2−クロロ−3−ニトロ安息香酸、2−クロロ−4−ニトロ安
息香酸、2−クロロ−5−ニトロ安息香酸、4−アミノ−2−クロロ安息香酸、
5−アミノ−2−クロロ安息香酸、クロロテレフタル酸、4−クロロイソフタル
酸、3,4−ジクロロフタル酸、5−クロロトリメリット酸、2−クロロ−4−
トリフルオロメチル安息香酸、1−クロロ−2−ナフトエ酸、3−クロロ−2−
ナフトエ酸などが例示され、これらは遊離酸のみでなく、アンモニウム塩、Kや
Naなどのアルカリ金属塩、MgやCaなどのアルカリ土類金属塩でもよい。
【0011】
本発明におけるアンモノリシスの反応は、耐圧性の反応容器を用い、反応溶媒
も兼ねたアンモニア水中で実施される。アンモニア水の濃度は好ましくは10〜
50wt%、より好ましくは20〜35wt%である。アンモニアの濃度があまり低
くなると、サリチル酸誘導体が副生する割合が増え、またpHの低下が進むため
、反応容器材質の耐食性に悪い影響を与える。濃度があまり高くなるとジフェニ
ルアミンジカルボン酸型の誘導体の副生が増え、また工業的には反応時の圧力が
極めて高くなって反応装置の仕様に制約を受けたり、アンモニア水を回収・再使
用する際に不利となる。
【0012】
アンモニアの使用量はオルトハロゲノ安息香酸1モルに対して好ましくは3〜
40倍モル、より好ましくは6〜25倍モルである。これより少ないと撹拌が困
難となり、装置の腐食も大きくなることがある。また必要以上に多量に用いても
、反応結果は向上せず、生産効率が低下するのみである。
【0013】
本発明の方法で用いられる第一銅含有触媒は、例えば第一銅の酸化状態にある
銅化合物であり、具体的には酸化第一銅、塩化第一銅、臭化第一銅、ヨウ化第一
銅、チオシアン酸銅またはシアン化銅である。また、本発明は0価の金属銅及び
第二銅の酸化状態にある銅化合物を任意に組合せて用い、次式にて示されるよう
に、金属銅と第二銅化合物の等量混合物が反応時にイオン価数の不均化反応によ
り実質的に第一銅の酸化状態となって存在し得る場合でもよい。
Cu + Cu2+ → 2Cu+
【0014】
0価の金属銅と組み合わせて用いられる第二銅の酸化状態にある銅化合物(酸
化物、水酸化物、フッ化物、塩化物、臭化物、ヨウ化物、酢酸塩、炭酸塩、過塩
素酸塩、硝酸塩、リン酸塩及び硫酸塩などから選ばれる一種類または複数のもの
)として具体的には、酸化第二銅、水酸化第二銅、フッ化第二銅、塩化第二銅、
臭化第二銅、ヨウ化第二銅、塩化第二銅アンモニウム、銅アセチルアセトネート
、ホウフッ化銅、ギ酸銅、酢酸銅、クエン酸銅、シュウ酸銅、ステアリン酸銅、
炭酸銅、過塩素酸銅、硝酸銅、リン酸銅、ピロリン酸銅、硫酸銅などである。こ
れらの銅化合物から一種類または複数を金属銅を共存させて使用する。金属銅は
粉末状、削状、その他の任意の形状で加えてもよい。これらの内、金属銅及び第
一銅の酸化状態にある銅化合物は、アンモニア水中では空気中の酸素により容易
に酸化されて第二銅の酸化状態にある銅アンモニウム錯化合物に変化して触媒作
用が低下するため、反応容器に触媒を加えた際には、窒素などの不活性ガスによ
り速やかに空気をパージすることが必須となる。
【0015】
本発明で用いられる第一銅含有触媒の使用量は、原料のオルトハロゲノ安息香
酸1モルに対して、銅原子に換算して0.001〜1.0グラム原子、好ましく
は0.02〜0.3グラム原子である。前述のように通常は第一銅化合物として
使用するが、0価の金属銅と第二銅化合物とを組合せて使用してもよい。この場
合、金属銅と第二銅化合物は必ずしも等量とする必要はなく、価数の不均化によ
り第一銅として上記触媒量の範囲に入っておれば、いずれか一方が過剰となって
もよい。第一銅としてこれより少なくなると反応速度が遅くなり、未反応原料が
残る。また必要以上に多量に用いると、後処理での触媒の除去操作が複雑になり
、好ましくない。
【0016】
反応温度は好ましくは50〜160℃、より好ましくは70〜120℃である
。反応温度が低すぎると反応速度は遅くなり、高くなるとサリチル酸誘導体の副
生や目的物の熱分解(脱炭酸)の割合が増加して収率と品質が低下し、さらに装
置の耐食性や耐圧性の面で問題や制約が生じる。
【0017】
本発明方法において、反応終了後、反応液中の含有触媒を処理して、金属銅と
して回収するのが好ましい。そのための方法としては、a.銅含有触媒を含む反
応混合物を亜二チオン酸塩、例えばハイドロサルファイト(Na2S2O4)で処理
して金属銅を析出させた後、これを除去分離させた反応溶液からアントラニル酸
類を単離する方法、b.銅含有触媒を含む反応混合物をヒドラジン、水加ヒドラ
ジン、中性硫酸ヒドラジンの中から選ばれた何れかのヒドラジン化合物で処理し
て金属銅を析出させた後、これを除去分離させた反応溶液からアントラニル酸類
を単離する方法などがある。
【0018】
このように還元剤として亜二チオン酸塩またはヒドラジン化合物を加えて銅化
合物を金属銅まで還元させることができる。これらの還元剤の使用量は、触媒の
銅1グラム原子に対して0.1〜10モル、好ましくは0.5〜2モルである。
この量は原料のオルトハロゲノ安息香酸1モルに対して0.0001〜10モル
に相当する。還元剤がこれより少ないと還元が不十分となり、製品中に銅化合物
が混入して品質が低下する。還元剤をこれより増やしても不経済であり、排水処
理にも問題がでてくる。好ましくは、亜二チオン酸塩またはヒドラジン化合物の
使用量は、原料のオルトハロゲノ安息香酸1モルに対して0.001〜2モルで
ある。
【0019】
本発明で用いられる還元剤は、反応終了後、反応混合物から大部分のアンモニ
アをいったん排出して回収したのち加えてもよいし、アンモニアを回収する操作
の前に加えてもよい。さらには反応で生成したアンモニウム塩を分解するため通
常使用されるカ性アルカリと一緒に加えてもよい。通常は反応混合物を空気との
接触を避けて還元剤で処理し、室温〜100℃の温度範囲で数分〜十数時間撹拌
し金属銅を析出させる。この際温度を80〜100℃として、常圧または減圧下
にて溶解しているアンモニアを十分除去することが好ましい。また上述のように
アンモニウム塩を分解してアンモニアの排出を完全にするため、カ性アルカリの
添加が好ましい。カ性アルカリは通常、原料のオルトハロゲノ安息香酸1モルに
対して1〜3モルが使用される。
【0020】
析出した金属銅は濾過もしくはデカンテーション等の方法により分離すると、
アントラニル酸類のアルカリ金属塩を含む通常は淡黄色の透明溶液が得られる。
これを鉱酸で処理すると白色ないし淡黄褐色のアントラニル酸類が90〜95%
の高収率で単離される。
【0021】
【発明の効果】
本発明方法によって第一銅触媒の存在下でアンモノリシスする1段の反応のみ
で、所望のアントラニル酸類を、高純度及び高収率に得ることができる。本発明
により、従来より低温、低圧の80〜100℃、3〜6kg/cm2G という温和な条
件でも数時間以内で反応を完結させることができ、かつ副反応の割合も抑えられ
るために、高純度のアントラニル酸類を安価に収率よく合成できる。また反応温
度と反応時の圧力が大幅に低下することになったため、反応容冊の耐食性と耐圧
性に関する設備上の条件が緩和でき、工業的に実施するのに好適である。さらに
反応終了後反応液を特定の還元剤で処理することにより、銅化合物を効率的に分
離することが可能となった。これによりオルトハロゲノ安息香酸からアントラニ
ル酸類を、高純度及び高収率に合成することができる。
【0022】
【実施例】
以下、本発明を実施例に基づき、さらに詳細に説明する。
【0023】
実施例1
300ml容のステンレス製圧力反応容器に25%アンモニア水190g(2.
79モル)及び2,4−ジクロロ安息香酸30.0g(0.157モル)を仕込
んで撹拌し、乳濁状となるまで溶解した。これに触媒の塩化第一銅1.55g(
0.0157モル)を加えて反応容器を密閉した。窒素で内部の空気をパージし
た後、100℃で6時間撹拌し反応させた。反応時の内圧は4.9〜4.3kg/
cm2Gであった。
【0024】
周囲温度に冷却後、窒素シール下で反応容器を開いて反応混合物を抜き出した
。反応混合物を高速液体クロマトグラフィー(o−ヒドロキシジフェニルを内部
標準物質とする内部標準法)で分析したところ以下の分析値を与え、反応転化率
は100%、4−クロロアントラニル酸の選択率は96.2%であった。
4−クロロアントラニル酸 0.1510モル
4−クロロサリチル酸 0.0028モル
2,4−ジクロロ安息香酸 検出されず
【0025】
こうして得られた反応混合物から、溶解しているアンモニア及び触媒を除去し
た後、鉱酸で酸析処理すると、純度98.6%の4−クロロアントラニル酸が2
5.8g得られた。さらにアルコール−水混合溶媒で再結晶すると純度99.7
%の4−クロロアントラニル酸が白色針状結晶として24.1g得られた。2,
4−ジクロロ安息香酸に対する収率は89.4%であった。
【0026】
比較例1〜4
触媒を金属銅又は第二銅化合物のそれぞれ単独使用に変えたことを除いては実
施例1と同様の反応条件で4−クロロアントラニル酸の合成した。その結果を表
1に示した。
【0027】
【表1】 【0028】
実施例2
実施例1と同じ反応容器に25%アンモニア水190g(2.79モル)及び
2,3−ジクロロ安息香酸30.0g(0.157モル)を仕込んで撹拌し、乳
濁状となるまで溶解した。これに触媒の酸化第一銅1.12g(0.00783
モル)を加えて反応容器を密閉した。窒素で空気をパージした後、110℃で6
時間撹拌した。反応時の内圧は6.8〜6.5kg/cm2Gであった。
【0029】
実施例1と同様に反応混合物を分析したところ以下の分析値を与え、反応転化
率は99.8%、3−クロロアントラニル酸の選択率は97.4%であった。
3−クロロアントラニル酸 0.1529モル
3−クロロサリチル酸 0.0012モル
2,3−ジクロロ安息香酸 0.0003モル
【0030】
実施例3
実施例1と同様の反応容器に20%アンモニア水170g(2.00モル)及
び2−クロロ安息香酸37.6(0.240モル)を加えて撹拌し溶解した。こ
れに塩化第一銅1.19g(0.012モル)を加えて反応容器を密閉し、窒素
で空気をパージした。85℃で6時間撹拌し、反応させた。反応時の内圧は3.
0〜2.6kg/cm2Gであった。
【0031】
実施例1と同様に反応混合物を分析したところ以下の分析値を与え、反応転化
率は100%、アントラニル酸の選択率は97.2%であった。
アントラニル酸 0.2333モル
サリチル酸 0.0012モル
オルトクロロ安息香酸 検出されず
【0032】
実施例4
実施例1と同じ反応容器に25%アンモニア水150g(2.20モル)及び
ヨウ化第一銅1.43g(0.00751モル)を加え、反応容器を密閉した後
窒素で空気をパージした。撹拌しながらこれに2,4−ジクロロ安息香酸のK塩
水溶液90g(2,4−ジクロロ安息香酸30.0g、50%KOH水溶液17
.5g及び水42.5gを混合し85℃に加熱溶解したもの)を窒素で圧入した
。90℃で8時間撹拌した。反応時の内圧は3.4〜3.2kg/cm2Gであった。
【0033】
実施例1と同様に反応混合物を分析したところ以下の分析値を与え、反応転化
率は99.9%、4−クロロアントラニル酸の選択率は95.9%であった。
4−クロロアントラニル酸 0.1505モル
4−クロロサリチル酸 0.0034モル
2,4−ジクロロ安息香酸 0.00016モル
【0034】
実施例5
実施例1と同様に25%アンモニア水と2,4−ジクロロ安息香酸を加え、触
媒として金属銅0.500g(0.00787モル)、酸化第二銅0.562g
(0.00707モル)の組合せを使用し、窒素パージ後100℃で6時間撹拌
して反応させた。
実施例1と同様に反応混合物を分析したところ以下の分析値を与え、反応転化
率は99.9%、4−クロロアントラニル酸の選択率は96.3%であった。
【0035】
実施例6〜11
実施例1〜5に準じて300mlの反応溶液中に表2に示した組成を仕込み、表
2の反応条件で反応を行い、これを実施例6〜11とする。結果を実施例1〜5
と合せて表3に示す。
【0036】
【表2】
【0037】
【表3】
【0038】
実施例12
実施例1で最後に得られた反応混合物にハイドロサルファイトナトリウム(含
量85%)3.4g(0.016モル)及び48%水酸化ナトリウム溶液32g
(0.38モル)を加えて、空気の接触を避けながら100℃まで加熱して過剰
のアンモニアを排出した。窒素シール下で室温まで冷却したのち、析出した金属
銅等の銅化合物を濾別した。濾過性は非常に良好であった。
【0039】
水を加えて全量を250gとなし、35%塩酸でpHが5〜6となるまで酸析
し、濾過、水洗、乾燥すると純度98.6%、銅含量(Cuとして、以下同様)
15ppm、白色粉末の4−クロロアントラニル酸が25.8g得られた。さら
にアルコール−水混合溶媒で再結晶すると、純度99.7%、銅含有量(Cuと
して、以下同様)6ppmの4−クロロアントラニル酸が白色針状結晶として2
4.1g得られた。2,4−ジクロロ安息香酸に対する収率は89.4%であっ
た。
【0040】
実施例13
実施例12で用いたハイドロサルファイトナトリウムをヒトラジンモノヒドラ
ート8.0g(0.16モル)に変更した以外は、実施例12と同様に行った。
純度99.6%、銅含有量8ppm、白色針状結晶の4−クロロアントラニル酸
が23.9g(収率88.7%)得られた。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing anthranilic acids useful as raw materials for synthesizing medicines, agricultural chemicals, dyes, and the like. As an industrial method for producing anthranilic acid, a method is known in which phthalimide obtained from phthalic anhydride and ammonia is reacted with sodium hypochlorite and sodium hydroxide. This method is difficult to apply to various anthranilic acids having a substituent on the aromatic nucleus. [0003] As a method for synthesizing anthranilic acid having a substituent at the nucleus, for example, 4-chloroanthranilic acid, 2-nitro-4-chlorotoluene is used as a starting material and reduced to give 2-amino-4-chlorotoluene. Then, a method involving several steps of acetylation of an amino group, oxidation of a methyl group, and hydrolysis (deacetylation) is described in Journal of American Chemical Society, Vol.
It is introduced on pages 285-1288. However, this method has many steps, and it is difficult to obtain a high-quality target compound at low cost. [0004] On the other hand, a method of synthesizing anthranilic acids by using orthohalogenobenzoic acids as a raw material and ammonolyzing the same in ammonia water has already been known, but there are not many reports. For example, the former German patent of Hoechst (DRP, 14560)
4,1902) synthesizes anthranilic acid from 2-chlorobenzoic acid in aqueous ammonia at 125 ° C. using copper powder as a catalyst. However, even after the excess ammonia is removed from the reaction mixture, the resulting 4-chloroanthranilic acid contains a large amount of a copper compound insoluble in water or an organic solvent even if it is subjected to acid precipitation with a mineral acid. Therefore, it is colored from gray purple to yellowish green, and its purity is low. [0005] As a cause of this, in the ammonolysis of these orthohalogenobenzoic acids, metallic copper or a copper-containing catalyst used as a catalyst remains dissolved in the reaction mixture in the form of a copper ammonium complex compound in the reaction mixture after the reaction, and a portion thereof is partially removed. It is considered to form a stable chelate complex compound with anthranilic acids as reaction products. As a method for removing the catalyst dissolved as a copper ammonium complex compound, treatment with an alkali hydroxide aqueous solution precipitates and separates as copper oxide, treatment with alkali sulfide or alkali hydrosulfide precipitates and separates as copper sulfide, It is conceivable to adsorb and separate copper on the exchange resin, etc., but in the case of the method, the alkali hydroxide or alkali sulfide aqueous solution itself dissolves copper oxide or copper sulfide, so that it is completely precipitated as copper oxide or copper sulfide, However, this method is not practical because it has a disadvantage that a large amount of ion exchange resin is required and the operations such as desorption and regeneration are complicated. As a method for synthesizing 4-chloroanthranilic acid using 2,4-dichlorobenzoic acid as a raw material, a partial ammonolysis method in ammonia water is used.
t) [Samant, Ber., 75B, 1008 (1942)]. In a more recent report, Yakhontov and colleagues attempted synthesis using the same route [Yakhontov, LN
etal. Khim.- Farm. Zh., 21 (1), 38-49 (1987)]. Samantt uses a zero-valent metal copper alone as a catalyst and reacts it at 37 ° C. in aqueous ammonia at 120 ° C. for 4 hours, and Yacontoff et al. Use 126-129 as a catalyst using copper acetate which is a divalent copper compound.
The reaction was performed at 10 ° C. for 10 hours. However, as a result of the inventors' additional tests of each method, both methods have a low reaction conversion rate and a large amount of unreacted 2,4-dichlorobenzoic acid remains, so that the quality of the isolated product decreases. It was confirmed that. It is not easy to remove and purify unreacted raw materials mixed in the product without impairing the yield, which deviates from the original purpose of obtaining 4-chloroanthranilic acid at low cost. In addition, both methods have relatively high reaction temperatures and pressures, and thus have the disadvantage of increasing the rate of side reactions to be hydroxylated and thermal decomposition of the products in addition to the original amination reaction. It is not preferable because the material and the specifications of the device are greatly restricted. [0007] Accordingly, an object of the present invention is to provide a new route different from the route which has been conventionally practiced industrially to ammonolyse orthohalogenobenzoic acids in a single-step reaction. It is an object of the present invention to provide a method for producing the corresponding anthranilic acids at low cost, efficiently, and with high yield. Means for Solving the Problems The present inventors have conducted intensive studies to solve the problems in synthesizing the corresponding anthranilic acids by ammonolysis of such conventional orthohalogenobenzoic acids. Surprisingly, it has been found that cuprous oxide, whose oxidation state is intermediate between zero-valent metallic copper and cupric copper, is extremely effective as a catalyst for synthesizing the corresponding anthranilic acid from orthohalogenobenzoic acids. The present invention has been accomplished based on this finding. That is, the present invention provides a compound represented by the general formula (I): (Wherein, Y represents a hydrogen atom, a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an acetoxy group, a nitro group, an amino group, a sulfo group, a carboxyl group, a trifluoromethyl group, or an aryl group; N is an integer of 1 to 4. M is selected from a hydrogen atom, an ammonium group, an alkali metal atom or an alkaline earth metal atom.) In producing the acids, a compound represented by the general formula (II): (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y, n and M have the same meanings as described above) in the presence of a cuprous catalyst. A method for producing anthranilic acids which is reacted under heating in aqueous ammonia, wherein the copper (I) -containing catalyst comprises a combination of zero-valent metallic copper and a copper compound in an oxidized state of cupric, and A method for producing anthranilic acids, which is substantially in an oxidation state of cuprous cup due to disproportionation; and a compound represented by the general formula (I) -a: (Wherein Y 1 represents a halogen atom, and M has the same meaning as in formula (I).) In producing anthranilic acids represented by the formula: (Wherein Y 1 has the same meaning as in general formula (I) -a, and X and M have the same meaning as in general formula (II)). And a method for producing anthranilic acids, characterized in that the reaction is carried out in an aqueous ammonia solution under heating in the presence of (i). Hereinafter, the present invention will be described specifically. The compound represented by the general formula (II) used as a starting material in the method of the present invention is specifically 2-chlorobenzoic acid, 2-bromobenzoic acid, 2-iodobenzoic acid, 2,3-dichloro Benzoic acid, 2,4-dichlorobenzoic acid, 2,5-dichlorobenzoic acid, 2,6-dichlorobenzoic acid, 2-chloro-4-fluorobenzoic acid,
2-chloro-6-fluorobenzoic acid, 2-chloro-4,5-difluorobenzoic acid, 2,4-dichloro-5-fluorobenzoic acid, 2,3,4-trichlorobenzoic acid, 2,3,5- Trichlorobenzoic acid, 2,4,5-trichlorobenzoic acid, 2,4,6-trichlorobenzoic acid, 2,3,4,5-tetrachlorobenzoic acid, 2-chloro-4-methylbenzoic acid, 2-chloro -5-methylbenzoic acid, 2-chloro-6-
Methylbenzoic acid, 2-chloro-3-hydroxybenzoic acid, 2-chloro-4-hydroxybenzoic acid, 2-chloro-3-nitrobenzoic acid, 2-chloro-4-nitrobenzoic acid, 2-chloro-5- Nitrobenzoic acid, 4-amino-2-chlorobenzoic acid,
5-amino-2-chlorobenzoic acid, chloroterephthalic acid, 4-chloroisophthalic acid, 3,4-dichlorophthalic acid, 5-chlorotrimellitic acid, 2-chloro-4-
Trifluoromethylbenzoic acid, 1-chloro-2-naphthoic acid, 3-chloro-2-
Examples thereof include naphthoic acid, which may be not only a free acid but also an ammonium salt, an alkali metal salt such as K or Na, or an alkaline earth metal salt such as Mg or Ca. The ammonolysis reaction in the present invention is carried out in an aqueous ammonia solution which also serves as a reaction solvent, using a pressure-resistant reaction vessel. The concentration of the aqueous ammonia is preferably 10 to
It is 50% by weight, more preferably 20 to 35% by weight. If the concentration of ammonia is too low, the proportion of salicylic acid derivative by-produced increases and the pH decreases, which adversely affects the corrosion resistance of the reaction vessel material. If the concentration is too high, the by-products of the diphenylamine dicarboxylic acid type derivative will increase, and the pressure during the reaction will be extremely high industrially, which will restrict the specifications of the reactor and may cause the ammonia water to be recovered and reused. Disadvantaged. The amount of ammonia used is preferably from 3 to 1 mol of orthohalogenobenzoic acid.
The molar amount is 40 times, more preferably 6 to 25 times. If it is less than this, stirring becomes difficult, and the corrosion of the apparatus may increase. Further, even if it is used in an unnecessarily large amount, the reaction result is not improved, and only the production efficiency is reduced. The cuprous-containing catalyst used in the method of the present invention is, for example, a copper compound in an oxidation state of cuprous oxide, specifically, cuprous oxide, cuprous chloride, cuprous bromide. , Cuprous iodide, copper thiocyanate or copper cyanide. Further, the present invention uses a copper compound in an oxidized state of zero-valent metal copper and cupric acid in any combination, and as shown by the following formula, an equivalent mixture of copper metal and a cupric compound reacts. In some cases, the disproportionation reaction of the ionic valence may substantially exist in an oxidation state of cuprous. Cu + Cu 2+ → 2Cu + Copper compound in the oxidation state of cupric (oxide, hydroxide, fluoride, chloride, bromide, iodide, One or more selected from acetate, carbonate, perchlorate, nitrate, phosphate, sulfate and the like), specifically, cupric oxide, cupric hydroxide, fluoride Cupric, cupric chloride,
Cupric bromide, cupric iodide, ammonium cupric chloride, copper acetylacetonate, copper borofluoride, copper formate, copper acetate, copper citrate, copper oxalate, copper stearate,
Copper carbonate, copper perchlorate, copper nitrate, copper phosphate, copper pyrophosphate, copper sulfate and the like. One or more of these copper compounds are used in the presence of metallic copper. Metallic copper may be added in the form of powder, cutting, or any other shape. Of these, copper compounds in the oxidized state of metallic copper and cuprous copper are easily oxidized in the aqueous ammonia by oxygen in the air, and are converted to copper ammonium complex compounds in the oxidized state of cupric acid to act as a catalyst. Therefore, when a catalyst is added to the reaction vessel, it is essential to immediately purge air with an inert gas such as nitrogen. The amount of the copper-containing catalyst used in the present invention is 0.001 to 1.0 gram atom, preferably 0.1 to 0.1 gram atom, in terms of copper atom, based on 1 mol of the starting material, orthohalogenobenzoic acid. 02-0.3 gram atom. As described above, it is usually used as a cuprous compound, but it may be used in combination with a zero-valent metal copper and a cupric compound. In this case, the metal copper and the cupric compound do not necessarily have to be equivalent, and if the valence is disproportionated and the copper content falls within the range of the catalyst amount, one of them becomes excessive. Is also good. If the amount of cuprous copper is less than this, the reaction rate becomes slow, and unreacted raw materials remain. If the amount is larger than necessary, the operation of removing the catalyst in the post-treatment becomes complicated, which is not preferable. [0016] The reaction temperature is preferably 50 to 160 ° C, more preferably 70 to 120 ° C. If the reaction temperature is too low, the reaction rate will be low, and if it is too high, the rate of by-products of the salicylic acid derivative or the thermal decomposition (decarboxylation) of the target product will increase, and the yield and quality will decrease. Problems and restrictions arise in terms of In the method of the present invention, it is preferable that after the completion of the reaction, the catalyst contained in the reaction solution is treated and recovered as metallic copper. As a method for this, a. After treating the reaction mixture containing the copper-containing catalyst with a dithionite, for example, hydrosulfite (Na 2 S 2 O 4 ) to precipitate metallic copper, anthranilic acids are removed from the reaction solution obtained by removing and separating the metallic copper. A method of isolating, b. The reaction mixture containing the copper-containing catalyst is treated with any hydrazine compound selected from hydrazine, hydrazine hydrate, and neutral hydrazine sulfate to precipitate metallic copper, which is then separated and removed from the reaction solution. There is a method of isolating anthranilic acids. Thus, a copper compound can be reduced to metallic copper by adding a dithionite or a hydrazine compound as a reducing agent. The amount of these reducing agents used is 0.1 to 10 mol, preferably 0.5 to 2 mol, per 1 gram atom of copper of the catalyst.
This amount corresponds to 0.0001 to 10 mol per 1 mol of the starting orthohalogenobenzoic acid. If the amount of the reducing agent is less than this, the reduction will be insufficient, and the copper compound will be mixed into the product, and the quality will deteriorate. Increasing the reducing agent beyond this is uneconomical and presents problems with wastewater treatment. Preferably, the amount of the dithionite or hydrazine compound to be used is 0.001 to 2 mol per 1 mol of the raw material orthohalogenobenzoic acid. The reducing agent used in the present invention may be added after most of the ammonia is once discharged from the reaction mixture and recovered after the reaction is completed, or may be added before the operation of recovering ammonia. Further, it may be added together with a caustic commonly used for decomposing the ammonium salt formed in the reaction. Usually, the reaction mixture is treated with a reducing agent while avoiding contact with air, and stirred in a temperature range of room temperature to 100 ° C. for several minutes to several tens of hours to precipitate metallic copper. At this time, it is preferable that the temperature is set to 80 to 100 ° C. and the dissolved ammonia is sufficiently removed under normal pressure or reduced pressure. Further, as described above, in order to decompose the ammonium salt and complete the emission of ammonia, it is preferable to add a caustic alkali. The caustic alkali is usually used in an amount of 1 to 3 mol based on 1 mol of the starting material orthohalogenobenzoic acid. When the precipitated metallic copper is separated by a method such as filtration or decantation,
A usually pale yellow clear solution containing an alkali metal salt of anthranilic acids is obtained.
When this is treated with a mineral acid, 90 to 95% of white to light yellow-brown anthranilic acids are obtained.
In high yield. According to the method of the present invention, desired anthranilic acids can be obtained with high purity and high yield only by a single-stage reaction in which ammonolysis is performed in the presence of a cuprous catalyst. According to the present invention, the reaction can be completed within several hours even under mild conditions of 80 to 100 ° C. and 3 to 6 kg / cm 2 G at a lower temperature and a lower pressure than before, and the ratio of side reactions can be suppressed. High-purity anthranilic acids can be synthesized inexpensively and with good yield. In addition, since the reaction temperature and the pressure during the reaction are greatly reduced, the conditions on the equipment relating to the corrosion resistance and pressure resistance of the reaction volume can be relaxed, which is suitable for industrial implementation. Furthermore, by treating the reaction solution with a specific reducing agent after the completion of the reaction, it became possible to efficiently separate the copper compound. As a result, anthranilic acids can be synthesized from orthohalogenobenzoic acid with high purity and high yield. The present invention will be described below in more detail with reference to examples. EXAMPLE 1 190 g of 25% aqueous ammonia (2.
79 mol) and 30.0 g (0.157 mol) of 2,4-dichlorobenzoic acid were stirred and dissolved until it became an emulsion. 1.55 g (0.0157 mol) of cuprous chloride as a catalyst was added thereto, and the reaction vessel was sealed. After purging the internal air with nitrogen, the mixture was stirred and reacted at 100 ° C. for 6 hours. The internal pressure during the reaction is 4.9-4.3 kg /
cm 2 G. After cooling to ambient temperature, the reaction vessel was opened under a blanket of nitrogen and the reaction mixture was withdrawn. The reaction mixture was analyzed by high performance liquid chromatography (internal standard method using o-hydroxydiphenyl as an internal standard substance) to give the following analytical values. The reaction conversion was 100%, and the selectivity for 4-chloroanthranilic acid was 96. 0.2%. 4-chloroanthranilic acid 0.1510 mol 4-chlorosalicylic acid 0.0028 mol 2,4-dichlorobenzoic acid not detected After removing the dissolved ammonia and the catalyst from the reaction mixture thus obtained, By acid precipitation with a mineral acid, 4-chloroanthranilic acid having a purity of 98.6% was converted to 2
5.8 g were obtained. When recrystallized with an alcohol-water mixed solvent, the purity was 99.7.
% Of 4-chloroanthranilic acid was obtained as white needles (24.1 g). 2,
The yield based on 4-dichlorobenzoic acid was 89.4%. Comparative Examples 1-4 Except that the catalyst was changed to use of copper metal or cupric compound alone, 4-chloroanthranilic acid was synthesized under the same reaction conditions as in Example 1. The results are shown in Table 1. [Table 1] Example 2 In the same reaction vessel as in Example 1, 190 g (2.79 mol) of 25% aqueous ammonia and 30.0 g (0.157 mol) of 2,3-dichlorobenzoic acid were charged and stirred to obtain an emulsion. It dissolved until it became a state. To this, 1.12 g of cuprous oxide of the catalyst (0.00783)
Mol) was added and the reaction vessel was sealed. After purging the air with nitrogen,
Stirred for hours. The internal pressure during the reaction was 6.8 to 6.5 kg / cm 2 G. Analysis of the reaction mixture in the same manner as in Example 1 gave the following analysis values. The conversion of the reaction was 99.8%, and the selectivity for 3-chloroanthranilic acid was 97.4%. 3-chloroanthranilic acid 0.1529 mol 3-chlorosalicylic acid 0.0012 mol 2,3-dichlorobenzoic acid 0.0003 mol Example 3 In a reaction vessel similar to that of Example 1, 170 g of 20% aqueous ammonia (2 .00 mol) and 37.6 (0.240 mol) of 2-chlorobenzoic acid were added and dissolved by stirring. To this, 1.19 g (0.012 mol) of cuprous chloride was added, the reaction vessel was sealed, and air was purged with nitrogen. The mixture was stirred at 85 ° C. for 6 hours to be reacted. The internal pressure during the reaction is 3.
It was 0 to 2.6 kg / cm 2 G. The analysis of the reaction mixture in the same manner as in Example 1 gave the following analysis values. The conversion of the reaction was 100%, and the selectivity for anthranilic acid was 97.2%. Anthranilic acid 0.2333 mol Salicylic acid 0.0012 mol Orthochlorobenzoic acid Not detected Example 4 150 g (2.20 mol) of 25% aqueous ammonia and cuprous iodide in the same reaction vessel as in Example 1. 43 g (0.00751 mol) was added, the reaction vessel was sealed, and then air was purged with nitrogen. While stirring, 90 g of an aqueous solution of K salt of 2,4-dichlorobenzoic acid (30.0 g of 2,4-dichlorobenzoic acid, 50% aqueous solution of KOH 17
. 5 g and 42.5 g of water were mixed and dissolved by heating at 85 ° C.) with nitrogen. Stirred at 90 ° C. for 8 hours. The internal pressure during the reaction was 3.4 to 3.2 kg / cm 2 G. When the reaction mixture was analyzed in the same manner as in Example 1, the following analysis values were obtained. The conversion of the reaction was 99.9%, and the selectivity for 4-chloroanthranilic acid was 95.9%. 4-chloroanthranilic acid 0.1505 mol 4-chlorosalicylic acid 0.0034 mol 2,4-dichlorobenzoic acid 0.00016 mol Example 5 As in Example 1, 25% aqueous ammonia and 2,4-dichloro Benzoic acid was added, and 0.500 g (0.00787 mol) of metallic copper and 0.562 g of cupric oxide were used as a catalyst.
(0.00707 mol), and reacted by stirring at 100 ° C. for 6 hours after purging with nitrogen. When the reaction mixture was analyzed in the same manner as in Example 1, the following analysis values were obtained. The conversion of the reaction was 99.9%, and the selectivity for 4-chloroanthranilic acid was 96.3%. Examples 6 to 11 The compositions shown in Table 2 were charged into 300 ml of a reaction solution according to Examples 1 to 5, and the reaction was carried out under the reaction conditions shown in Table 2. . The results were obtained in Examples 1 to 5.
The results are shown in Table 3. [Table 2] [Table 3] Example 12 3.4 g (0.016 mol) of sodium hydrosulfite (content 85%) and 32 g of a 48% sodium hydroxide solution were added to the reaction mixture finally obtained in Example 1.
(0.38 mol) and heated to 100 ° C. while avoiding contact with air to discharge excess ammonia. After cooling to room temperature under a nitrogen seal, precipitated copper compounds such as metallic copper were separated by filtration. The filterability was very good. Water is added to make up a total amount of 250 g, and the solution is precipitated with 35% hydrochloric acid until the pH becomes 5 to 6, filtered, washed with water, and dried. The purity is 98.6%, and the copper content is Cu (the same applies hereinafter).
15 ppm, 25.8 g of 4-chloroanthranilic acid as a white powder was obtained. When recrystallized with an alcohol-water mixed solvent, 4-chloroanthranilic acid having a purity of 99.7% and a copper content of 6 ppm (hereinafter, referred to as Cu) was converted into white needle-like crystals by 2%.
4.1 g were obtained. The yield based on 2,4-dichlorobenzoic acid was 89.4%. Example 13 The same operation as in Example 12 was carried out except that sodium hydrosulfite used in Example 12 was changed to 8.0 g (0.16 mol) of human azine monohydrate.
23.9 g (yield: 88.7%) of 4-chloroanthranilic acid having a purity of 99.6%, a copper content of 8 ppm, and white needles was obtained.
Claims (1)
金属原子、またはアルカリ土類金属原子の中から選ばれる。) で表わされるアントラニル酸類を製造するに当り、 一般式(II)−a 【化2】(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y1及び
Mは前記と同じ意味をもつ。) で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させることを特徴とするアントラニル酸類の製造法。 【請求項2】 第一銅含有触媒が、第一銅の酸化状態にある銅の酸化物、塩化
物、臭化物、ヨウ化物、チオシアン酸塩またはシアン化物である、請求項1記載
の方法。 【請求項3】 一般式(I) 【化3】 (式中、Yは水素原子、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基
、アセトキシ基、ニトロ基、アミノ基、スルホ基、カルボキシル基、トリフルオ
ロメチル基、またはアリール基を示し、Yは互いに同一であっても異なっていて
もよい。nは1〜4の整数を示す。Mは水素原子、アンモニウム基、アルカリ金
属原子、またはアルカリ土類金属原子の中から選ばれる。) で表わされるアントラニル酸類を製造するに当り、 一般式(II) 【化4】(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y、n及
びMは前記と同じ意味をもつ。) で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させるアントラニル酸類の製造法であって、前記第一銅含
有触媒が、0価の金属銅と第二銅の酸化状態にある銅化合物を組合せて用い、価
数の不均化により実質的に第一銅の酸化状態にあることを特徴とするアントラニ
ル酸類の製造法。 【請求項4】 一般式(I) 【化5】 (式中、Yは水素原子、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基
、アセトキシ基、ニトロ基、アミノ基、スルホ基、カルボキシル基、トリフルオ
ロメチル基、またはアリール基を示し、Yは互いに同一であっても異なっていて
もよい。nは1〜4の整数を示す。Mは水素原子、アンモニウム基、アルカリ金
属原子、またはアルカリ土類金属原子の中から選ばれる。) で表わされるアントラニル酸類を製造するに当り、 一般式(II) 【化6】(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y、n及
びMは前記と同じ意味をもつ。) で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させるアントラニル酸類の製造法であって、前記第一銅含
有触媒の使用量が銅原子換算で、オルトハロゲノ安息香酸1モルに対して0.0
01〜1グラム原子であることを特徴とするアントラニル酸類の製造法。 【請求項5】 一般式(I) 【化7】 (式中、Yは水素原子、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基
、アセトキシ基、ニトロ基、アミノ基、スルホ基、カルボキシル基、トリフルオ
ロメチル基、またはアリール基を示し、Yは互いに同一であっても異なっていて
もよい。nは1〜4の整数を示す。Mは水素原子、アンモニウム基、アルカリ金
属原子、またはアルカリ土類金属原子の中から選ばれる。) で表わされるアントラニル酸類を製造するに当り、 一般式(II) 【化8】(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y、n及
びMは前記と同じ意味をもつ。) で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させるアントラニル酸類の製造法であって、前記第一銅含
有触媒を含む反応混合物を亜二チオン酸塩で処理して金属銅を析出させた後、こ
れを除去分離させた反応溶液からアントラニル酸類を単離することを特徴とする
アントラニル酸類の製造法。 【請求項6】 一般式(I) 【化9】 (式中、Yは水素原子、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基
、アセトキシ基、ニトロ基、アミノ基、スルホ基、カルボキシル基、トリフルオ
ロメチル基、またはアリール基を示し、Yは互いに同一であっても異なっていて もよい。nは1〜4の整数を示す。Mは水素原子、アンモニウム基、アルカリ金
属原子、またはアルカリ土類金属原子の中から選ばれる。) で表わされるアントラニル酸類を製造するに当り、 一般式(II) 【化10】(式中、Xは塩素、臭素及びヨウ素から選ばれるハロゲン原子を示し、Y、n及
びMは前記と同じ意味をもつ。) で表わされるオルトハロゲノ安息香酸類を、第一銅含有触媒の存在下、アンモニ
ア水中、加熱下に反応させるアントラニル酸類の製造法であって、前記第一銅含
有触媒を含む反応混合物をヒドラジン、水加ヒドラジン、中性硫酸ヒドラジンの
中から選ばれた何れかのヒドラジン化合物で処理して金属銅を析出させた後、こ
れを除去分離させた反応溶液からアントラニル酸類を単離することを特徴とする
アントラニル酸類の製造法。 【請求項7】 亜二チオン酸塩またはヒドラジン化合物の使用量か、原料のオ
ルトハロゲノ安息香酸1モルに対して0.001〜2モルである、請求項5また
は6記載の方法。Claims: 1. A compound of the general formula (I) -a (Wherein, Y 1 represents a halogen atom, and M is selected from a hydrogen atom, an ammonium group, an alkali metal atom, or an alkaline earth metal atom.) In producing anthranilic acids represented by the general formula: (II) -a (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y 1 and M have the same meanings as described above.) An orthohalogenobenzoic acid represented by the following formula: A method for producing anthranilic acids, wherein the reaction is carried out under heating in aqueous ammonia. 2. The process of claim 1 wherein the cuprous catalyst is a copper oxide, chloride, bromide, iodide, thiocyanate or cyanide in the cuprous oxidation state. 3. A compound of the general formula (I) (Wherein, Y represents a hydrogen atom, a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an acetoxy group, a nitro group, an amino group, a sulfo group, a carboxyl group, a trifluoromethyl group, or an aryl group; N is an integer of 1 to 4. M is selected from a hydrogen atom, an ammonium group, an alkali metal atom or an alkaline earth metal atom.) In producing the acids, a compound represented by the general formula (II): (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y, n and M have the same meanings as described above) in the presence of a cuprous catalyst. A method for producing anthranilic acids which is reacted under heating in aqueous ammonia, wherein the copper (I) -containing catalyst comprises a combination of zero-valent metallic copper and a copper compound in an oxidized state of cupric, and A process for producing anthranilic acids, which is substantially in a cuprous oxidation state by disproportionation. 4. A compound of the general formula (I) (Wherein, Y represents a hydrogen atom, a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an acetoxy group, a nitro group, an amino group, a sulfo group, a carboxyl group, a trifluoromethyl group, or an aryl group; N is an integer of 1 to 4. M is selected from a hydrogen atom, an ammonium group, an alkali metal atom or an alkaline earth metal atom.) In producing the acids, a compound represented by the general formula (II): (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y, n and M have the same meanings as described above) in the presence of a cuprous catalyst. A method for producing anthranilic acids which are reacted under heating in aqueous ammonia, wherein the amount of the cuprous catalyst used is 0.00 relative to 1 mol of orthohalogenobenzoic acid in terms of copper atoms.
A method for producing anthranilic acids, wherein the amount is from 01 to 1 gram atom. 5. A compound of the general formula (I) (Wherein, Y represents a hydrogen atom, a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an acetoxy group, a nitro group, an amino group, a sulfo group, a carboxyl group, a trifluoromethyl group, or an aryl group; N is an integer of 1 to 4. M is selected from a hydrogen atom, an ammonium group, an alkali metal atom or an alkaline earth metal atom.) In producing the acids, a compound represented by the general formula (II): (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y, n and M have the same meanings as described above) in the presence of a cuprous catalyst. A process for producing anthranilic acids which is reacted under heating in aqueous ammonia, wherein the reaction mixture containing the cuprous catalyst is treated with dithionite to precipitate metallic copper, which is removed and separated. A method for producing anthranilic acids, comprising isolating anthranilic acids from the reacted reaction solution. 6. A compound of the general formula (I) (Wherein, Y represents a hydrogen atom, a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an acetoxy group, a nitro group, an amino group, a sulfo group, a carboxyl group, a trifluoromethyl group, or an aryl group; N is an integer of 1 to 4. M is selected from a hydrogen atom, an ammonium group, an alkali metal atom or an alkaline earth metal atom.) In producing the acids, a compound represented by the general formula (II): (In the formula, X represents a halogen atom selected from chlorine, bromine and iodine, and Y, n and M have the same meanings as described above) in the presence of a cuprous catalyst. A method for producing anthranilic acids which is reacted under heating in aqueous ammonia, wherein the reaction mixture containing the cuprous catalyst is hydrazine, hydrazine hydrate, or any hydrazine compound selected from neutral hydrazine sulfate. A method for producing anthranilic acids, comprising isolating anthranilic acids from a reaction solution obtained by removing metallic copper by removing the anthranilic acids from the reaction solution. 7. The method according to claim 5, wherein the amount of the dithionite or the hydrazine compound is 0.001 to 2 mol based on 1 mol of the starting material orthohalogenobenzoic acid.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1777215B1 (en) | Method for producing 2-amino-5-iodobenzoic acid | |
CN111732520B (en) | Preparation method of 3-methyl-2-aminobenzoic acid | |
KR900001077B1 (en) | Process for the preparation of amino alkyl sulfonic acid | |
CA2195635C (en) | Process for the preparation of a halosubstituted aromatic acid | |
JP2541882B2 (en) | Method for producing anthranilic acids | |
JP2541882C (en) | ||
JP4441802B2 (en) | Method for producing 2,3-pyridinedicarboxylic acid | |
US4048236A (en) | Process for preparing o-alkoxy-p-allylphenols | |
JPH0564940B2 (en) | ||
JPH0725613A (en) | Production of cuprous chloride | |
EP1162198B1 (en) | Process for the preparation of highly pure 5,5'-bi-1H tetrazolediammonium salts | |
US1882335A (en) | Method of separating halo-benzoic acids | |
JPS61103867A (en) | Manufacture of substituted thiuram polysulfide | |
JP4360885B2 (en) | Method for producing aromatic amine compound having alkylthio group | |
JP2677687B2 (en) | Method for producing 3,5-diiodosalicylic acid | |
JP4024891B2 (en) | Method for producing aminopolycarboxylic acid ferric salt | |
JP4321216B2 (en) | A method for producing 1,2,3,4-butanetetracarboxylic acid. | |
JP4441801B2 (en) | Method for producing a purified product of high purity 2,3-pyridinedicarboxylic acid | |
JP2872444B2 (en) | Method for purifying bis (4-aminophenyl) sulfone compound containing copper compound | |
JPS6121224B2 (en) | ||
JPH0193561A (en) | Production of o-nitrobenzoic acids | |
JPH09255615A (en) | Production of 1,3-dichloroacetone | |
JPH08157444A (en) | Production of aminoethanesulfonic acid | |
JP2003342248A (en) | Method for producing 3,4-dihydroxybenzonitrile | |
JPS60172956A (en) | Production of ketazine |