JP2539864B2 - Acoustic abnormality detection device - Google Patents

Acoustic abnormality detection device

Info

Publication number
JP2539864B2
JP2539864B2 JP29857887A JP29857887A JP2539864B2 JP 2539864 B2 JP2539864 B2 JP 2539864B2 JP 29857887 A JP29857887 A JP 29857887A JP 29857887 A JP29857887 A JP 29857887A JP 2539864 B2 JP2539864 B2 JP 2539864B2
Authority
JP
Japan
Prior art keywords
acoustic
microphone
abnormality
power spectrum
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29857887A
Other languages
Japanese (ja)
Other versions
JPH01140026A (en
Inventor
紘二郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP29857887A priority Critical patent/JP2539864B2/en
Publication of JPH01140026A publication Critical patent/JPH01140026A/en
Application granted granted Critical
Publication of JP2539864B2 publication Critical patent/JP2539864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は事業用ボイラ等の大型装置の異常検出装置に
係り、特に騒音発生方向を精度よく検出するのに適した
音響異常検出装置に関する。
Description: TECHNICAL FIELD The present invention relates to an abnormality detection device for a large-scale device such as a boiler for business use, and more particularly to an acoustic abnormality detection device suitable for accurately detecting a noise generation direction.

〔従来の技術〕[Conventional technology]

火力プラントのような多数の機器から構成される大型
装置において、装置の異常を音響的に検出するために、
従来音響検出器であるマイクロホンを大型装置の周辺に
複数個設置し、各マイクロホンで検出した信号のレベ
ル、周波数スペクトル等をモニタして、通常運転時の信
号と比較し、正常・異常の判定が行なわれている。第3
図に従来の異常検出装置の構成例を示す。事業用ボイラ
のような大型装置12の周辺に固定または首振り等の機構
を有する半固定された複数のマイクロホン1(図では
A、B、C、Dの4個)により大型装置12から発生する
騒音を検出する。検出された騒音信号は増幅器2により
それぞれ増幅された後、チャンネルセレクタ3に導かれ
る。周波数スペクトル分析器4ではチャンネルセレクタ
3によって選択された任意の隣接マイクロホン間(例え
ばA-B間)のクロスパワースペクトラムGABを求める。
ここで、 PA:マイクロホンAの信号 PB:マイクロホンBの信号 RAB:PA、PB間の相互相関 GABは複素数であり、実数部と虚数部、すなわち振幅
と位相の2項に分けることができる。第4図に振幅と位
相で表示したクロスパワースペクトラムの一例を示す。
周波数比較器5ではクロスパワースペクトラムの振幅特
性で顕著なピークを示す周波数を10本程度抽出し、予め
登録されている基準周波数と比較し、ピーク周波数の変
化の有無を判定する。位相比較器6ではクロスパワース
ペクトラムの位相特性で上記ピーク周波数での位相差を
それぞれ抽出し、予め登録されている基準位相差と比較
し、位相差変化の有無を判定する。正常・異常判定器7
では、周波数比較器5および位相比較器6からの変化の
有・無信号と、押し込みファン(FDF)等の主要構成機
器のオン、オフ信号に相当する機器aの動作信号9、機
器bの動作信号10、機器cの動作信号11とを用いて、大
型装置12の正・異常判定を行なう。
In a large-scale device composed of many devices such as a thermal power plant, in order to acoustically detect an abnormality of the device,
Multiple microphones, which are conventional acoustic detectors, are installed around a large device, and the level and frequency spectrum of the signal detected by each microphone is monitored and compared with the signal during normal operation to determine whether it is normal or abnormal. Has been done. Third
FIG. 1 shows a configuration example of a conventional abnormality detection device. Generated from the large device 12 by a plurality of semi-fixed microphones 1 (four A, B, C, D in the figure) having a mechanism such as fixing or swinging around the large device 12 such as a commercial boiler. Detect noise. The detected noise signals are respectively amplified by the amplifier 2 and then guided to the channel selector 3. The frequency spectrum analyzer 4 obtains a cross power spectrum G AB between arbitrary adjacent microphones (for example, AB) selected by the channel selector 3.
here, PA: Signal of microphone A PB: Signal of microphone B RAB: Cross-correlation between PA and PB GAB is a complex number and can be divided into a real number part and an imaginary number part, that is, an amplitude and a phase. FIG. 4 shows an example of the cross power spectrum displayed in amplitude and phase.
The frequency comparator 5 extracts about 10 frequencies showing remarkable peaks in the amplitude characteristic of the cross power spectrum, compares them with a reference frequency registered in advance, and determines whether or not the peak frequency has changed. The phase comparator 6 extracts the phase difference at the peak frequency from the phase characteristics of the cross power spectrum, compares it with the reference phase difference registered in advance, and determines whether or not there is a phase difference change. Normality / abnormality determiner 7
Then, the presence / absence signal of the change from the frequency comparator 5 and the phase comparator 6, and the operation signal 9 of the device a and the operation of the device b corresponding to the ON / OFF signals of the main constituent devices such as the forced draft fan (FDF). The signal 10 and the operation signal 11 of the device c are used to determine whether the large device 12 is normal or abnormal.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような従来の異常検出装置では、マイクロホン間
隔lをある程度小さくしないと、有効なクロスパワース
ペクトラムが得られず(特に位相検出精度が低下す
る)、大型装置に適用するにはマイクロホン個数が非常
に多くなり、異常検出装置の価格上昇につながる欠点が
あった。
In such a conventional abnormality detection device, an effective cross power spectrum cannot be obtained unless the microphone interval l is reduced to some extent (especially, the phase detection accuracy decreases), and the number of microphones is very large for application to a large device. There is a drawback that the number of abnormality detection devices increases and the price of the abnormality detection device increases.

第5図に火力プラントの定格負荷時の騒音パワースペ
クトラムの一例を示すが、騒音周波数範囲として最高10
KHz程度までを考慮する必要があることを示している。
このためこの周波数fにおいて、クロスパワースペクト
ラムら有効な位相情報を得るためには を2πラジアン以下とする制約条件より、lは30mm以下
にする必要があった。
Fig. 5 shows an example of the noise power spectrum at the rated load of a thermal power plant. The maximum noise frequency range is 10
It shows that it is necessary to consider up to KHz.
Therefore, in order to obtain effective phase information from the cross power spectrum at this frequency f, It was necessary to set l to 30 mm or less because of the constraint condition that the value be 2π radians or less.

このように狭間隔にマイクロホンを設置することは大
型装置を対象とする場合では不可能に近く、したがって
位相情報を用いて、正・異常判定の精度を上げる(特に
高い周波数で)ことは非常に困難であった。
In this way, it is almost impossible to install the microphones at a narrow interval in the case of a large device, and therefore it is very difficult to improve the accuracy of the positive / abnormal determination by using the phase information (especially at a high frequency). It was difficult.

その解決法の1つとして、上記狭間隔配置したマイク
ロホンを、移動機構(例えばレール上をモータ駆動で移
動する支持架台等)に搭載し、大型装置の周辺を移動し
ながら異常検出する方法が考えられるが、大型装置の周
辺を移動機構によって一周完了するまでは(通常の移動
速度は例えば1m/秒で、ボイラ周囲では移動だけで1分
以上要し、停止しての検出および信号処理時間を含む
と、5分以上要する)、正・異常の判定を下すことがむ
ずかしく、判定サイクルが長くなる欠点がある。
As one of the solutions, a method of mounting the above-mentioned narrowly-spaced microphones on a moving mechanism (for example, a support frame moving on a rail by a motor drive) and detecting an abnormality while moving around a large device is considered. However, it takes about one minute or more to move around the boiler with a moving mechanism (normal moving speed is, for example, 1 m / sec. If it is included, it takes 5 minutes or more), but it is difficult to make a positive / abnormal judgment, and there is a drawback that the judgment cycle becomes long.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するためになされたもの
で、異常の有無を検査される被検査装置に付設された2
個の音響検出器の検出信号によりクロスパワースペクト
ルを求め音響の強度、方向に基づき異常の有無を検知す
る音響異常検出装置において、被検査装置の複数個の場
所にそれぞれ固定設置される音響検出器と、上記固定設
置された音響検出器に巡回接近する少なくとも1個の移
動可能な音響検出器と、上記固定音響検出と移動音響検
出器の検出信号間のパワースペクトラムを求め正常時の
値と比較して異常の有無を検出する装置とを設けたこと
を特徴とする音響異常検出装置を提供するものである。
The present invention has been made to solve the above problems, and is attached to a device to be inspected that is inspected for abnormality.
An acoustic anomaly detection device that detects a cross power spectrum from the detection signals of individual acoustic detectors and detects the presence or absence of anomalies based on the intensity and direction of the sound. And at least one movable acoustic detector that cyclically approaches the fixed acoustic detector, and a power spectrum between the detection signals of the fixed acoustic detection and the moving acoustic detector is calculated and compared with a normal value. And an apparatus for detecting the presence / absence of an abnormality, the acoustic abnormality detecting apparatus being provided.

〔実施例〕〔Example〕

第1図に本発明になる音響異常検出装置の全体構成を
示す。固定マイクロホン1をボイラ等の大型の被検査装
置12の周辺に5〜10m間隔(等間隔でなくてもよい)で
固定設置する。一方大型の被検査装置12の周辺に付設さ
れた移動用レール14に沿って移動する可動マイクロホン
M13を設ける。固定マイクロホン1および可動マイクロ
ホンM13で受波した信号は増幅器2で増幅後、固定マイ
クロホン1からの信号はチャンネルセレクタ3に導かれ
る。チャンネルセレクタ3によって任意に選択された信
号(例えば固定マイクロホンAからの信号)と、可動マ
イクロホンM13からの信号を周波数スペクトル分析器4
(例えば高速フーリェ変換器:FFT等)に導き、2信号間
のクロスパワースペクトラムGAMを導出する。クロスパ
ワースペクトラムGAMは複素数であり、実数部と虚数部
または振幅と位相の2項を演算する(第4図に後者の場
合を示す)。例えばクロスパワースペクトラムGAMの振
幅はマイクロホンAとマイクロホンMの信号間の相関の
大きさに対応した信号であり、振幅が大きいほど相関性
は大となる。一方クロスパワースペクトラムGAMの位相
はマイクロホンAとマイクロホンMの信号間の位相差に
対応した信号であり、正位相差はマイクロホンA信号の
位相進み、負位相差はマイクロホンA信号の位相遅れを
表わす。
FIG. 1 shows the overall configuration of an acoustic abnormality detection device according to the present invention. The fixed microphones 1 are fixedly installed around a large inspected device 12 such as a boiler at intervals of 5 to 10 m (not necessarily even intervals). On the other hand, a movable microphone that moves along a moving rail 14 attached around the large device under test 12.
Provide M13. The signals received by the fixed microphone 1 and the movable microphone M13 are amplified by the amplifier 2, and then the signal from the fixed microphone 1 is guided to the channel selector 3. The frequency spectrum analyzer 4 compares the signal arbitrarily selected by the channel selector 3 (for example, the signal from the fixed microphone A) and the signal from the movable microphone M13.
(For example, a high-speed Fourier transformer: FFT) to derive a cross power spectrum GAM between two signals. The cross power spectrum GAM is a complex number, and the two terms of the real number part and the imaginary number part or the amplitude and the phase are calculated (the latter case is shown in FIG. 4). For example, the amplitude of the cross power spectrum GAM is a signal corresponding to the magnitude of the correlation between the signals of the microphone A and the microphone M, and the greater the amplitude, the greater the correlation. On the other hand, the phase of the cross power spectrum GAM is a signal corresponding to the phase difference between the signals of the microphones A and M, the positive phase difference represents the phase advance of the microphone A signal, and the negative phase difference represents the phase lag of the microphone A signal.

周波数比較器5では、周波数スペクトル分析器4によ
って演算されたクロスパワースペクトラムGAMの振幅信
号でピークを示す信号、例えば各周波数帯での平均振幅
より2倍以上大きいものを大きい順に10個選び出し、そ
のピーク周波数fpnとピーク振幅Vpnを求める。
The frequency comparator 5 selects, from the amplitude signal of the cross power spectrum GAM calculated by the frequency spectrum analyzer 4, a signal showing a peak, for example, 10 signals which are at least twice as large as the average amplitude in each frequency band, in descending order, and select them. The peak frequency fpn and the peak amplitude Vpn are obtained.

位相比較器6では、周波数比較器5で求められたピー
ク周波数fpnでの位相差θpnを求める。これらのピーク
周波数fpn、ピーク振幅Vpn、位相差θpn信号は正常・
異常器7に導かれ、可動マイクロホン駆動コントローラ
15からの位置信号、送風機動作信号9、燃料ポンプ動作
信号10、タービン動作信号11等によってテーブル化され
た基準値の中から該当条件の基準値を選び出し、fpn、
Vpn、θpnをそれぞれ基準値と比較し、許容幅以上の変
化があった場合には異常判定とする出力信号8を送出す
る。
The phase comparator 6 finds the phase difference θpn at the peak frequency fpn found by the frequency comparator 5. These peak frequency fpn, peak amplitude Vpn, and phase difference θpn signals are normal.
Guided by abnormal unit 7, movable microphone drive controller
The reference value of the relevant condition is selected from the reference values tabulated by the position signal from 15, the blower operation signal 9, the fuel pump operation signal 10, the turbine operation signal 11, etc., and fpn,
Each of Vpn and θpn is compared with a reference value, and if there is a change within a permissible range, an output signal 8 for judging an abnormality is transmitted.

可動マイクロホンM13の移動は、可動マイクロホン駆
動コントローラ15によって行ない、固定マイクロホン1
と可動マイクロホンM13の受波面間の距離lが50mm以下
になるように移動する(第2図参照)。可動マイクロホ
ン移動の手順は例えば第1図においてマイクロホンA位
置に移動して判定、次にマイクロホンB位置に移動して
判定、マイクロホンC位置に移動して判定、マイクロホ
ンD位置に移動して判定、その後C、B、A位置に逆戻
りする。
The movable microphone M13 is moved by the movable microphone drive controller 15, and the fixed microphone 1
And the movable microphone M13 is moved so that the distance l between the wave receiving surfaces is 50 mm or less (see FIG. 2). The procedure for moving the movable microphone is, for example, in FIG. 1, moving to the microphone A position for determination, then moving to the microphone B position for determination, moving to the microphone C position for determination, moving to the microphone D position for determination, and thereafter. It returns to the C, B, and A positions.

本音響異常検出装置では各固定マイクロホン1位置
で、高周波数域までのクロスパワースペクトラムの振
幅、位相を精度よく検出できるので、騒音の中で着目す
べき周波数fpnの識別、およびfpnでの位相差より音響
方向の演算が比較的容易にできる。したがって、例えば
固定マイクロホンA位置に可動マイクロホンMがある場
合に、クロスパワースペクトラムGAMのほかにGBM、G
CM、GDMの各クロスパワースペクトラムを求め、上記着
目周波数fpnでの振幅(振幅値に関する精度はマイクロ
ホン間隔が大きくてもかなり良好である)を正・異常判
定の信号として用いることが可能になり、各測定点で大
型装置全体の正・異常判定ができ、狭間隔配置した一対
のマイクロホンを移動させる場合よりは正・異常判定が
迅速化される。
Since this acoustic anomaly detection device can accurately detect the amplitude and phase of the cross power spectrum up to a high frequency range at each fixed microphone 1 position, the frequency fpn to be noticed in noise and the phase difference at fpn are detected. The calculation of the acoustic direction can be performed relatively easily. Therefore, for example, when the movable microphone M is located at the fixed microphone A position, GBM, G in addition to the cross power spectrum GAM.
It is possible to obtain each cross power spectrum of CM and GDM, and use the amplitude at the frequency of interest fpn (the accuracy with respect to the amplitude value is quite good even if the microphone interval is large) as a signal for positive / abnormal judgment. It is possible to determine the correctness / abnormality of the entire large device at each measurement point, and the determination of correctness / abnormality is quicker than the case of moving a pair of microphones arranged at narrow intervals.

また狭間隔配置した一対のマイクロホンを複数個固定
設置する場合よりはマイクロホン数の低減、信号処理系
を簡易化でき、この効果は大型装置の規模が大きくなる
ほど顕著となる。
Further, the number of microphones can be reduced and the signal processing system can be simplified as compared with the case where a plurality of pairs of closely spaced microphones are fixedly installed, and this effect becomes more remarkable as the size of a large device increases.

本発明の実施例においては、遠間隔に固定配置された
複数のマイクロホンは音響方向計測に必要な一対(2
個)のマイクロホンの一方を構成し、可動マイクロホン
が他の1個のマイクロホンを構成する。遠間隔に固定配
置されたマイクロホン間では低周波数域(例えば10Hzオ
ーダー)騒音の位相しか計測できないが、可動マイクロ
ホンと固定マイクロホン間の距離は設置方法、移動機構
の工夫により、数cm(例えば5cm)まで短縮できるの
で、理想的には6KHzまで、精度を数十%低下させると約
10KHzの騒音まで位相検出が可能になり、音響方向の同
定が可能になる。
In the embodiment of the present invention, a plurality of microphones fixedly arranged at a long distance are used as a pair (2) required for sound direction measurement.
One of the microphones, and the movable microphone constitutes the other microphone. Only the low frequency range (eg 10Hz order) noise phase can be measured between microphones that are fixedly arranged at a long distance, but the distance between the movable microphone and the fixed microphone is several cm (for example, 5 cm) depending on the installation method and moving mechanism. Since it can be shortened to up to 6KHz, if you reduce the accuracy by several tens of percent, it will be approx.
Phase detection is possible up to noise of 10 KHz, and acoustic direction can be identified.

〔発明の効果〕〔The invention's effect〕

本発明によれば、音響検知用のマイクロホンの数を2
倍にふやす(したがって増幅器等の数も2倍にする)こ
となく、大型装置の各測定点での音響の正・異常判定の
精度を向上でき、また各測定点で精度はやや劣るが大型
装置全体の正・異常判定が可能になるので、判定が迅速
化できる。
According to the present invention, the number of microphones for acoustic detection is set to two.
It is possible to improve the accuracy of sound positive / abnormal determination at each measurement point of a large device without increasing the number of times (therefore, the number of amplifiers etc. is also doubled). Since it is possible to judge whether the whole is correct or abnormal, the judgment can be speeded up.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明になる音響異常検出装置の一実施例の
構成図、第2図は、固定マイクロホンと可動マイクロホ
ンの設置法の一例を示す図、第3図は、従来型の音響異
常検出装置の構成図、第4図は、火力プラントで採取し
た騒音の2マイクロホン間のクロスパワースペクトラム
の説明図、第5図は、火力プラントの騒音の周波数分布
図である。 1……固定マイクロホン、2……増幅器、3……チャン
ネルセレクタ、4……周波数スペクトル分析器、5……
周波数比較器、6……位相比較器、7……正常・異常判
定器、8……出力信号、9……送風機動作信号、10……
燃料ポンプ動作信号、11……タービン動作信号、12……
被検査装置、13……可動マイクロホン、14……移動用レ
ール、15……可動マイクロホン駆動コントローラ。
FIG. 1 is a configuration diagram of an embodiment of an acoustic abnormality detecting device according to the present invention, FIG. 2 is a diagram showing an example of a method of installing a fixed microphone and a movable microphone, and FIG. 3 is a conventional acoustic abnormality. FIG. 4 is a configuration diagram of the detection device, FIG. 4 is an explanatory diagram of a cross power spectrum between two microphones of noise collected in the thermal power plant, and FIG. 5 is a frequency distribution diagram of noise in the thermal power plant. 1 ... Fixed microphone, 2 ... Amplifier, 3 ... Channel selector, 4 ... Frequency spectrum analyzer, 5 ...
Frequency comparator, 6 ... Phase comparator, 7 ... Normality / abnormality determiner, 8 ... Output signal, 9 ... Blower operation signal, 10 ...
Fuel pump operating signal, 11 …… Turbine operating signal, 12 ……
Device to be inspected, 13 ... movable microphone, 14 ... moving rail, 15 ... movable microphone drive controller.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異常の有無を検査される被検査装置に付設
された2個の音響検出器の検出信号によりクロスパワー
スペクトルを求め音響の強度、方向に基づき異常の有無
を検知する音響異常検出装置において、被検査装置の複
数個の場所にそれぞれ固定設置される音響検出器と、上
記固定設置された音響検出器に巡回接近する少なくとも
1個の移動可能な音響検出器と、上記固定音響検出器と
移動音響検出器の検出信号間のパワースペクトラムを求
め正常時の値と比較して異常の有無を検出する装置とを
設けたことを特徴とする音響異常検出装置。
1. An acoustic abnormality detection for detecting the presence / absence of abnormality based on the intensity and direction of the sound by obtaining a cross power spectrum from the detection signals of two acoustic detectors attached to an inspected device to be inspected for abnormality. In the apparatus, acoustic detectors fixedly installed at a plurality of locations of the device to be inspected, at least one movable acoustic detector cyclically approaching the fixed acoustic detectors, and fixed acoustic detection And a device for detecting the presence or absence of abnormality by calculating a power spectrum between the detection signals of the detector and the moving acoustic detector and comparing the power spectrum with a value in a normal state.
JP29857887A 1987-11-26 1987-11-26 Acoustic abnormality detection device Expired - Fee Related JP2539864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29857887A JP2539864B2 (en) 1987-11-26 1987-11-26 Acoustic abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29857887A JP2539864B2 (en) 1987-11-26 1987-11-26 Acoustic abnormality detection device

Publications (2)

Publication Number Publication Date
JPH01140026A JPH01140026A (en) 1989-06-01
JP2539864B2 true JP2539864B2 (en) 1996-10-02

Family

ID=17861555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29857887A Expired - Fee Related JP2539864B2 (en) 1987-11-26 1987-11-26 Acoustic abnormality detection device

Country Status (1)

Country Link
JP (1) JP2539864B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187971A (en) * 1992-01-17 1993-07-27 Hitachi Electron Service Co Ltd Acoustically diagnosing device for air-cooling fan
JP2006322613A (en) * 2005-04-21 2006-11-30 Ntn Corp Constant-velocity joint
US9176003B2 (en) * 2010-05-25 2015-11-03 Siemens Energy, Inc. Machine vibration monitoring

Also Published As

Publication number Publication date
JPH01140026A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JP3046426B2 (en) Monitoring equipment for plant equipment
WO2016143380A1 (en) Arc detection device and arc detection method
CN101592698B (en) Method and device for online monitoring and positioning turn-to-turn short circuit for rotator of water wheel generator
CA2346759A1 (en) Ingress monitoring system and method
JPH09166483A (en) Method and apparatus for monitoring equipment
CN102341597A (en) Method for monitoring wind turbines
CN108895018B (en) A kind of device and method monitoring the development process of centrifugal blade cavitation
CN110296095A (en) Thermal power plant's station boiler air-introduced machine operating status intellectual monitoring diagnostic method
JP2539864B2 (en) Acoustic abnormality detection device
CN203101577U (en) Partial discharge detector using ultrasonic signals
CN105866645B (en) A kind of method and device diagnosing generator discharge failure using noise characteristic frequency range
JP2005147890A (en) Insulation abnormality diagnostic device
JPH03257332A (en) Diagnostic method for vibration detection mechanism
JPH08177530A (en) Abnormality detecting device for gas turbine
CN102901912B (en) Local discharge monitoring method for multiple intensively arranged power equipment
JP3571949B2 (en) Diagnostic device for diagnosing abnormalities of equipment provided on a moving body
KR20200137295A (en) Apparatus for detecting combustor instability and method thereof
JPH1169583A (en) Device for diagnosing abnormality of equipment
JPS6255540A (en) Leakage detecting device
JPH02130429A (en) Diagnosis of abnormality of machine
JPH0882547A (en) Wing-vibration measuring apparatus
CN102901913B (en) Partial discharge synchronous monitoring method for multiple electrical equipment of substation
JPH07253354A (en) Method and apparatus for detecting abnormal noise source in factory or the like
JPS5892828A (en) Monitoring device for operation state
JP2011214964A (en) Method and device for detecting abnormal sound from rotation axle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees