JP2540156B2 - Intake device for V-type multi-cylinder engine - Google Patents
Intake device for V-type multi-cylinder engineInfo
- Publication number
- JP2540156B2 JP2540156B2 JP62131700A JP13170087A JP2540156B2 JP 2540156 B2 JP2540156 B2 JP 2540156B2 JP 62131700 A JP62131700 A JP 62131700A JP 13170087 A JP13170087 A JP 13170087A JP 2540156 B2 JP2540156 B2 JP 2540156B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- fuel
- slit
- cylinder engine
- type multi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、単数の燃料供給装置から吸気マニホール
ドを介して各気筒に燃料を分配するようにしたV型多気
筒エンジンの吸気装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a V-type multi-cylinder engine in which fuel is distributed from a single fuel supply device to each cylinder through an intake manifold. Regarding the intake device.
(従来の技術) 複数のシリンダを並列したシリンダ列の対にしてV型
に配置したV型多気筒エンジンでは、V型対向の内側に
吸気ポートを並列することによって、単数の燃料供給装
置から各気筒へ燃料を均等に分配しやすい、すなわち集
合部を中央に配置し、ほぼ放射状に延び、プランチを形
成した吸気マニホールドによって分配の均等化が容易に
得られる。(Prior Art) In a V-type multi-cylinder engine in which a plurality of cylinders are arranged in a pair of parallel cylinders and arranged in a V-shape, the intake ports are arranged in parallel inside the V-type opposed cylinders so that a single fuel supply device It is easy to evenly distribute the fuel to the cylinders, that is, the intake manifold in which the collecting portion is arranged in the center and which extends substantially radially and has a planch makes it easy to evenly distribute the fuel.
一般的に、エンジンの吸気系では、燃料供給源から燃
焼室までの経路は、天から地へ途中に凹部を形成しない
ように設定される。何故ならば、経路の途中に凹部があ
ると、低温始動時、暖機運転あるいはアイドリング運転
時など微小空気量領域には、燃料が液状のまま壁流にな
りやすく、凹部下流の上り勾配で逆流して凹部に溜ま
り、その溜った燃料が次のステップでの比較的吸入空気
量が多い加速時などに一挙に燃焼室に持ち込まれ、空燃
比がオーバーリッチになって燃焼が不正になり、これに
よってドライバビリティの円滑さを欠くとか大気汚染を
伴う未燃生成物の排出量が増加するなどの不具合を生ず
るからである。Generally, in the intake system of an engine, the path from the fuel supply source to the combustion chamber is set so that no recess is formed midway from the sky to the ground. The reason is that if there is a recess in the middle of the path, the fuel is likely to be a wall flow as a liquid in the minute air amount region during cold start, warm-up operation or idling operation, and backflow due to the upward gradient downstream of the recess. Then, the accumulated fuel is brought into the combustion chamber all at once at the time of acceleration when the intake air amount is relatively large in the next step, the air-fuel ratio becomes overrich, and the combustion becomes illegal. This leads to problems such as lack of smooth drivability and an increase in the amount of unburned products accompanied by air pollution.
この制約は前記したV型エンジンの吸気系にも同様に
作用する。したがって、第5図に示すように、吸気マニ
ホールドaの集合部bをシリンダヘッドdの吸気ポート
e上端に対し最低でも同一平面上に位置するよう配置
し、ブランチcを少なくとも水平に設定する。そして、
燃料供給装置fおよびエアクリーナgは、理想的に燃料
を均等配分するために集合部bの上に直結する形を採
る。This restriction similarly acts on the intake system of the V-type engine described above. Therefore, as shown in FIG. 5, the collecting portion b of the intake manifold a is arranged at least on the same plane with respect to the upper end of the intake port e of the cylinder head d, and the branch c is set at least horizontally. And
The fuel supply device f and the air cleaner g are directly connected on the collecting portion b to evenly distribute the fuel.
しかし、上記のような構造にすると、エンジン全高が
高くなる。もともとV型エンジンにはシリンダが傾斜し
た分エンジン全高が低くなり、車両搭載上の自由度が高
いという利点があるが、上記のように燃料分配を均等化
する要求によれば、その利点を充分に生かすことができ
ないという問題を生ずる。However, with the above structure, the overall engine height becomes high. Originally, the V-type engine has an advantage that the total height of the engine is reduced due to the tilt of the cylinder and the degree of freedom in mounting on the vehicle is high. However, according to the demand for equalizing fuel distribution as described above, the advantage is sufficiently obtained. It causes a problem that it cannot be used effectively.
同種のV型多気筒エンジンで、吸気マニホールド集合
部を側方に配置し、各ブランチをクランク軸と平行に水
平に導出して吸気ポートに接続することでエンジン全高
を低く抑えるようにしたものがある(例えば特開昭60−
60258号公報あるいは特開昭60−138265号公報)。これ
にならって中央に置いた集合部に対して側方に置いた燃
料供給装置から燃料を供給するようにすれば、エンジン
全高を低くすることができるが、吸気流の指向性によっ
て燃料分配の均等性に悪い影響が与えられるという問題
がある。A V-type multi-cylinder engine of the same type, in which the intake manifold assembly is arranged laterally and each branch is led out horizontally parallel to the crankshaft and connected to the intake port to keep the overall height of the engine low. Some (for example, JP-A-60-
60258 or JP-A-60-138265). Following this, if the fuel is supplied from the fuel supply device placed on the side of the central assembly, the overall height of the engine can be reduced, but the directivity of the intake air flow can reduce the fuel distribution. There is a problem that the uniformity is adversely affected.
一方において、供給される燃料は、微粒化、気化が促
進されることが必要で、前記したように微小空気量の速
度領域においては、充分な流速が与えられないために微
粒化、気化が遅れ、壁流を生じやすく、均等な分配が損
われる。逆に高負荷領域では吸入空気量が大きくなるの
に応じて体積効率のよい吸気通路の要求がある。エンジ
ン吸気系では、この問題の解決も重大である。On the other hand, the supplied fuel is required to promote atomization and vaporization, and as described above, atomization and vaporization are delayed because a sufficient flow velocity is not provided in the velocity range of the minute air amount. , Wall flow is likely to occur and even distribution is impaired. On the contrary, in the high load region, there is a demand for an intake passage with high volume efficiency as the intake air amount increases. In the engine intake system, solving this problem is also important.
前記特開昭60−60258号公報などに記載の吸気装置で
は、高速領域、低速領域に適応する長短2本のブランチ
を備えているが、構造的に複雑になる。The intake device disclosed in Japanese Patent Laid-Open No. 60-60258 is provided with two long and short branches adapted to a high speed region and a low speed region, but it is structurally complicated.
(発明が解決しようとする問題点) 以上のように、集合部を中央に置いて放射状にブラン
チを延ばした吸気マニホールドを備えるV型多気筒エン
ジンにおいては、燃料の均等な分配とエンジン全高の低
減比との2つの要求間には互いに相反する制約があると
いう問題に鑑み、この発明は、この問題を解消すること
を目的とするもので、集合部に対して水平方向から燃料
を供給してエンジン全高を下げ、かつ全運転領域での燃
料の微粒化、気化を促進し、各気筒均等に燃料を分配
し、エンジン出力性能を向上するようにしたV型多気筒
エンジンの吸気装置を提供するものである。(Problems to be Solved by the Invention) As described above, in the V-type multi-cylinder engine including the intake manifold in which the collecting portion is placed in the center and the branches are radially extended, the fuel is evenly distributed and the total height of the engine is reduced. In view of the problem that there are conflicting restrictions between the two requirements of the ratio, the present invention is intended to solve this problem, and to supply fuel from the horizontal direction to the collecting portion. Provided is an intake device for a V-type multi-cylinder engine which lowers the overall height of the engine, promotes atomization and vaporization of fuel in all operating regions, distributes fuel evenly to each cylinder, and improves engine output performance. It is a thing.
(問題点を解決するための手段) 上記の目的を達成するため、この発明のV型多気筒エ
ンジンの吸気装置は、V型多気筒エンジンにおいて、V
型空間の中央部に集合部が位置し、集合部から4方に延
びる各プランチの下流端を各吸気ポートに接続するよう
に吸気マニホールドを備え、この集合部の上に、接線方
向水平に吸気通路を導入したリング状の旋回室を重ね、
この旋回室内周下部に開けた円筒状のスリットを介して
上記集合部と連通すると共に、旋回室内周に上下摺動自
在なピストンバルブを嵌挿してスリットの開度を可変に
し、このピストンバルブにスプリングを弾装してスリッ
ト開度が増大する上方への付勢力を付与した構成にす
る。(Means for Solving the Problems) In order to achieve the above object, the intake system for a V-type multi-cylinder engine according to the present invention is a V-type multi-cylinder engine.
The collecting portion is located in the center of the mold space, and an intake manifold is provided so as to connect the downstream ends of each of the planches that extend in four directions from the collecting portion to each intake port. Above the collecting portion, the intake air is tangentially and horizontally. Stacked ring-shaped swirl chambers with passages
A piston valve that is vertically slidable is inserted into the inner circumference of the swirl chamber so that it can be opened and closed, and the opening of the slit can be changed. The spring is mounted elastically to give upward biasing force to increase the slit opening.
(作用) このように構成したことにより、燃料供給装置から供
給された混合気は、リング状に形成された旋回室に接線
方向から導入されて旋回し、円筒状のスリットから集合
部に噴出する。この場合、水平方向の旋回流がスリット
を抜けて集合部求心方向へ旋回しながら噴出するので、
撹拌され、乱流となり、微粒化、気化が促進されると同
時に、各ブランチに対して偏った指向性がなくなって分
配が均等化する。(Operation) With this configuration, the air-fuel mixture supplied from the fuel supply device is introduced into the ring-shaped swirl chamber from the tangential direction and swirls, and is jetted from the cylindrical slit to the collecting portion. . In this case, since the swirling flow in the horizontal direction passes through the slit and swirls in the centripetal direction of the collecting portion,
It is agitated and becomes a turbulent flow, which promotes atomization and vaporization, and at the same time, there is no biased directivity for each branch and the distribution is equalized.
同時に、マニホールド負圧に応動してピストンバルブ
が上下し、スリットの開口面積を制御することによって
燃料の微粒化、気化が促進される。すなわち、アイドリ
ング運転時などでは負圧が高いのでピストンバルブは最
大引き下げられてスリット開度を必要最小限にし、噴出
の流速が高まって微粒化が促進される。中負荷、高負荷
領域では負圧が低下し、その等価分スプリングの力でピ
ストンバルブが上昇し、スリットを開き、そのときの吸
入空気量に合致した体積効率を得る噴出口が確保され、
流速を一定に保って微粒化を良好にする。At the same time, the piston valve moves up and down in response to the manifold negative pressure, and atomization and vaporization of fuel are promoted by controlling the opening area of the slit. That is, since the negative pressure is high during idling operation, the piston valve is pulled down to the maximum to minimize the slit opening, and the jet flow velocity is increased to promote atomization. In the middle load and high load regions, the negative pressure decreases, the equivalent amount of the spring force raises the piston valve, opens the slit, and secures the jet outlet that obtains the volumetric efficiency that matches the intake air amount at that time,
Keep the flow rate constant to improve atomization.
こうして、全運転領域において燃料の微粒化、気化が
促進され、壁流を減少して空気の流れに沿って各気筒均
等に分配でき、安定した燃焼が得られ、未燃成分の排出
を抑制すると共に、エンジン出力性能を向上する。ま
た、車両搭載上有利なエンジン全高の短縮を可能とす
る。In this way, atomization and vaporization of fuel are promoted in all operating regions, wall flow is reduced, and each cylinder can be evenly distributed along the air flow, stable combustion is obtained, and discharge of unburned components is suppressed. At the same time, the engine output performance is improved. In addition, it is possible to shorten the total height of the engine, which is advantageous for mounting on a vehicle.
(実施例) 以下、この発明の実施例を示す図に就いて説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.
第1図はV型6気筒エンジン吸気系の縦断正面図、第
2図は同第1図A−A矢視による平面図、第3図は要部
の拡大した縦断正面図である。FIG. 1 is a vertical sectional front view of a V-type 6-cylinder engine intake system, FIG. 2 is a plan view taken along the line AA in FIG. 1, and FIG. 3 is an enlarged vertical sectional front view.
3気筒を並列したシリンダ列1,2をV型に配置してV
型6気筒エンジンが構成される。各シリンダ3のシリン
ダヘッド4に形成した燃焼室5には、V型の内側に対向
して、吸気バルブ6を介装した吸気ポート7が開設され
る。Cylinder rows 1 and 2 in which 3 cylinders are arranged in parallel are arranged in a V-shape and V
A type 6 cylinder engine is constructed. In a combustion chamber 5 formed in a cylinder head 4 of each cylinder 3, an intake port 7 having an intake valve 6 interposed is formed facing the inside of the V-shape.
各吸気ポート7に接続される吸気マニホールド8は、
第1図に示されたV型空間9の上部に配置され、中心位
置に置いた円形の集合部10からほぼ放射状に6本のブラ
ンチ11が延出される。The intake manifold 8 connected to each intake port 7,
Six branches 11 are extended substantially radially from a circular gathering portion 10 placed at the center of the V-shaped space 9 shown in FIG.
集合部10の上には、これと同心に円形リング状の旋回
室12が重ねられる。旋回室12と集合部10との間は、旋回
室12内周下部にあけた円筒状のスリット13によって連通
する。また、旋回室12内周面にはスプリング15によって
常に上方へ付勢されたピストンバルブ14が上下摺動自在
に嵌挿される。ピストンバルブ14下端部は上下変位によ
ってスリット13の開度を増減する。16はダイヤフラム、
17はダイヤフラム室カバー、18は負圧通路、19は大気と
の差圧コントロール用オリフィスである。A circular ring-shaped swirl chamber 12 is concentrically placed on the collecting portion 10. The swirl chamber 12 and the collecting portion 10 are communicated with each other by a cylindrical slit 13 formed in a lower portion of the inner circumference of the swirl chamber 12. A piston valve 14, which is always biased upward by a spring 15, is vertically slidably fitted on the inner peripheral surface of the swirl chamber 12. The lower end of the piston valve 14 increases or decreases the opening degree of the slit 13 by vertical displacement. 16 is the diaphragm,
Reference numeral 17 is a diaphragm chamber cover, 18 is a negative pressure passage, and 19 is a differential pressure control orifice with the atmosphere.
旋回室12には、V型空間9の縦方向に沿う吸気通路20
が、第2図に示すように旋回室12の接線方向に接続さ
れ、吸気通路20の上流端に燃料供給装置21(気化器ある
いはシングルポイントインジェクション)が接続され
る。The swirl chamber 12 has an intake passage 20 extending in the vertical direction of the V-shaped space 9.
However, as shown in FIG. 2, they are connected in a tangential direction of the swirl chamber 12, and a fuel supply device 21 (carburetor or single point injection) is connected to the upstream end of the intake passage 20.
以上のような構成になっているので、燃料供給装置21
から供給される混合気は、吸気通路20を通って旋回室12
に流入し、旋回し、旋回しながらスリット13を介して集
合部10に噴出する。噴出流は集合部10の軸心に旋回しな
がら集中し、よく撹拌され、乱流になり、各ブランチ11
に対して偏った指向性がなく、各シリンダ3内の燃焼室
5に均等に燃料を分配する。With the above configuration, the fuel supply device 21
Air-fuel mixture supplied from the swirling chamber 12 passes through the intake passage 20.
To the collecting portion 10 through the slit 13 while swirling. The jet flow concentrates while swirling on the axis of the collecting portion 10, is well stirred, and becomes a turbulent flow.
The fuel is evenly distributed to the combustion chambers 5 in each cylinder 3 with no biased directivity.
このとき、ピストンバルブ14は、集合部10に伝わった
吸気負圧に応動し、スリット13の開度を制御する。アイ
ドリング運転時などでは負圧が強いので、スプリング15
の力に抗してピストンバルブ14を、フランジ22とダイヤ
フラム室の段部23によるストッパー杯まで引き下げ、ス
リット13は必要最小限の開度になる。このときは吸入空
気量が少なく、燃料微粒化が不充分な状態にあるが、ス
リット13開度が小さいので集合部10への噴出流速が高く
なり、微粒化が促進される。At this time, the piston valve 14 responds to the intake negative pressure transmitted to the collecting portion 10 to control the opening of the slit 13. Since the negative pressure is strong during idling, the spring 15
The piston valve 14 is pulled down to the stopper full by the flange 22 and the step portion 23 of the diaphragm chamber against the force of, and the slit 13 has the minimum necessary opening degree. At this time, the amount of intake air is small and fuel atomization is insufficient. However, since the opening degree of the slit 13 is small, the jet flow velocity to the collecting portion 10 is high, and atomization is promoted.
中負荷領域になると、負圧は低下するので、その等価
分のスプリング15力によってピストンバルブ14が上昇し
てスリット13の開度が大きくなる。吸入空気量が増加し
ているので、噴出の流速は一定に保たれ、体積効率を損
うことなく微粒化される。In the medium load region, the negative pressure decreases, and the equivalent force of the spring 15 raises the piston valve 14 to increase the opening of the slit 13. Since the amount of intake air is increasing, the flow velocity of the jet is kept constant and atomized without impairing the volumetric efficiency.
さらに、高速負荷領域になると、負圧は大気圧に近付
き、ピストンバルブ14は上限まで上昇しスリット13開度
を大きく拡げる。高体積効率を得るのに充分な噴出面積
が確保され、このとき吸入空気量は最大になるので、自
然発生の乱流によって燃料は充分に微粒化されて各気筒
に分配される。Further, in the high speed load region, the negative pressure approaches the atmospheric pressure, the piston valve 14 rises to the upper limit, and the opening degree of the slit 13 is greatly expanded. A sufficient ejection area is secured to obtain high volumetric efficiency, and the intake air amount is maximized at this time, so the fuel is sufficiently atomized and distributed to each cylinder by the turbulent flow that occurs naturally.
第4図は他の実施例を示し、ピストンバルブ14を押し
上げるスプリング24を集合部10内に置いたものである。
作用は同様であり、旋回室12から噴出した燃料がこのス
プリング24に衝突し、微粒化に役立つ。FIG. 4 shows another embodiment in which a spring 24 for pushing up the piston valve 14 is placed in the collecting portion 10.
The action is the same, and the fuel ejected from the swirl chamber 12 collides with the spring 24 and serves for atomization.
以上のように集合部10への噴出開口面積を吸入空気量
に比例して可変に制御するので、全負荷領域において体
積効率を損うことなく燃料の微粒化、気化が促進され、
空気の流れに沿って各気筒に分配され、安定した燃焼が
得られ、未燃成分排出の抑制、運転の円滑化、出力性能
向上などの効果を奏する。同時にエンジン全高を低くす
ることができ、車両搭載上極めて有利に作用する。As described above, since the ejection opening area to the collecting portion 10 is variably controlled in proportion to the intake air amount, atomization and vaporization of fuel are promoted without impairing volume efficiency in the entire load region,
It is distributed to each cylinder along the flow of air, stable combustion is obtained, and effects such as suppression of unburned component discharge, smooth operation, and improvement in output performance are achieved. At the same time, the overall height of the engine can be lowered, which is extremely advantageous when mounted on a vehicle.
なお、この発明の吸気装置は直列多気筒エンジンにも
適用できる。The intake system of the present invention can also be applied to an in-line multi-cylinder engine.
上記の通り、この発明に係るV型多気筒エンジンの吸
気装置は、集合部を中央に配し、各ブランチを放射状に
延出した吸気マニホールドを用い、その集合部の上に接
線方向水平に燃料を供給するようにしたリング状の旋回
室を重ね、集合部と旋回室との間を円筒状スリットで連
通すると共に、吸気負圧で応動するピストンバルブによ
り上記スリットの開度を制御するようにしたもので、エ
ンジン全高を低く構えることができ、しかも全運転領域
での燃料の微粒化、気化が促進でき、各気筒への燃料分
配の均等性を保持でき、エンジン出力性能を向上する効
果がある。As described above, the intake system for the V-type multi-cylinder engine according to the present invention uses the intake manifold in which the collecting portion is arranged in the center and the branches are radially extended, and the fuel is tangentially horizontally above the collecting portion. The ring-shaped swirl chambers are arranged to be connected to each other, and the collecting part and the swirl chambers are communicated with each other by a cylindrical slit, and the opening degree of the slit is controlled by a piston valve that responds to negative intake pressure. With this, the overall height of the engine can be set low, the atomization and vaporization of fuel in all operating regions can be promoted, the fuel distribution can be evenly distributed to each cylinder, and the effect of improving engine output performance can be obtained. is there.
第1図はこの発明の実施例を示すV型6気筒エンジン吸
気系の縦断正面図、第2図は同第1図A−A矢視による
平面図、第3図は要部の拡大した縦断正面図、第4図は
他の実施例を示す要部の縦断正面図、第5図は従来型の
吸気系を備えたV型多気筒エンジンの一部縦断正面図あ
る。 7……吸気ポート、8……吸気マニホールド、10……集
合部、11……マニホールド、12……旋回室、13……スリ
ット、14……ピストンバルブ、15,24……スプリング、2
0……吸気通路、21……燃料供給装置。FIG. 1 is a vertical sectional front view of a V-type 6-cylinder engine intake system showing an embodiment of the present invention, FIG. 2 is a plan view taken along the line A--A in FIG. 1, and FIG. A front view, FIG. 4 is a vertical cross-sectional front view of a main part showing another embodiment, and FIG. 5 is a partial vertical front view of a V-type multi-cylinder engine having a conventional intake system. 7 ... intake port, 8 ... intake manifold, 10 ... collecting part, 11 ... manifold, 12 ... swirl chamber, 13 ... slit, 14 ... piston valve, 15, 24 ... spring, 2
0 ... Intake passage, 21 ... Fuel supply device.
Claims (1)
中央部に集合部が位置し、集合部から4方に延びる各プ
ランチの下流端を各吸気ポートに接続するようにした吸
気マニホールドを備え、この集合部の上に、接線方向水
平に吸気通路を導入したリング状の旋回室を重ね、この
旋回室内周下部に開けた円筒状のスリットを介して上記
集合部と連通すると共に、旋回室内周に上下摺動自在な
ピストンバルブを嵌挿してスリットの開度を可変にし、
このピストンバルブにスプリングを弾装してスリット開
度が増大する上方への付勢力を付与してなることを特徴
とするV型多気筒エンジンの吸気装置。1. A V-type multi-cylinder engine having an intake manifold in which a collecting portion is located at a central portion of a V-shaped space, and the downstream ends of the planches extending in four directions from the collecting portion are connected to respective intake ports. A ring-shaped swirl chamber in which the intake passage is introduced horizontally in the tangential direction is superposed on the gathering portion, and communicates with the gathering portion through a cylindrical slit opened in the lower part of the circumference of the swirling chamber and swirls By inserting a piston valve that can slide up and down on the inner circumference, the opening of the slit can be changed,
An intake device for a V-type multi-cylinder engine, wherein a spring is elastically mounted on the piston valve to impart upward biasing force for increasing the slit opening.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131700A JP2540156B2 (en) | 1987-05-29 | 1987-05-29 | Intake device for V-type multi-cylinder engine |
US07/199,662 US4829943A (en) | 1987-05-29 | 1988-05-27 | V-type multiple cylinder engine |
CA000568044A CA1307710C (en) | 1987-05-29 | 1988-05-27 | V-type multiple cylinder engine |
DE3818099A DE3818099A1 (en) | 1987-05-29 | 1988-05-27 | SUCTION DEVICE FOR A MULTI-CYLINDER V-ENGINE |
GB8812826A GB2205607B (en) | 1987-05-29 | 1988-05-31 | V-type multiple cylinder engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131700A JP2540156B2 (en) | 1987-05-29 | 1987-05-29 | Intake device for V-type multi-cylinder engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63297761A JPS63297761A (en) | 1988-12-05 |
JP2540156B2 true JP2540156B2 (en) | 1996-10-02 |
Family
ID=15064158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62131700A Expired - Lifetime JP2540156B2 (en) | 1987-05-29 | 1987-05-29 | Intake device for V-type multi-cylinder engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2540156B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2480232B (en) * | 2010-05-05 | 2012-04-11 | Arumugam Gunasegaran | A blow-by gas energiser device |
-
1987
- 1987-05-29 JP JP62131700A patent/JP2540156B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63297761A (en) | 1988-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62162723A (en) | Air intake device for multi-cylinder engine | |
US5094210A (en) | Intake and fuel/air mixing system for multi-cylinder, externally ignited internal combustion engines | |
US4206599A (en) | Internal combustion engine | |
US4470391A (en) | Air-fuel mixture intake construction for internal combustion engines | |
JP2540156B2 (en) | Intake device for V-type multi-cylinder engine | |
US3931811A (en) | Independent runner intake manifold for a V-8 internal combustion engine having each runner in a direct path with a throat of a four-throat carburetor | |
US4829943A (en) | V-type multiple cylinder engine | |
JPS6217654B2 (en) | ||
JP2540157B2 (en) | Intake device for V-type multi-cylinder engine | |
JPS633425Y2 (en) | ||
JPH0639088Y2 (en) | Intake device for V-type multi-cylinder engine | |
JP2513834Y2 (en) | Multi-cylinder engine intake system | |
JPS6148629B2 (en) | ||
JPS5840655B2 (en) | Multi-cylinder engine fuel distribution system | |
JPS606602Y2 (en) | Internal combustion engine intake system | |
JPH0693867A (en) | Intake system for engine | |
US4856464A (en) | Air distribution apparatus for use with an internal combustion engine | |
JPH0410339Y2 (en) | ||
JPS633398Y2 (en) | ||
JPS6033331Y2 (en) | Internal combustion engine intake system | |
JP2568842B2 (en) | Multi-cylinder engine intake system | |
JPS5941295Y2 (en) | Intake system for multi-cylinder internal combustion engine | |
JPH0636295Y2 (en) | Multi-cylinder engine intake system | |
JP3545842B2 (en) | Arrangement structure of main air bleed pipe of variable venturi downdraft type carburetor | |
JPH02552B2 (en) |