JP2540615B2 - Jet engine air intake device that takes in supersonic airflow - Google Patents

Jet engine air intake device that takes in supersonic airflow

Info

Publication number
JP2540615B2
JP2540615B2 JP63265990A JP26599088A JP2540615B2 JP 2540615 B2 JP2540615 B2 JP 2540615B2 JP 63265990 A JP63265990 A JP 63265990A JP 26599088 A JP26599088 A JP 26599088A JP 2540615 B2 JP2540615 B2 JP 2540615B2
Authority
JP
Japan
Prior art keywords
intake device
air intake
side wall
air
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63265990A
Other languages
Japanese (ja)
Other versions
JPH02115559A (en
Inventor
正昭 松浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63265990A priority Critical patent/JP2540615B2/en
Publication of JPH02115559A publication Critical patent/JPH02115559A/en
Application granted granted Critical
Publication of JP2540615B2 publication Critical patent/JP2540615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特にスクラムジエツトエンジン用として適
した超音速空気流を取入れるジエツトエンジンの空気取
入装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a jet engine air intake device for taking in a supersonic airflow, which is particularly suitable for scram jet engines.

〔従来の技術〕[Conventional technology]

従来の超音速の空気を取入れるスクラムジエツトエン
ジン空気取入装置は、第3図に示すように、空気の流れ
方向においてその間隔が縮少する一定のくさび角を有す
る一対の空気取入装置側壁30と、その間に設置された燃
料供給ストラツト11、12、13から成つており、燃料供給
ストラツトは、超音速で流入する空気が空気取入装置側
壁面先端から発生する斜衝撃波の下流に位置していた。
As shown in FIG. 3, a conventional scramjet engine air intake device that takes in supersonic air has a pair of air intake devices that have a constant wedge angle such that the distance between them decreases in the air flow direction. It is composed of a side wall 30 and fuel supply strategies 11, 12 and 13 installed between them. Was.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

空気取入装置側壁面先端から発生した斜衝撃波を通過
した空気流は、該衝撃波を通過することにより流れの方
向が変わり、空気取入装置側壁面に沿つて流れるように
なる。他方、空気取入装置内へ流入する空気流のマツハ
数が変化すると衝撃波角も変化し衝撃波の位置が変わ
る。したがつて、燃料供給ストラツトと空気取入装置側
壁面との間の側壁流路を通過する空気流量の、空気取入
装置へ流入する全空気流量に対する割合は、流入する空
気流のマツハ数の変化にしたがつて変化する。
The air flow that has passed the oblique shock wave generated from the tip of the side wall surface of the air intake device changes its flow direction by passing through the shock wave, and flows along the side wall surface of the air intake device. On the other hand, when the Matsu number of the air flow flowing into the air intake device changes, the shock wave angle also changes and the position of the shock wave changes. Therefore, the ratio of the flow rate of air passing through the side wall flow path between the fuel supply strategy and the side wall surface of the air intake device to the total air flow rate flowing into the air intake device is equal to the number of Mach of the inflowing air flow. It changes according to the change.

本発明の目的は、空気取入装置へ流入する空気流のマ
ツハ数が変化しても、側壁流路を通過する空気流量の全
空気流量に対する割合が一定であるジエツトエンジン空
気取入装置を提供しようとすることである。
An object of the present invention is to provide a jet engine air intake device in which the ratio of the air flow rate passing through the side wall flow path to the total air flow rate is constant even if the Mach number of the air flow flowing into the air intake device changes. Is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成させるために、本発明は次の手段を講
じた。
In order to achieve the above object, the present invention takes the following means.

すなわち、本発明の超音速空気流を取入れるジエツト
エンジン空気取入装置は、該空気取入装置へ流入する空
気流のマツハ数が該エンジンの作動範囲内で最小の値を
とるときに空気取入装置側壁面先端から発生する斜衝撃
波の上流に先端が位置する燃料供給ストラツトを備えて
いる。
That is, the jet engine air intake device for taking in the supersonic air flow of the present invention is designed so that when the Matach number of the air flow flowing into the air intake device takes a minimum value within the operating range of the engine, A fuel supply strategy is provided whose tip is located upstream of the oblique shock wave generated from the tip of the side wall surface of the intake device.

〔作用〕[Action]

本発明では、ジエツトエンジンの作動範囲内で空気取
入装置へ流入する空気流のマツハ数が該エンジンの作動
範囲内で最小の値をとるときに、燃料ストラツトの先端
が空気取入装置側壁面先端から発生する斜め衝撃波の上
流に位置しているために、ジエツトエンジンの全作動範
囲内で、燃料供給ストラツトの先端は、空気取入装置側
壁面先端から発生する斜衝撃波の上流に位置する。換言
すれば、空気流マツハ数が変化しても、この斜衝撃波
は、常に燃料供給ストラツトと空気取入装置側壁面との
間に形成される側壁流路に入射することになる。したが
つて、この側壁流路を通過する空気流量の、空気取入装
置へ流入する全空気流量に対する割合は、流入する空気
流のマツハ数の変化によらず一定に保たれる。
According to the present invention, when the Mach number of the air flow flowing into the air intake device within the operating range of the jet engine takes the minimum value within the operating range of the engine, the tip of the fuel strut is on the side of the air intake device. Since it is located upstream of the diagonal shock wave generated from the tip of the wall surface, the tip of the fuel supply stratum is located upstream of the diagonal shock wave generated from the tip of the side wall surface of the air intake device within the entire operating range of the jet engine. To do. In other words, even if the number of airflow mats changes, this oblique shock wave always enters the side wall flow passage formed between the fuel supply strategy and the side wall surface of the air intake device. Therefore, the ratio of the flow rate of the air passing through the side wall flow path to the total flow rate of the air flowing into the air intake device is kept constant regardless of the change in the Matsu number of the flowing air flow.

〔実施例〕〔Example〕

本発明のスクラムジエツトエンジンの空気取入装置と
しての第1実施例を第1図によつて説明する。
A first embodiment as an air intake device for a scramjet engine according to the present invention will be described with reference to FIG.

本実施例の空気取入装置は、3本の空気取入装置内の
空気中に燃料を供給する先細の燃料供給ストラツト11、
12、13と、空気の流れ方向においてその間隔が縮少する
くさび角をもつ対をなす空気取入装置側壁30、30とから
なつている。上記燃料供給ストラツト11、12、13の先端
は、ジエツトエンジンの作動範囲内で超音速の空気流の
マツハ数が最小の値になるときに、空気取入装置側壁面
先端31から発生する斜衝撃波の上流に位置している。
The air intake device of this embodiment has a tapered fuel supply strategy 11 for supplying fuel into the air in the three air intake devices.
12 and 13 and a pair of air intake device side walls 30 and 30 having wedge angles whose intervals are reduced in the air flow direction. The tips of the fuel supply strategies 11, 12, and 13 are inclined from the tip 31 of the side wall surface 31 of the air intake device when the Mach number of the supersonic air flow becomes the minimum value within the operating range of the jet engine. It is located upstream of the shock wave.

本実施例では、空気取入装置に流入する超音速空気流
は、空気取入装置側壁先端31から斜衝撃波41を発生させ
る。この斜衝撃波41はエンジンの全作動範囲において、
空気流のマツハ数の変化に拘らず側壁30に隣接して位置
する燃料供給ストラツト11、13と側壁30との間で形成さ
れる側壁流路34、35に入射する。したがつて、側壁流路
34についてみると、同側壁流路34へ流入する空気は、斜
衝撃波41によつて側壁30の面と平行に流れて同側壁流路
34に流入するために、同側壁流路34へ流入する空気流量
の空気取入装置へ流入する全空気流量に占める割合は、
空気取入装置の幅Bと側壁流路の幅Cとの比で与えら
れ、この値は空気取入装置へ流入する空気流のマツハ数
の変化によらず一定である。このことは他の側壁流路35
及び燃料供給ストラツト間の流路36、37についても同様
に成り立つ。したがつて、4つの流路34、35、36、37の
間の空気流量の比率は空気取入装置へ流入する空気流の
マツハ数の変化によらず一定に保たれる。
In this embodiment, the supersonic airflow flowing into the air intake device causes oblique shock waves 41 from the air intake device side wall tip 31. This oblique shock wave 41 is
The air flow enters the side wall passages 34, 35 formed between the side walls 30 and the fuel supply strategies 11, 13 adjacent to the side wall 30 regardless of the change in the Mach number. Therefore, the side wall channel
As for 34, the air flowing into the side wall flow passage 34 flows parallel to the surface of the side wall 30 due to the oblique shock wave 41, and flows into the side wall flow passage 34.
The ratio of the air flow rate flowing into the side wall flow path 34 to the air intake device to the total air flow rate flowing into the air intake device is:
It is given by the ratio of the width B of the air intake device to the width C of the side wall passage, and this value is constant regardless of the change in the Matsu number of the air flow flowing into the air intake device. This means that the other side wall channel 35
Also, the same applies to the flow paths 36 and 37 between the fuel supply strategies. Therefore, the ratio of the air flow rates among the four flow paths 34, 35, 36, 37 is kept constant regardless of the change in the Matsu number of the air flow flowing into the air intake device.

上記第1実施例の中間の燃料供給ストラツトを廃し空
気取入装置が2本の燃料供給ストラツト11、13を有する
本発明の第2実施例を第2図に示す。
FIG. 2 shows a second embodiment of the present invention in which the intermediate fuel supply strategy of the first embodiment is eliminated and the air intake device has two fuel supply strategies 11 and 13.

本実施例における燃料供給ストラツト11、13の先端
は、第1実施例と同様にジエツトエンジンの作動範囲内
で空気流のマツハ数が最小の値になるときに、側壁30の
先端から発生する斜衝撃波の上流に位置しており、ま
た、対をなす側壁30も第1実施例と同様のくさび角をも
つている。
The tip ends of the fuel supply strategies 11 and 13 in the present embodiment are generated from the tip end of the side wall 30 when the Mach number of the air flow becomes the minimum value within the operating range of the jet engine as in the first embodiment. It is located upstream of the oblique shock wave, and the pair of side walls 30 has the same wedge angle as that of the first embodiment.

本実施例においても、上記第1実施例と同様に、側壁
流路34、35及び燃料供給ストラツト11、13間の流路36を
流れる空気流量の比率は、空気取入装置へ流入する空気
流のマツハ数変化によらず一定に保たれる。
Also in this embodiment, as in the case of the first embodiment, the ratio of the air flow rate flowing through the flow path 36 between the side wall flow paths 34, 35 and the fuel supply strategies 11, 13 is determined by the air flow rate flowing into the air intake device. It is kept constant regardless of changes in the Matsuha number.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、燃料供給ストラツト
先端を、ジエツトエンジンの作動範囲内で常に空気取入
装置側壁面先端から発生する斜衝撃波の上流に位置させ
ることにより、燃料供給ストラツトと空気取入装置側壁
面との間の側壁流路及び燃料供給ストラツト間の流路を
流れる空気流量の全空気流量に対する割合はエンジンの
作動範囲によらず一定に保たれる。したがつて、これら
流路を流れる空気中に燃料供給ストラツトから供給され
る燃料流量の全燃料流量に占める割合もエンジンの作動
範囲を通して一定となり、複雑な燃料制御装置を不要に
することができる。
As described above, according to the present invention, the tip of the fuel supply strut is always positioned upstream of the oblique shock wave generated from the tip of the side wall surface of the air intake device within the operating range of the jet engine, so that the fuel supply strut and the air The ratio of the flow rate of the air flowing through the side wall flow path to and from the intake device side wall surface and the flow path between the fuel supply strates to the total air flow rate is kept constant regardless of the operating range of the engine. Therefore, the ratio of the fuel flow rate supplied from the fuel supply strategy to the total fuel flow rate in the air flowing through these flow paths is constant throughout the operating range of the engine, and a complicated fuel control device can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示す横断面図、第2図は
本発明の第2実施例を示す横断面図、第3図(A)は従
来の空気取入装置を機体へ装備した状態を示す側面図、
第3図(B)は第3図(A)のA-A線に沿う断面図であ
る。 11、12、13……燃料供給ストラツト、30……空気取入装
置側壁、31……空気取入装置側壁先端、34、35……側壁
流路、36、37……燃料供給ストラツト間の流路、41……
空気取入装置側壁先端から発生する斜衝撃波。
FIG. 1 is a cross sectional view showing a first embodiment of the present invention, FIG. 2 is a cross sectional view showing a second embodiment of the present invention, and FIG. 3 (A) is a conventional air intake device for a machine body. Side view showing the state of being equipped,
FIG. 3 (B) is a sectional view taken along the line AA of FIG. 3 (A). 11, 12, 13 …… Fuel supply strategy, 30 …… Air intake device side wall, 31 …… Air intake device side wall tip, 34, 35 …… Side wall flow path, 36, 37 …… Flow between fuel supply strategies Road, 41 ……
Oblique shock wave generated from the tip of the side wall of the air intake device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気取入装置へ流入する空気流のマツハ数
が該エンジンの作動範囲内で最小の値をとるときに空気
取入装置側壁面先端から発生する斜衝撃波の上流に先端
が位置する燃料供給ストラツトを備えたことを特徴とす
る超音速空気流を取入れるジエツトエンジン空気取入装
置。
1. A tip is located upstream of an oblique shock wave generated from a tip of a side wall surface of an air intake device when the Mach number of an air flow flowing into the air intake device has a minimum value within an operating range of the engine. A jet engine air intake device for taking in a supersonic air flow, which is equipped with a fuel supply stratum.
JP63265990A 1988-10-24 1988-10-24 Jet engine air intake device that takes in supersonic airflow Expired - Lifetime JP2540615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265990A JP2540615B2 (en) 1988-10-24 1988-10-24 Jet engine air intake device that takes in supersonic airflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265990A JP2540615B2 (en) 1988-10-24 1988-10-24 Jet engine air intake device that takes in supersonic airflow

Publications (2)

Publication Number Publication Date
JPH02115559A JPH02115559A (en) 1990-04-27
JP2540615B2 true JP2540615B2 (en) 1996-10-09

Family

ID=17424833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265990A Expired - Lifetime JP2540615B2 (en) 1988-10-24 1988-10-24 Jet engine air intake device that takes in supersonic airflow

Country Status (1)

Country Link
JP (1) JP2540615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654577B2 (en) * 1991-05-23 1997-09-17 宇宙科学研究所長 Supersonic precooler for aircraft engine
US5660040A (en) * 1994-12-20 1997-08-26 United Technologies Corporation Scramjet fuel injection system having independent fuel supplies for supersonic and hypersonic operation
US7797943B2 (en) * 2006-10-18 2010-09-21 Aerojet-General Corporation Core burning for scramjet engines

Also Published As

Publication number Publication date
JPH02115559A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US3455108A (en) Combustion devices
JPS5768519A (en) Suction device for internal combustion engine
JPS60147537A (en) Intake apparatus for internal-combustion engine
GR3033687T3 (en) Nozzle for a jet engine with variable geometry and orientation
JP2540615B2 (en) Jet engine air intake device that takes in supersonic airflow
JPS6079162A (en) Fuel injector
JP3329935B2 (en) Intake device for internal combustion engine
EP0178663B1 (en) Induction port arrangement for internal combustion engine having multiple inlet valves per combustion chamber
JP2998405B2 (en) Scrumjet engine
JP2544461B2 (en) Jet engine air intake device
JPH05272432A (en) Fuel injecting valve
JPS62101822A (en) Intake device for intake two-valve type engine
JPS59147866A (en) Fuel injector of engine
JP3042206B2 (en) Scrumjet engine
JPH0849542A (en) Combustion chamber for swirl chamber diesel engine
JP2511253Y2 (en) Intake passage of intake multi-valve engine
JP2550913Y2 (en) Venturi mixer
JPH0418664Y2 (en)
JPH0571445A (en) Intake device for engine
JP3324189B2 (en) Multi-valve intake engine
JP3114136B2 (en) Combustor
JPH0416634B2 (en)
JP3158775B2 (en) Fuel injection device
JP2695659B2 (en) Supersonic air intake device
JPH05180073A (en) Scram jet engine