JP2539794B2 - Valve for internal combustion engine - Google Patents

Valve for internal combustion engine

Info

Publication number
JP2539794B2
JP2539794B2 JP61157629A JP15762986A JP2539794B2 JP 2539794 B2 JP2539794 B2 JP 2539794B2 JP 61157629 A JP61157629 A JP 61157629A JP 15762986 A JP15762986 A JP 15762986A JP 2539794 B2 JP2539794 B2 JP 2539794B2
Authority
JP
Japan
Prior art keywords
valve
powder
internal combustion
combustion engine
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61157629A
Other languages
Japanese (ja)
Other versions
JPS6312810A (en
Inventor
直樹 本岡
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61157629A priority Critical patent/JP2539794B2/en
Publication of JPS6312810A publication Critical patent/JPS6312810A/en
Application granted granted Critical
Publication of JP2539794B2 publication Critical patent/JP2539794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関において使用されるバルブの改良に
関するものである。
TECHNICAL FIELD The present invention relates to an improvement of a valve used in an internal combustion engine.

[従来技術] 内燃機関に於いて、従来はバルブシートと接するフエ
ース部には耐熱鋼又はNi合金あるいはCo合金を用い、ガ
イド内を摺動するバルブストレート部には合金鋼を用い
ている。
[Prior Art] In an internal combustion engine, conventionally, a heat-resistant steel or a Ni alloy or a Co alloy is used for a face portion in contact with a valve seat, and an alloy steel is used for a valve straight portion sliding in a guide.

[発明が解決しようとする問題点] 内燃機関のバルブは機関の回転数に応じたサイクルで
燃料の吸気、排気の開閉のために上下運動を繰り返す
が、従来この種のバルブは鉄系合金又は一部Co合金を使
用した鉄系合金から成るので、重量が大きく、運転時の
慣性重量が大きくなり、高速追随性の大巾な向上に制約
が生じるという問題がある。
[Problems to be Solved by the Invention] A valve of an internal combustion engine repeatedly moves up and down to open and close fuel intake and exhaust in a cycle according to the engine speed. Since it is composed of an iron-based alloy that uses a part of Co alloy, there is a problem that the weight is large, the inertial weight during operation is large, and there is a restriction on the drastic improvement in high-speed followability.

上記に鑑み本発明はこのような問題点を解消するため
開発されたものである。以下に詳細に本発明を説明す
る。
In view of the above, the present invention has been developed to solve such a problem. The present invention will be described in detail below.

[問題点を解決するための手段] 即ち本発明の内燃機関用バルブは、バルブシートと接
するフエース部が耐摩耗、耐熱性に優れ、ヤング率が80
00Kgf/mm2以上を有する粉末冶金法で製造したアルミニ
ウム合金からなり、バルブガイド内を摺動するストレー
ト部が耐摩耗性に優れ、ヤング率が8000Kgf/mm2以上を
有する粉末冶金法で製造したアルミニウム合金から成
り、両者を接合して構成したことを特徴とするものであ
る。
[Means for Solving Problems] That is, in the valve for an internal combustion engine of the present invention, the face portion in contact with the valve seat is excellent in wear resistance and heat resistance, and has a Young's modulus of 80% or less.
Made of aluminum alloy manufactured by powder metallurgy with 00Kgf / mm 2 or more, the straight part sliding in the valve guide has excellent wear resistance, and manufactured by powder metallurgy with Young's modulus of 8000Kgf / mm 2 or more. It is characterized in that it is made of an aluminum alloy and is constructed by joining both.

[作用] バルブの慣性重量低減のため従来の鉄系材料に変えて
Al合金にて形成する。但し従来の鋳造法によるアルミニ
ウム合金ではバルブとして使用する場合耐熱性、耐摩耗
性の点で要求特性を満足しないという問題がある。
[Operation] Change to conventional iron-based material to reduce inertial weight of valve
It is made of Al alloy. However, the conventional casting aluminum alloy has a problem that it does not satisfy the required characteristics in terms of heat resistance and wear resistance when used as a valve.

この問題を解決するため本発明ではアルミニウム合金
を粉末冶金法にて製造する。即ち、原料となるアルミニ
ウム合金粉末を103℃/sec以上の冷却速度を有する急冷
凝固法によって作るかあるいはメカニカルアロイング法
によって作る。これによって従来の鋳造法では達成困難
であった合金組成が得られることができるだけでなく、
結晶の微細化、析出物の微細均質分散が可能となり、従
来のアルミニウム鋳造合金では得られない耐熱性、耐摩
耗性が得られるようになる。第1図に本発明のバルブ構
成図を示す。バルブのフエース部(1)はシリンダー内
の燃焼ガスの熱を受けると共にバルブシートからの叩か
れ作用を受ける。従ってフエース部に使用されるアルミ
ニウム合金は耐熱性、耐摩耗性を有すると共に高剛性で
あることが必要である。
In order to solve this problem, the present invention manufactures an aluminum alloy by powder metallurgy. That is, the aluminum alloy powder as a raw material is produced by a rapid solidification method having a cooling rate of 10 3 ° C / sec or more, or by a mechanical alloying method. Not only can this result in an alloy composition that was difficult to achieve with conventional casting methods,
It becomes possible to make crystals finer and finely disperse the precipitates finely, and to obtain heat resistance and wear resistance that cannot be obtained by conventional aluminum casting alloys. FIG. 1 shows a valve configuration diagram of the present invention. The face portion (1) of the valve receives the heat of the combustion gas in the cylinder and is hit by the valve seat. Therefore, the aluminum alloy used for the face portion is required to have heat resistance, wear resistance and high rigidity.

耐熱性の目安として300℃で15Kgf/mm2以上の引張強さ
を有していることが望ましい。これより低いと長時間運
転時バルブの破損をもたらすという問題がある。
As a guide for heat resistance, it is desirable to have a tensile strength of 15 Kgf / mm 2 or more at 300 ° C. If it is lower than this, there is a problem that the valve is damaged during long-time operation.

耐摩耗性についてはその向上手段として材料的には耐
摩耗性改善元素の添加が考えられる。これらの元素とし
てはSiあるいはC更にはW,WC,TiC,Al2O3,SiC等の硬質元
素がある。
Regarding the wear resistance, as a means for improving the wear resistance, it is considered to add a wear resistance improving element as a material. These elements include Si or C, and hard elements such as W, WC, TiC, Al 2 O 3 and SiC.

Si添加の場合は急冷凝固法によって粉末を製造する時
の溶湯の段階で合金化しておくことが望ましい。これに
よってSiが均質に分散した合金粉末が可能となる。この
時のSi添加量は重量比で10〜35%の範囲であることが必
要である。Siが10%未満の場合には耐摩耗性が不十分と
なり、一方35%を越えると後工程での押出鋳造等による
塑性加工が難しくなる。
When Si is added, it is desirable to alloy the powder at the stage of the molten metal when the powder is manufactured by the rapid solidification method. This enables alloy powder in which Si is homogeneously dispersed. The amount of Si added at this time must be in the range of 10 to 35% by weight. If Si is less than 10%, the wear resistance becomes insufficient, while if it exceeds 35%, plastic working such as extrusion casting in the subsequent step becomes difficult.

またCあるいはW,WC,SiC,Al2O3等の硬質元素を添加す
る場合には上記急冷凝固粉末に後から混合するか、ある
いはメカニカルアロイング法を用いて合金粉末を製造す
る方法があるが、硬質元素を均質に分散し合金化して耐
熱強度を上げるという点ではメカニカルアロイング法が
望ましい。添加量としては重量比で2〜10%の範囲が望
ましい。2%未満では添加の効果が少なく耐摩耗性、耐
熱性が不十分であり、10%を越えると押出し、鋳造等の
後加工が困難となる。
In addition, when adding a hard element such as C or W, WC, SiC, Al 2 O 3 or the like, there is a method of mixing with the above-mentioned rapidly solidified powder later or a method of producing an alloy powder by using a mechanical alloying method. However, the mechanical alloying method is preferable in that the hard elements are uniformly dispersed and alloyed to increase the heat resistance. The addition amount is preferably in the range of 2 to 10% by weight. If it is less than 2%, the effect of addition is small and wear resistance and heat resistance are insufficient. If it exceeds 10%, post-processing such as extrusion and casting becomes difficult.

剛性についてはヤング率が8000Kgf/mm2以上あること
が望ましい。8000Kgf/mm2未満の場合にはバルブシート
からの叩かれによってフエース部のバルブシート接触面
にへたりを生じ、バルブ沈み量が増加する。
With regard to rigidity, it is desirable that the Young's modulus is 8000 Kgf / mm 2 or more. If it is less than 8000 Kgf / mm 2 , the valve seat is hit by the valve seat and the face of the face portion comes into contact with the tire.

また、内燃機関の仕様によっては上記材料でも耐摩耗
性あるいは耐熱性で不十分な場合がある。この様な場合
には耐摩耗性の改善あるいは高温燃焼ガスからの保護の
ためにバルブフエース部に表面処理を施こす。表面処理
としてはNi合金あるいはCr合金等のめっき、硬質アルマ
イト処理等の化学処理あるいはセラミック等の溶射があ
る。
Further, depending on the specifications of the internal combustion engine, the above materials may not have sufficient wear resistance or heat resistance. In such a case, the valve face is subjected to a surface treatment in order to improve wear resistance or protect from high temperature combustion gas. The surface treatment includes plating of Ni alloy or Cr alloy, chemical treatment such as hard alumite treatment, or thermal spraying of ceramics.

次にバルブストレート部について述べる。この部分は
フエース部程耐熱性は要求されないが、バルブガイド内
を摺動するため耐摩耗性が要求されまたカムあるいはロ
ッカーアームから圧縮力を受けるため剛性が必要とな
る。
Next, the valve straight portion will be described. This portion is not required to have heat resistance as much as the face portion, but it is required to have wear resistance because it slides in the valve guide, and rigidity is required to receive compressive force from the cam or rocker arm.

耐摩耗性を向上させるためストレート部に使用される
アルミニウム合金はSiを重量比で10〜35%の範囲で含む
ことが望ましい。10%未満では耐摩耗性が不十分であ
り、35%を越えてもその効果は少ない。
The aluminum alloy used for the straight portion in order to improve wear resistance preferably contains Si in a range of 10 to 35% by weight. If it is less than 10%, the abrasion resistance is insufficient, and if it exceeds 35%, its effect is small.

また剛性についてはヤング率で8000Kgf/mm2以上ある
ことが望ましい。8000Kgf/mm2より低いと材料にへたり
あるいはたわみを生じ正常な往復運動が出来なくなる。
Regarding the rigidity, it is desirable that the Young's modulus is 8000 Kgf / mm 2 or more. If it is lower than 8000 Kgf / mm 2 , the material will sag or bend, and normal reciprocating motion will not be possible.

以上フエース部及びストレート部に用いる合金の各々
について述べて来たが、上記要求特性を満たす場合には
両者同一材料を使用しても良いことは言うまでもない。
Although each of the alloys used for the face portion and the straight portion has been described above, needless to say, the same material may be used if both satisfy the above required characteristics.

[実施例] 以下に本発明の実施例について述べる。[Examples] Examples of the present invention will be described below.

実施例1 重量比でSi20%、Fe3%、Ni2%、Cu3%、Mg1%を含
み、残部がAl及び不可避不純物から成る組成の合金粉末
をエアアトマイズによる急冷凝固法で作成した。エアア
トマイズ時の粉末冷却速度は103℃/secであった。この
粉末にAl2O3粉末(平均粒径3.0μm)を2重量%混合
し、複合粉末とした。この複合粉末をCIP法にてφ150mm
の成形体を作成し、これを400℃で脱ガスした後350〜45
0℃の温度で押出し加工を行ないφ9mmの丸棒を作成し
た。これを所定の寸法に切断加工しストレート部の材料
とした。
Example 1 An alloy powder having a composition containing Si20%, Fe3%, Ni2%, Cu3% and Mg1% in a weight ratio and the balance being Al and inevitable impurities was prepared by a rapid solidification method by air atomization. The powder cooling rate during air atomization was 10 3 ° C / sec. 2% by weight of Al 2 O 3 powder (average particle size 3.0 μm) was mixed with this powder to obtain a composite powder. This composite powder is φ150mm by CIP method
After making a molded body of and degassing this at 400 ℃, 350 ~ 45
Extrusion processing was carried out at a temperature of 0 ° C. to prepare a φ9 mm round bar. This was cut into a predetermined size and used as a material for the straight portion.

次に重量比でSi10%、Fe5%、Ni2%を含み残部がAlお
よび不可避不純物から成る組成の合金粉末を上記と同様
エアアトマイズ法で作成した。
Next, an alloy powder having a composition containing Si 10%, Fe 5%, and Ni 2% by weight and the balance being Al and inevitable impurities was prepared by the air atomization method as in the above.

この粉末にW粉末(平均粒径5.2μm)、WC粉末(平
均粒径3.1μm)、Al2O3粉末(平均粒径3.0μm)、SiC
粉末(平均粒径2.5μm)を混合添加した4種類の複合
粉末を作成した。各々の複合粉末の組成は以下であっ
た。
W powder (average particle size 5.2 μm), WC powder (average particle size 3.1 μm), Al 2 O 3 powder (average particle size 3.0 μm), SiC
Four types of composite powders were prepared by mixing and adding powders (average particle size 2.5 μm). The composition of each composite powder was as follows.

この混合粉末をCIP法にてφ150mmの成形体を作成しこ
れを400℃で脱ガスした後350〜450℃の温度でφ30mmの
丸棒に押出し加工した。この丸棒から、切削加工にて、
フエース部の形状に加工した。このフエース部素材と上
記ストレート部素材を摩擦圧接にて接合した。接合した
バルブ素材を切削および研摩加工にて最終仕上げを行い
所定寸法形状のバルブを作成した。
A compact having a diameter of 150 mm was prepared from this mixed powder by the CIP method, degassed at 400 ° C., and then extruded at a temperature of 350 to 450 ° C. into a round rod having a diameter of 30 mm. From this round bar, by cutting,
It was processed into the shape of the face part. The material for the face portion and the material for the straight portion were joined by friction welding. The joined valve materials were subjected to final finishing by cutting and polishing to make a valve having a predetermined size and shape.

尚、この時のストレート部合金のヤング率は9800Kgf/
mm2であった。また、フエース部合金1〜4のヤング率
および300℃における引張強さは以下であった。
The Young's modulus of the straight part alloy at this time is 9800 Kgf /
It was mm 2 . The Young's modulus and tensile strength at 300 ° C. of the face alloys 1 to 4 were as follows.

実施例2 重量比でSiを10%Feを2%含み残部がAl及び不可避不
純物から成る合金粉末を実施例1と同様のエアアトマイ
ズ法で作成した。
Example 2 An alloy powder was prepared by the same air atomization method as in Example 1 with a weight ratio of 10% of Si and 2% of Fe and the balance of Al and inevitable impurities.

この粉末に、重量比で2%のCを添加し、アトライタ
ーにてメカニカルアロイング処理を行いAl−Si−C系の
合金粉末を作成した。
To the powder, 2% by weight of C was added, and mechanical alloying treatment was performed with an attritor to prepare an Al-Si-C based alloy powder.

これをCIP法にてφ150mmの成形体を作成し450℃で脱
ガスした後350〜500℃の温度で押出しを行いφ30mmの丸
棒を作成した。
A φ150 mm molded body was formed from this by the CIP method, degassed at 450 ° C., and then extruded at a temperature of 350 to 500 ° C. to form a φ30 mm round bar.

この丸棒を所定寸法に切断加工した後400℃〜500℃の
温度で鋳造を行いフエース部素材を作成した。
After cutting this round bar to a predetermined size, it was cast at a temperature of 400 ° C to 500 ° C to prepare a face material.

ストレート部の材料は実施例1と同じ材料を用い、フ
エース部素材と摩擦圧接に接合した。
The same material as in Example 1 was used as the material for the straight portion, and the material for the face portion was joined by friction welding.

このバルブ素材を切削及び研摩にて仕上げ加工を行な
い所定寸法のバルブを作成した。
This valve material was finished by cutting and polishing to prepare a valve having a predetermined size.

この時のフエース部合金のヤング率は9200Kgf/mm2、3
00℃における引張強さは27Kgf/mm2であった。
At this time, the Young's modulus of the face part alloy is 9200 Kgf / mm 2 , 3
The tensile strength at 00 ° C was 27 Kgf / mm 2 .

実施例3 実施例1,2のバルブをフエース部のみ硬質アルマイト
処理を行なった。
Example 3 The valves of Examples 1 and 2 were hard anodized only at the face portion.

[発明の効果] 本発明により、例えば上記実施例に於いては従来のバ
ルブに比べて約60%の重量軽減を達成することができ
た。この大幅な重量軽減により慣性重量の大巾な低減が
可能となり、内燃機関の高速回転化、高効率化が可能と
なる。
[Effect of the Invention] According to the present invention, for example, in the above-described embodiment, it is possible to achieve a weight reduction of about 60% as compared with the conventional valve. Due to this significant weight reduction, the inertial weight can be greatly reduced, and the internal combustion engine can be rotated at high speed and efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のバルブ構成図を例示している。 (1)……フエース部、(2)……ストレート部、
(3)……接合部。
FIG. 1 illustrates a valve configuration diagram of the present invention. (1) …… Face part, (2) …… Straight part,
(3) …… Joint part.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関用バルブにおいて、バルブシート
と接するバルブ頭部ならびにバルブガイド内を摺動する
バルブ軸部が、いずれもアルミニウム71〜86重量%、C,
W,WC,SiC,Al2O3の内の1種又は2種以上を2〜10重量
%、残部がSi,Fe,Niからなる粉末冶金法で製造されたア
ルミニウム合金の一体物からなることを特徴とする内燃
機関用バルブ。
1. In a valve for an internal combustion engine, a valve head portion in contact with a valve seat and a valve shaft portion sliding in a valve guide are made of aluminum 71 to 86% by weight, C,
2 to 10% by weight of one or more of W, WC, SiC, and Al 2 O 3 and the balance being an integral body of an aluminum alloy manufactured by powder metallurgy consisting of Si, Fe and Ni A valve for an internal combustion engine characterized by:
JP61157629A 1986-07-03 1986-07-03 Valve for internal combustion engine Expired - Lifetime JP2539794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157629A JP2539794B2 (en) 1986-07-03 1986-07-03 Valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157629A JP2539794B2 (en) 1986-07-03 1986-07-03 Valve for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6312810A JPS6312810A (en) 1988-01-20
JP2539794B2 true JP2539794B2 (en) 1996-10-02

Family

ID=15653899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157629A Expired - Lifetime JP2539794B2 (en) 1986-07-03 1986-07-03 Valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2539794B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1133942A (en) * 1978-09-18 1982-10-19 Arthur L. Baron Bis(4-hydroxyphenyl sulfonyl)benzenes
JPS6184347A (en) * 1984-09-25 1986-04-28 Honda Motor Co Ltd Hollow valve for internal-combustion engine

Also Published As

Publication number Publication date
JPS6312810A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
JP3191665B2 (en) Metal sintered body composite material and method for producing the same
EP0809050B1 (en) Method of making a piston for an internal combustion engine
JP3304021B2 (en) Copper alloy with excellent high-temperature wear resistance
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JP3705676B2 (en) Manufacturing method of piston for internal combustion engine
JP2539794B2 (en) Valve for internal combustion engine
JPS6338541B2 (en)
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
JPH10288085A (en) Piston for internal combustion engine
EP0749365A1 (en) A method of manufacturing a nozzle for a fuel valve, and a nozzle
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
US6202618B1 (en) Piston with tailored mechanical properties
JP2003096531A (en) Piston for internal combustion engine
JP2001200327A (en) High capacity aluminum alloy for piston and method for producing piston
JPH10219378A (en) Stock for forged piston
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JPH06323193A (en) Piston for diesel engine
JP3149066B2 (en) Piston for internal combustion engine
JPS5974265A (en) Heat and wear resistant sintered alloy
JP3763605B2 (en) Sintered alloy material for valve seats
JPH0121163Y2 (en)
Koike et al. Development of SiC-composite-PM aluminum alloy piston
JP2965156B2 (en) Method of forming sintered layer
JPH11335766A (en) Aluminum alloy for forging, and its production
JPH0118984B2 (en)