JP2539691B2 - Multi-branch control method for gas-liquid mixed phase fluid - Google Patents

Multi-branch control method for gas-liquid mixed phase fluid

Info

Publication number
JP2539691B2
JP2539691B2 JP2040633A JP4063390A JP2539691B2 JP 2539691 B2 JP2539691 B2 JP 2539691B2 JP 2040633 A JP2040633 A JP 2040633A JP 4063390 A JP4063390 A JP 4063390A JP 2539691 B2 JP2539691 B2 JP 2539691B2
Authority
JP
Japan
Prior art keywords
branch
flow path
control
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2040633A
Other languages
Japanese (ja)
Other versions
JPH03243694A (en
Inventor
光義 小野
保 鬼崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2040633A priority Critical patent/JP2539691B2/en
Publication of JPH03243694A publication Critical patent/JPH03243694A/en
Application granted granted Critical
Publication of JP2539691B2 publication Critical patent/JP2539691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石油精製工場等に設置されている水素化脱
硫装置、水素化精製装置等で使用される気液混相流体の
加熱炉における気液混相流体の多分岐制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a gas in a heating furnace for a gas-liquid mixed phase fluid used in a hydrodesulfurization apparatus, a hydrorefining apparatus, etc. installed in an oil refining plant or the like. The present invention relates to a multi-branch control method for a liquid multiphase fluid.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

石油精製工場等においては、水素化脱硫装置、水素化
精製装置等のように炭化水素を主成分とする石油溜分を
水素等で処理する装置が多数設置されている。
In petroleum refining factories and the like, a large number of devices such as hydrodesulfurization devices and hydrorefining devices that process petroleum distillates containing hydrocarbons as main components with hydrogen are installed.

このような装置においては、通常、反応塔の前に加熱
炉を設置し、炭化水素を主成分とする石油溜分と、水素
等の気体とから成る気液混相流体を加熱炉において反応
温度まで昇温している。
In such a device, usually, a heating furnace is installed in front of the reaction tower, and a gas-liquid mixed phase fluid consisting of a petroleum fraction containing hydrocarbon as a main component and a gas such as hydrogen is heated to the reaction temperature in the heating furnace. The temperature is rising.

加熱炉で流体を加熱する場合、加熱管の大きさの制限
等のために、流体の流路を分岐して加熱炉内部では複数
の流路とする場合があるが、分岐流路数が三以上の場合
は該流路を構成する加熱配管の破損等につながるおそれ
のある偏流が発生する危険性がある。
When heating a fluid in a heating furnace, the flow path of the fluid may be branched into multiple channels inside the heating furnace due to restrictions such as the size of the heating pipe, but the number of branch channels is three. In the above case, there is a risk that a drift may occur which may lead to damage of the heating pipe forming the flow path.

特に気液混相流体の場合には、物性の極端に異なる気
体と液体とが混在する流体を制御しなくてはならないた
め、その制御方法に難がある。
Particularly, in the case of a gas-liquid mixed phase fluid, it is necessary to control a fluid in which a gas and a liquid having extremely different physical properties are mixed, so that the control method is difficult.

このため、気液混相流体を多分岐制御する必要がある
場合は、通常、気体と液体とをそれぞれ別々に分岐制御
した後、混合し加熱する方法が採用される。
For this reason, when it is necessary to perform multi-branch control of the gas-liquid mixed phase fluid, a method of branching and controlling the gas and the liquid separately, and then mixing and heating is usually adopted.

しかしながら、この方法では、分岐された気体および
液体を別々に制御する必要があり、制御方法が複雑とな
りがちである。
However, in this method, it is necessary to control the branched gas and the liquid separately, and the control method tends to be complicated.

これに対して、気液混相流体を一流路から二流路に分
岐する方法も、従来知られている。この方法では、気液
混相流体は比較的均等に流れやすく、偏流の危険は少な
い。
On the other hand, a method of branching a gas-liquid mixed-phase fluid from one flow path to two flow paths is also conventionally known. In this method, the gas-liquid multiphase fluid tends to flow relatively uniformly, and the risk of nonuniform flow is small.

従って、気液混相流体を分岐する必要がある場合に
は、一流路を二流路に分岐した後、分岐したそれぞれの
流路をさらにさらに二流路に分岐するいわゆるトーナメ
ント方式が用いられる場合が多い。
Therefore, when it is necessary to branch the gas-liquid mixed phase fluid, a so-called tournament system is often used in which one flow path is branched into two flow paths and each of the branched flow paths is further branched into two flow paths.

しかしながら、この方法においても、偏流の防止には
十分でなく、一流路から二流路に分岐した場所からそれ
ぞれの流路をさらに二流路に分岐する場所まで一定以上
の距離を設けておく必要がある。またトーナメント方式
では、流路数が二,四,八等、特定の流路数にしか限定
できないという問題がある。
However, even in this method, it is not sufficient to prevent uneven flow, and it is necessary to provide a certain distance or more from the location where one flow path is branched into two flow paths to the location where each flow path is further branched into two flow paths. . Further, the tournament method has a problem that the number of flow paths can be limited to a specific number of flow paths such as two, four, and eight.

本発明は、上記問題点を解決するために提案されたも
のであって、一流路の気液混相流体を少なくとも三流路
に分岐させ、加熱炉で加熱した後、一流路に統合する気
液混相流体の多分岐制御方法において、比較的簡易な手
段により、分岐流路に生ずる偏流を防止し或いは該偏流
が生じた場合であっても速やかに該偏流を解消し、加熱
炉内における分岐流路を構成する加熱管の破壊を防止す
ると共に、設置面積が広大とならない気液混相流体の多
分岐制御方法を提供することを目的とする。
The present invention has been proposed in order to solve the above problems, in which a gas-liquid mixed phase fluid of one flow path is branched into at least three flow paths, heated in a heating furnace, and then integrated into one flow path. In the multi-branch control method for fluids, a relatively simple means is used to prevent uneven flow in the branch flow passage or to quickly eliminate the uneven flow even when the uneven flow occurs, and to provide the branch flow passage in the heating furnace. It is an object of the present invention to provide a multi-branching control method for a gas-liquid mixed phase fluid, which prevents the heating tube constituting the above from being destroyed and does not occupy a large installation area.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、前記の問題点を解決すべく種々検討を
重ねた結果、偏流の発生は液体供給量、流路の分岐前と
統合後とにおける圧力差に大きく依存し、かつ偏流発生
は各分岐流路の加熱炉出口温度偏差の監視により検知で
きることに着目し、特定の制御方法の組合せにより気液
混相流体を多分岐制御できることを見出し、本発明を完
成した。
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention have found that the occurrence of drift occurs largely depending on the liquid supply amount, the pressure difference between before and after branching of the flow path, and the occurrence of drift occurs. Focusing on the fact that it can be detected by monitoring the temperature deviation of the heating furnace outlet of each branch flow channel, we have found that multi-branch control of a gas-liquid mixed phase fluid can be performed by a combination of specific control methods, and have completed the present invention.

すなわち、本発明は、一流路の気液混相流体を少なく
とも三流路に分岐させ、加熱炉で加熱した後、一流路に
統合する、石油の水素化処理に使用される気液混相流体
の多分岐制御方法において、 前記液体の供給量、前記流路の分岐前と統合後との差
圧及び加熱炉出口における各分岐流路温度をそれぞれ測
定し、 前記差圧が設定範囲内にあるときは、前記液体供給量
に基づき各分岐流路の前記加熱炉入口側にそれぞれ設置
した各分岐流路制御弁を一括して制御し、 前記差圧が設定範囲外に変動したときは、該差圧に基
づき前記各分岐流路制御弁を一括して制御し、 前記各分岐流路の何れか一の流路と該一の流路を除く
他の流路との温度偏差が設定値を超えるときは、前記各
分岐流路制御弁をそれぞれ単独に制御することを特徴と
し(第1発明)、 また、分岐流路制御弁を液体供給量または流路差圧に
基づき一括して制御する場合或いは単独に制御する場合
において、各分岐流路制御弁に与える操作量に、各分岐
流路の加熱炉出口温度に基づいて決定される操作量を重
みとして加えて前記各分岐流路制御弁を制御することを
特徴とする(第2発明)。
That is, the present invention is a multi-branch of a gas-liquid multi-phase fluid used for hydrotreating petroleum, in which a gas-liquid multi-phase fluid of one flow path is branched into at least three flow paths, heated in a heating furnace, and then integrated into one flow path. In the control method, the supply amount of the liquid, the differential pressure between before and after the branch of the flow channel and each branch flow channel temperature at the heating furnace outlet are respectively measured, and when the differential pressure is within a set range, Based on the liquid supply amount, collectively control each branch flow path control valve installed on the heating furnace inlet side of each branch flow path, and when the differential pressure fluctuates outside the set range, Based on a collective control of the respective branch flow path control valve based on, when the temperature deviation between any one flow path of each branch flow path and the other flow path other than the one flow path exceeds a set value , Each of the branch passage control valves is independently controlled (first invention ), When the branch flow passage control valves are collectively controlled based on the liquid supply amount or the flow passage differential pressure or individually controlled, the operation amount given to each branch flow passage control valve is adjusted to the operation amount given to each branch flow passage control valve. The operation amount determined on the basis of the heating furnace outlet temperature is added as a weight to control each of the branch flow passage control valves (second invention).

〔作用〕[Action]

本第1発明においては、一流路の気液混相流体は、少
なくとも三流路に分岐され、各分岐流路の前記加熱炉入
口側にそれぞれ設置された分岐流路制御弁を経て、加熱
炉で加熱され、この後、分岐流路は一流路に統合され
る。
In the first aspect of the present invention, the gas-liquid mixed-phase fluid in one flow path is branched into at least three flow paths, and is heated in the heating furnace via the branch flow path control valves respectively installed on the heating furnace inlet side of each branch flow path. After that, the branch channels are integrated into one channel.

一方、前記気液混相流体を形成する液体の供給量、前
記流路の分岐前と統合後との差圧(流路差圧)及び加熱
炉出口における各分岐流路温度がそれぞれ測定されてい
る。
On the other hand, the supply amount of the liquid that forms the gas-liquid mixed phase fluid, the pressure difference between the flow path before branching and after integration (flow path differential pressure), and the temperature of each branch flow path at the heating furnace outlet are measured. .

そして、上記流路差圧が設定範囲にある場合には、各
分岐流路制御弁は、液体供給量に基づき一括して制御さ
れる(以下この制御を「液体供給量制御」と言う)。
Then, when the flow path differential pressure is within the set range, each branch flow path control valve is collectively controlled based on the liquid supply amount (hereinafter, this control is referred to as “liquid supply amount control”).

この液体供給量制御を行う調節計は、液体供給量の関
数を目標値として入力し、各分岐流路制御弁に同一操作
量を出力する。これにより、各制御弁は一括して制御さ
れ、液体供給量の変動に基づく偏流が防止される。
The controller that controls the liquid supply amount inputs a function of the liquid supply amount as a target value and outputs the same operation amount to each branch flow passage control valve. As a result, the control valves are collectively controlled, and drift due to fluctuations in the liquid supply amount is prevented.

ここで、上記液体供給量の関数は液体及び気体の物
性、設備、運転条件等を考慮し、たとえばシミュレーシ
ョンを行うことにより決定されるが、通常は、液体供給
量を変数とする一次関数で表される。
Here, the function of the liquid supply amount is determined, for example, by performing a simulation in consideration of the physical properties of the liquid and gas, equipment, operating conditions, etc., but normally, it is represented by a linear function with the liquid supply amount as a variable. To be done.

ところで、流路の分岐前と統合後との流路差圧が小さ
くなると、偏流が生じ易くなり、大きすぎるとプロセス
に影響を与える。
By the way, if the pressure difference between the flow path before branching and the flow path after integration is small, uneven flow is likely to occur, and if it is too large, it affects the process.

そこで、流路差圧が設定範囲外に変動したときは、各
分岐流路制御弁を、流路差圧に基づき一括して制御する
(以下、この制御を「流路差圧制御」と言う)。
Therefore, when the flow path differential pressure fluctuates outside the set range, each branch flow path control valve is collectively controlled based on the flow path differential pressure (hereinafter, this control is referred to as "flow path differential pressure control"). ).

すなわち、流路差圧が所望の設定範囲内から設定範囲
外に変動した場合には、各分岐流路制御弁の制御は、液
体供給量に基づく制御から流路差圧に基づく制御に切り
替えられる。この結果、流路差圧が予め設定しておいた
設定値となるよう、各分岐流路制御弁が制御され、流路
差圧に起因する偏流の発生を防止することができ、偏流
が生じても該偏流は速やかに解消される。
That is, when the flow path differential pressure changes from within the desired setting range to outside the setting range, the control of each branch flow path control valve is switched from the control based on the liquid supply amount to the control based on the flow path differential pressure. . As a result, each branch flow path control valve is controlled so that the flow path differential pressure becomes a preset value, and it is possible to prevent the occurrence of the drift due to the flow path differential pressure, which causes the drift. However, the drift is eliminated promptly.

なお、上記流路差圧の設定範囲は、液体及び気体の物
性、設備、運転条件等を考慮し、たとえばシミュレーシ
ョンを行うことにより決定される。
The setting range of the flow path differential pressure is determined, for example, by performing a simulation in consideration of the physical properties of liquid and gas, equipment, operating conditions, and the like.

更に、偏流が発生した場合、各分岐流路の加熱炉出口
温度の温度差が大きくなり、温度偏差が増加する。
Furthermore, when a nonuniform flow occurs, the temperature difference between the heating furnace outlet temperatures of the respective branch flow paths becomes large, and the temperature deviation increases.

したがって、該温度偏差を監視し該温度偏差が設定値
を超えるときには、各分岐流路制御弁をそれぞれ単独に
制御する(以下、この制御を「単独制御」と言う)。
Therefore, the temperature deviation is monitored, and when the temperature deviation exceeds the set value, each branch flow path control valve is independently controlled (hereinafter, this control is referred to as "independent control").

この場合、一の流路の加熱炉出口温度と該流路を除く
他の流路との温度が、各分岐流路についてそれぞれ比較
されている。
In this case, the heating furnace outlet temperature of one flow passage and the temperatures of the other flow passages other than the flow passage are compared for each branch flow passage.

そして、各分岐流路制御弁の制御を流体供給量或いは
流路差圧に基づいて一括して制御している場合におい
て、各流路についての上記比較結果(すなわち、温度偏
差)の何れかが設定値を超えた場合には、各分岐流路制
御弁の制御は、流体供給量、流路差圧に基づく一括した
制御から、上記各分岐流路制御弁単独の制御に切り替え
られる。
When the control of each branch flow passage control valve is collectively controlled based on the fluid supply amount or the flow passage differential pressure, any one of the above comparison results (that is, temperature deviation) for each flow passage is When the set value is exceeded, the control of each branch flow path control valve is switched from the collective control based on the fluid supply amount and the flow path differential pressure to the control of each branch flow path control valve alone.

ここで、上記各温度偏差は、一般には、分岐流路のう
ち、一の流路の加熱炉出口温度と、該一の流路を除く他
の流路の加熱炉出口温度平均値との差でそれぞれ表され
る。また、温度偏差の上記設定値は、液体及び気体の物
性、設備、運転条件等を考慮し、たとえばシミュレーシ
ョンを行うことにより決定される。
Here, each of the temperature deviations is generally the difference between the heating furnace outlet temperature of one of the branch passages and the heating furnace outlet temperature average value of the other passages other than the one passage. Represented by The set value of the temperature deviation is determined by, for example, performing a simulation in consideration of the physical properties of liquid and gas, equipment, operating conditions, and the like.

この結果、偏流が発生しても各分岐流路制御弁を単独
に制御することにより該偏流を速やかに解消することが
できる。
As a result, even if uneven flow occurs, it is possible to quickly eliminate the uneven flow by controlling each branch flow path control valve independently.

したがって、第1発明においては、液体供給量、或い
は流路の分岐前と統合後における圧力差の各要素の変化
により、偏流が生じ易い方向に推移しても、偏流の原因
となる要素(液体供給量変動、流路差圧)に応じて制御
し、偏流が発生した場合は即座に単独制御に切り替えら
れるので、該偏流の防止が実現されると共に、仮に偏流
が生じても速やかに解消される。
Therefore, according to the first aspect of the invention, even if the flow of the liquid is changed or the pressure difference before and after the branching of the flow path is changed, each of the factors causing the non-uniform flow (liquid The flow rate is controlled according to the fluctuation of the supply amount and the differential pressure of the flow path, and when the drift occurs, the control is immediately switched to the independent control, so that the prevention of the drift can be realized, and even if the drift occurs, it can be promptly resolved. It

このように、通常の多分岐制御においては、前記液体
供給量制御及び流路差圧制御において、各分岐流路制御
弁を一括して制御することにより、制御系全体としては
バランスの良好な制御が行われ、また温度偏差の監視お
よび単独制御への切り替えにより偏流が発生した場合に
早期発見し、該偏流を速やかに解消することができる。
As described above, in the normal multi-branch control, in the liquid supply amount control and the flow channel differential pressure control, by collectively controlling each branch flow channel control valve, a control with a good balance as a whole control system. When a deviation occurs due to monitoring of the temperature deviation and switching to the independent control, the deviation can be detected early and the deviation can be promptly eliminated.

ところで、例えば、加熱炉でのバーナーの燃焼状況、
その他設備、運転条件等によっては、上記液体供給量制
御や流路差圧制御により、各分岐流路制御弁を一括して
制御している場合に分岐流路の加熱炉出口温度の温度差
が発生することもあり得る。
By the way, for example, the burning situation of the burner in the heating furnace,
Depending on other equipment, operating conditions, etc., the temperature difference of the heating furnace outlet temperature of the branch flow path may be different when the branch flow path control valves are collectively controlled by the liquid supply amount control and the flow path differential pressure control. It can occur.

そこで、本第2発明においては、分岐流路制御弁を液
体供給量または流路差圧に基づき一括して制御している
場合或いは単独に制御している場合において、各分岐流
路の加熱炉出口温度をも加味した制御を行う。
Therefore, in the second aspect of the present invention, the heating furnace of each branch flow path is controlled when the branch flow path control valves are collectively controlled based on the liquid supply amount or the flow path differential pressure, or individually controlled. Control is performed with the outlet temperature taken into consideration.

すなわち、第2発明においては、第1発明の液体供給
量制御や流路差圧制御において、それぞれの操作量に、
各分岐流路の加熱炉出口温度に基づき決定される操作量
(バイアス値)を重みとして加えている。
That is, in the second invention, in the liquid supply amount control and the flow path differential pressure control of the first invention,
The operation amount (bias value) determined based on the heating furnace outlet temperature of each branch flow path is added as a weight.

したがって、設備、運転条件等に起因して各分岐流路
の加熱炉出口温度のバラツキが発生するような場合、各
分岐流路温度と各分岐流路温度の平均値等とから決定さ
れる各バイアス値が、前記液体供給量制御や流路差圧制
御の際における操作量にそれぞれ加えられることにな
る。
Therefore, when variations occur in the heating furnace outlet temperature of each branch channel due to equipment, operating conditions, etc., each branch channel temperature and the average value of each branch channel temperature, etc. The bias value is added to the manipulated variable during the liquid supply amount control and the flow path differential pressure control.

なお、上記各バイアス値は、各流路出口温度が各分岐
流路の加熱炉出口温度の平均値等に収束するような操作
量の関数として表され、この関数は、液体及び気体の物
性、設備、運転条件等を考慮し、たとえばシミュレーシ
ョンを行うことにより決定される。
Note that each of the bias values is represented as a function of the manipulated variable such that each flow path outlet temperature converges to the average value of the heating furnace exit temperature of each branch flow path, and the function is a physical property of liquid and gas, It is determined, for example, by performing a simulation in consideration of equipment, operating conditions, and the like.

また、前記バイアス値を重みとして加える制御は、前
記単独制御に切り替えられた後も継続して行うこともで
きる。この場合にも各分岐流路制御弁は、各分岐流路の
加熱炉出口温度の平均値に収束するように制御される。
すなわち、偏流の発生等により単独制御に切り替えられ
た場合、各制御弁は、マニュアル操作により偏流を解消
してもよいし、前記バイアス値を重みとして加える制御
で自動的に解消することもできる。
Further, the control of adding the bias value as a weight can be continuously performed even after switching to the independent control. Also in this case, each branch flow passage control valve is controlled so as to converge to the average value of the heating furnace outlet temperature of each branch flow passage.
That is, when the control is switched to the independent control due to occurrence of drift, etc., each control valve may cancel the drift by manual operation, or may automatically cancel the bias by controlling the bias value as a weight.

このように、第2発明においては、第1発明における
液体供給量制御や流路差圧制御による一括した制御を行
っている場合或いは単独に制御している場合に、各分岐
流路間で加熱炉出口温度にバラツキがあるときは、各分
岐流路制御弁に与えられる操作量に、加熱炉出口温度に
基づく個別な操作量が加味される。
As described above, in the second invention, when the liquid supply amount control and the flow path differential pressure control in the first invention are collectively controlled or independently controlled, the heating is performed between the branch flow paths. When there are variations in the furnace outlet temperature, the individual manipulated variables based on the heating furnace outlet temperature are added to the manipulated variables given to each branch passage control valve.

したがって、たとえば、分岐流路数が多数である場合
等において、液体供給量変動、流路差圧により偏流が複
合的に生じ易い場合であっても、該偏流は速やかに解消
する方向に推移して信頼性の高い偏流の防止が達成さ
れ、或いは該偏流が生じたとしても、偏流の解消が速や
かに行われる。
Therefore, for example, when there are a large number of branch channels, even if a drift is likely to occur in combination due to fluctuations in the liquid supply amount and the flow path differential pressure, the drift tends to disappear rapidly. As a result, highly reliable prevention of nonuniform flow is achieved, or even if the nonuniform flow occurs, the nonuniform flow is promptly eliminated.

〔実施例〕〔Example〕

以下実施例を挙げて本発明を更に詳細に説明する。こ
れらは単に例示の目的で掲げるものであって、本発明は
これら実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. These are listed for illustrative purposes only and the invention is not limited to these examples.

第1図に灯油水添脱硫装置における本発明のフロー系
統図を説明する。
FIG. 1 illustrates a flow system diagram of the present invention in a kerosene hydrodesulfurization apparatus.

原料ポンプ1により昇圧された未脱硫灯油は、流量制
御弁2で流量制御され、熱交換器3で昇温された後、コ
ンプレッサ4,4′により昇圧された水素を主成分とする
気体と混合される。
The flow rate of the undesulfurized kerosene boosted by the raw material pump 1 is controlled by the flow rate control valve 2, the temperature is raised by the heat exchanger 3, and then the gas is boosted by the compressors 4 and 4 ′ and mixed with a gas containing hydrogen as a main component. To be done.

この混合された気液混相流体は、さらに熱交換器5に
より昇温された後、四流路l1,l2,l3,l4に分岐され、そ
れぞれ制御弁6,7,8,9を経て加熱炉11で昇温される。
The mixed gas-liquid mixed phase fluid is further heated by the heat exchanger 5 and then branched into four flow paths l 1 , l 2 , l 3 , l 4 to control valves 6, 7, 8, 9 respectively. Then, the temperature is raised in the heating furnace 11.

加熱炉11で昇温された気液混相流体は、一流路に統合
された後、反応塔12で水添脱硫反応され、熱交換器5を
経て高温分離槽13へ送られる。
The gas-liquid mixed phase fluid whose temperature has been raised in the heating furnace 11 is integrated into one flow path, and then hydrodesulfurization reaction is carried out in the reaction tower 12, and is sent to the high temperature separation tank 13 via the heat exchanger 5.

以後、一般的な灯油水添脱硫装置のフローにより処理
される。
After that, it is processed by the flow of a general kerosene hydrodesulfurization device.

すなわち、高温分離槽13で分離された水素等の気体
は、冷却器14、コンデンサ15及び低温分離槽16を経て前
記コンプレッサ4に送られ、また、高温分離槽13で分離
された脱硫灯油は弁17を経て次工程へ送られる。
That is, the gas such as hydrogen separated in the high temperature separation tank 13 is sent to the compressor 4 through the cooler 14, the condenser 15 and the low temperature separation tank 16, and the desulfurization kerosene separated in the high temperature separation tank 13 is a valve. It is sent to the next process via 17.

第2図に第1図に示す灯油水添脱硫装置のフローにお
ける本発明の制御系統図を示す。
FIG. 2 shows a control system diagram of the present invention in the flow of the kerosene hydrodesulfurization apparatus shown in FIG.

オリフィス流量計21の液体供給量を示す信号に基づ
き、流量制御弁2により設定流量に制御された未脱硫灯
油は、気液混合部22において水素を主成分とする気体と
混合され、気液混相流体となる。この気液混相流体は、
圧力検知器23を経て、四流路l1〜l4に分岐され、各分岐
流路制御弁すなわち各分岐流路に設置された制御弁6,7,
8,9を経て加熱炉11で加熱される。
The undesulfurized kerosene whose flow rate is controlled by the flow rate control valve 2 based on the signal indicating the liquid supply amount of the orifice flow meter 21 is mixed with a gas containing hydrogen as a main component in the gas-liquid mixing section 22 to form a gas-liquid mixed phase. Become a fluid. This gas-liquid multiphase fluid is
Via the pressure detector 23, branched into four flow paths l 1 to l 4 , each branch flow path control valve, that is, a control valve 6, 7 installed in each branch flow path.
It is heated in the heating furnace 11 through 8 and 9.

加熱炉11を出た気液混相流体は、それぞれ温度検知器
25,26,27,28を経て一流路に統合された後、圧力検知器2
4を経て次工程へ送られる。
The gas-liquid mixed-phase fluids exiting the heating furnace 11 are temperature detectors, respectively.
After being integrated into one flow path via 25, 26, 27, 28, pressure detector 2
It is sent to the next process via 4.

また、上記の圧力検知器23,24で検知された圧力は圧
力指示計29,30で、また上記の温度検知器25,26,27,28で
検知された温度は温度指示計31,32,33,34でそれぞれ表
示される。
Further, the pressure detected by the pressure detector 23,24 is a pressure indicator 29,30, and the temperature detected by the temperature detector 25,26,27,28 is a temperature indicator 31,32, Displayed at 33 and 34 respectively.

制御弁6〜9は、それぞれ単独に開度を制御すること
も可能であるが、通常は上位調節計37により同一開度に
制御される。
The control valves 6 to 9 can individually control the opening degree, but are normally controlled to the same opening degree by the host controller 37.

すなわち、上記のオリフィス流量計21の信号に基づく
流量制御弁調節計35からの液体供給量を示す出力信号
が、演算回路36に入力され、この演算結果に基づき上位
調節計37により、制御弁6〜9の開度が制御されること
により、液体供給量制御が行われる。
That is, an output signal indicating the liquid supply amount from the flow rate control valve controller 35 based on the signal from the orifice flow meter 21 is input to the arithmetic circuit 36, and based on this arithmetic result, the host controller 37 controls the control valve 6 The liquid supply amount control is performed by controlling the opening degrees of 9 to 9.

本実施例においては、演算回路36の演算は次の一次式
に基づき行った。
In this embodiment, the arithmetic operation of the arithmetic circuit 36 is performed based on the following linear expression.

開度(%)=A×灯油供給量(kl/H)+B A:原料、設備、運転条件等により設定する定数(例え
ば、A=0.151) B:原料、設備、運転条件等により設定する定数(例え
ば、B=28) ここで、上記定数A,Bは、例えば、シミュレーション
等による周知の方法で決定する。
Opening (%) = A x kerosene supply (kl / H) + B A: Constant set according to raw material, equipment, operating conditions, etc. (for example, A = 0.151) B: Constant set according to raw material, equipment, operating conditions, etc. (For example, B = 28) Here, the constants A and B are determined by a known method such as simulation.

一方、加熱炉11の入口圧piと出口圧poとの差(pi
po)が設定範囲外となった場合、自動的に制御切替器38
が作動し、前記演算回路36に基づく同一開度制御(液体
供給量制御)から、上記差圧(pi−po)に基づく同一開
度制御(流路差圧制御)に切り替わる。
On the other hand, the difference between the inlet pressure p i and the outlet pressure p o of the heating furnace 11 (p i
If p o ) is outside the setting range, the control switch 38
Is activated, and the same opening degree control (liquid supply amount control) based on the arithmetic circuit 36 is switched to the same opening degree control (flow path differential pressure control) based on the differential pressure (p i −p o ).

すなわち、加熱炉11の入口の圧力piを圧力検知器23に
より、また出口の圧力poを圧力検知器24によりそれぞれ
測定し、その差圧(pi−po)が一定範囲、例えば3〜5k
g/cm2の範囲から外れると制御切替器38が切り替わり、
差圧調節計39からの出力信号に基づき前記差圧(pi
po)が一定値、例えば3kg/cm2あるいは5kg/cm2になるよ
う上位調節計37により同一開度に調節する。
That is, the pressure p i at the inlet of the heating furnace 11 is measured by the pressure detector 23, and the pressure at the outlet p o is measured by the pressure detector 24, and the differential pressure (p i −p o ) is within a certain range, for example, 3 ~ 5k
When it goes out of the range of g / cm 2, the control switch 38 switches,
Based on the output signal from the differential pressure controller 39, the differential pressure (p i
The upper controller 37 adjusts the same opening so that p o ) becomes a constant value, for example, 3 kg / cm 2 or 5 kg / cm 2 .

上記のように、各制御弁6〜9の制御が、差圧(pi
po)に基づく同一開度制御すなわち流路差圧制御に切り
替わった場合は、自動的に警報が出され、運転員が確認
して、差圧制御に切り替わる差圧範囲の変更および差圧
制御の設定値の変更等、必要な措置を講ずることができ
る。
As described above, the control of each of the control valves 6 to 9 causes the differential pressure (p i
When the switch is switched to the same opening control based on p o ), that is, the flow path differential pressure control, an alarm is automatically issued, and the operator confirms and changes the differential pressure range to switch to differential pressure control and differential pressure control. It is possible to take necessary measures such as changing the setting value of.

偏流の発生または計器等の故障を早期に発見して是正
するために、分岐した各分岐流路l1〜l4の加熱炉11の出
口に温度検知器25,26,27,28を設置し、常時、各分岐流
路l1〜l4の内の一の分岐流路の加熱炉11の出口温度と該
一の分岐流路以外の分岐流路の加熱炉11の出口温度との
偏差をそれぞれ監視している。各温度偏差は、演算回路
45により演算され、その演算式は液体及び気体の物性、
設備、運転条件等により異なるが、通常は、例えば次の
演算式に基づき演算される。
Temperature detectors 25, 26, 27, 28 are installed at the outlets of the heating furnace 11 in each of the branched flow paths l 1 to l 4 in order to detect and correct the occurrence of uneven flow or malfunction of instruments etc. at an early stage. , Always, the deviation between the outlet temperature of the heating furnace 11 of one branch flow path among the branch flow paths l 1 to l 4 and the outlet temperature of the heating furnace 11 of the branch flow path other than the one branch flow path We are monitoring each. Each temperature deviation is calculated by the arithmetic circuit
It is calculated by 45, the calculation formula is the physical properties of liquid and gas,
Although it varies depending on equipment, operating conditions, etc., it is usually calculated based on the following calculation formula, for example.

dT1=T1−(T2+T3+T4)/3 dT2=T2−(T3+T4+T1)/3 dT3=T3−(T4+T1+T2)/3 dT4=T4−(T1+T2+T3)/3 T1,T2,T3,T4:各分岐流路l1〜l4の加熱炉11の出口温度。dT 1 = T 1 − (T 2 + T 3 + T 4 ) / 3 dT 2 = T 2 − (T 3 + T 4 + T 1 ) / 3 dT 3 = T 3 − (T 4 + T 1 + T 2 ) / 3 dT 4 = T 4 - (T 1 + T 2 + T 3) / 3 T 1, T 2, T 3, T 4: outlet temperature of the heating furnace 11 of the branch paths l 1 to l 4.

dT1,dT2,dT3,dT4:各分岐流路l1〜l4の加熱路11の出口温
度の各偏差dT。
dT 1, dT 2, dT 3 , dT 4: each deviation dT outlet temperature of the heating circuit 11 in the branch paths l 1 to l 4.

温度偏差dT1〜dT4の何れかが一定範囲、例えば±10℃
を超えると自動的に上位調節計37による同一開度制御
(液体供給量制御または流路差圧制御)は中止され、各
制御弁6〜9は単独の制御に切り替わる。
Any of the temperature deviations dT 1 to dT 4 is within a certain range, for example ± 10 ° C
When it exceeds, the same opening degree control (liquid supply amount control or flow path differential pressure control) by the host controller 37 is automatically stopped, and each control valve 6-9 is switched to a single control.

この場合に、各制御弁6〜9の開度は、各制御弁調節
計41,42,43,44でそれぞれ単独に制御される。
In this case, the opening degree of each control valve 6-9 is independently controlled by each control valve controller 41, 42, 43, 44.

ところで、上位調節計37による同一開度制御において
は、設備の構造上あるいはバーナーの燃焼状況等に起因
する各分岐流路l1〜l4の加熱炉11の出口温度T1〜T4のバ
ラツキが発生する可能性がある。
By the way, in the same degree of opening control by the host controller 37, variations in the outlet temperatures T 1 to T 4 of the heating furnace 11 of the respective branch flow paths l 1 to l 4 due to the structure of the equipment or the combustion state of the burner, etc. May occur.

そこで、第2発明においては、上記出口温度T1〜T4
バラツキを防止する目的で加熱炉出口温度の均一化制御
を取り入れる。
Therefore, in the second aspect of the invention, the uniformizing control of the outlet temperature of the heating furnace is incorporated for the purpose of preventing the variation of the outlet temperatures T 1 to T 4 .

すなわち、例えば、各分岐流路l1〜l4の加熱炉11の出
口温度T1〜T4の平均温度Tave((T1+T2+T3+T4)/4)
を設定値とし、第3図に示すように、各分岐流路l1〜l4
の出口温度T1〜T4をプロセス変数とする温度調節計46〜
49により制御弁調節計41〜44に次式に例示するバイアス
をそれぞれ加え、各制御弁6〜9の開度が微調整され
る。
That is, for example, the average temperature T ave outlet temperature T 1 through T 4 of the heating furnace 11 of the branch paths l 1 ~l 4 ((T 1 + T 2 + T 3 + T 4) / 4)
As a set value, and as shown in FIG. 3, each branch flow path l 1 to l 4
Temperature controller 46 with outlet temperatures T 1 to T 4 of
The biases exemplified in the following equations are applied to the control valve controllers 41 to 44 by 49, and the opening degrees of the control valves 6 to 9 are finely adjusted.

バイアス値=[温度調節計出力(%)−50]×0.1 上記温度調節計出力は、各温度調節計46,47,48,49の
弁開度100%となるような温度調節計の出力を基準とし
て百分率で表示したものである。
Bias value = [Temperature controller output (%)-50] x 0.1 The above temperature controller output is the output of the temperature controller that makes the valve opening of each temperature controller 46, 47, 48, 49 100%. It is expressed as a percentage as a standard.

また、加熱炉において分散流路を構成する各加熱管の
管表面の温度を検知し、各加熱管と他の加熱管との温度
偏差(すなわち、各分岐流路間の管表面温度偏差)を監
視することにより、この温度偏差が設定値を超えると警
報を発して、異常を知らせる機能も合わせて設置した。
Also, in the heating furnace, the temperature of the tube surface of each heating tube that constitutes the dispersion channel is detected, and the temperature deviation between each heating tube and other heating tubes (that is, the tube surface temperature deviation between each branch channel) is calculated. By monitoring, if the temperature deviation exceeds the set value, an alarm is issued and a function to notify the abnormality is also installed.

前記の方法により、灯油について、第2図の構成のユ
ニオン式水添脱硫装置(設計処理量50,000バーレル/
日)を用いて処理量13,000バーレル/日〜50,000バーレ
ル/日までの範囲でテスト運転を実施した。
According to the above method, for kerosene, a union type hydrodesulfurization system (design throughput of 50,000 barrels /
The test operation was carried out in the range of the treated amount of 13,000 barrel / day to 50,000 barrel / day.

このテスト運転では、演算回路36の演算における前述
した一次式の係数をA=0.151、B=28とした。また、
このテスト運転では、前述した加熱炉11の入口圧力Pi
出口圧力Poとの差圧(Pi−Po)が、3kg/cm2となるよう
に上位調節計37による同一開度制御を行い、各分岐流路
l1〜l4の加熱炉11の出口温度の各偏差dT1〜dT4が±10℃
を超えたときに、前述の液体供給量制御または流路差圧
制御を中止し、各制御弁6〜9の単独制御を行った。
In this test operation, the coefficients of the above-described linear equation in the calculation of the calculation circuit 36 were set to A = 0.151 and B = 28. Also,
In this test operation, the same opening control by the host controller 37 was performed so that the pressure difference (P i −P o ) between the inlet pressure P i and the outlet pressure P o of the heating furnace 11 was 3 kg / cm 2. Do each branch flow path
Deviations of the outlet temperatures of the heating furnace 11 of l 1 to l 4 dT 1 to dT 4 are ± 10 ° C
When it exceeded, the liquid supply amount control or the flow path differential pressure control described above was stopped, and the individual control valves 6 to 9 were individually controlled.

この結果、1流路を4流路l1〜l4に分岐した管路構成
であるにもかかわらず、偏流の発生を防止することがで
きた。
As a result, it was possible to prevent the occurrence of non-uniform flow even though the flow path had a structure in which one flow path was branched into four flow paths l 1 to l 4 .

〔発明の効果〕〔The invention's effect〕

第1発明においては、液体供給量、或いは流路の分岐
前と統合後における圧力差の各要素の変化により、偏流
が生じ易い方向に推移しても、偏流の原因となる要素
(液体供給量変動、流路差圧)に応じて制御し、偏差が
発生した場合は即座に単独制御に切り替えられるので、
該偏流の防止が実現されると共に、仮に偏流が生じても
速やかに解消される。
According to the first aspect of the present invention, even if the flow rate tends to cause a drift due to the change in each element of the liquid supply amount or the pressure difference before and after the branching of the flow path, the element that causes the drift (the liquid supply amount). Fluctuation, flow path differential pressure), and if deviation occurs, it can be immediately switched to independent control.
The prevention of the nonuniform flow is realized, and even if the nonuniform flow occurs, it is promptly resolved.

また、第2発明においては、第1発明における液体供
給量制御や流路差圧制御による一括した制御を行ってい
る場合に、加熱炉のバーナーの燃焼状況等により、加熱
炉出口温度にバラツキが生じるように推移しても、各分
岐流路制御弁に与えられる操作量に、加熱炉出口温度に
基づく個別な操作量を加味することにしたので、液体供
給量変動、流路差圧により偏流が複合的に生じ易い場合
であっても、該偏流は速やかに解消する方向に推移して
信頼性の高い偏流の防止が達成され、或いは該偏流が生
じたとしても、偏流の解消が速やかに行われる。
Further, in the second invention, when the liquid supply amount control and the flow path differential pressure control in the first invention are collectively controlled, the heating furnace outlet temperature varies due to the combustion state of the burner of the heating furnace and the like. Even if it changes so as to occur, it is decided to add the individual operation amount based on the heating furnace outlet temperature to the operation amount given to each branch flow passage control valve. Even when the mixed flow is likely to occur in a complex manner, the uneven flow is rapidly eliminated to achieve highly reliable prevention of uneven flow, or even if the uneven flow occurs, the uneven flow is quickly eliminated. Done.

従って、加熱管の破損等が生ずることはなく、制御系
の信頼性が向上する。
Therefore, the heating tube is not damaged and the reliability of the control system is improved.

また、本発明制御方法は、気体と液体とをそれぞれ別
々に分岐制御した後、混合し加熱する方法ではないの
で、制御方法が複雑とはならず、信頼性の高い簡易な制
御系を実現できる。
Moreover, since the control method of the present invention is not a method of separately controlling the gas and the liquid separately, and then mixing and heating, the control method does not become complicated and a highly reliable and simple control system can be realized. .

更に、いわゆるトーナメント方式を採用する必要もな
いので、一流路から二流路に分岐した場所からそれぞれ
の分岐流路をさらに二流路に分岐する場所まで一定以上
の距離を設けておく必要がない。従って、システム全体
の設置面積が広大となることもないため、敷地面積の有
効利用を図ることができ、またトーナメント方式のよう
に、流路数が二,四,八等、特定の分岐流路数にしか設
定できないという問題もなく、分岐流路数を任意に選択
できる。
Further, since there is no need to adopt a so-called tournament system, it is not necessary to provide a certain distance or more from the location where one flow path is branched into two flow paths to the location where each branch flow path is further branched into two flow paths. Therefore, since the installation area of the entire system does not become vast, it is possible to effectively utilize the site area. Also, like the tournament method, the number of channels is 2, 4, 8, etc. The number of branch channels can be arbitrarily selected without the problem that only the number can be set.

【図面の簡単な説明】[Brief description of drawings]

第1図は灯油水添脱硫装置における本発明のフロー系統
図、第2図は第1図に示す灯油水添脱硫装置のフローに
おける第1発明の制御系統図、第3図は同じく第2発明
の制御系統図である。 11……加熱炉 6,7,8,9……分岐流路制御弁 l1,l2,l3,l4……分岐流路
FIG. 1 is a flow system diagram of the present invention in a kerosene hydrodesulfurization device, FIG. 2 is a control system diagram of the first invention in the flow of a kerosene hydrodesulfurization device shown in FIG. 1, and FIG. 3 is the same second invention. It is a control system diagram of. 11 …… Heating furnace 6,7,8,9 …… Branch flow control valve l 1 , l 2 , l 3 , l 4 …… Branch flow

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一流路の気液混相流体を少なくとも三流路
に分岐させ、加熱炉で加熱した後、一流路に統合する、
石油の水素化処理に使用される気液混相流体の多分岐制
御方法において、 前記液体の供給量、前記流路の分岐前と統合後との差圧
及び加熱炉出口における各分岐流路温度をそれぞれ測定
し、 前記差圧が設定範囲内にあるときは、前記液体供給量に
基づき各分岐流路の前記加熱炉入口側にそれぞれ設置し
た各分岐流路制御弁を一括して制御し、 前記差圧が設定範囲外に変動したときは、該差圧に基づ
き前記各分岐流路制御弁を一括して制御し、 前記各分岐流路の何れか一の流路と該一の流路を除く他
の流路との温度偏差が設定値を超えるときは、前記各分
岐流路制御弁をそれぞれ単独に制御することを特徴とす
る気液混相流体の多分岐制御方法。
1. A gas-liquid mixed phase fluid in one flow path is branched into at least three flow paths, heated in a heating furnace, and then integrated into one flow path.
In a multi-branch control method of a gas-liquid mixed phase fluid used for petroleum hydrotreating, the supply amount of the liquid, the differential pressure between before and after the branch of the flow channel, and the temperature of each branch flow channel at the heating furnace outlet are set. Each measured, when the differential pressure is within the set range, collectively control each branch flow path control valve respectively installed on the heating furnace inlet side of each branch flow path based on the liquid supply amount, When the differential pressure fluctuates outside the set range, the branch flow passage control valves are collectively controlled based on the differential pressure, and any one of the branch flow passages and the one flow passage are connected to each other. A multi-branch control method for a gas-liquid mixed phase fluid, wherein each of the branch flow channel control valves is individually controlled when the temperature deviation from the other flow channels except the flow channel exceeds a set value.
【請求項2】分岐流路制御弁を液体供給量または流路差
圧に基づき一括して制御する場合或いは単独に制御する
場合において、各分岐流路制御弁に与える操作量に、各
分岐流路の加熱炉出口温度に基づいて決定される操作量
を重みとして加えて前記各分岐流路制御弁を制御するこ
とを特徴とする第1請求項記載の気液混相流体の多分岐
制御方法。
2. When the branch flow path control valves are collectively controlled or individually controlled based on the liquid supply amount or the flow path differential pressure, each branch flow flow is controlled by the operation amount given to each branch flow path control valve. The multi-branch control method for a gas-liquid mixed phase fluid according to claim 1, wherein each branch flow passage control valve is controlled by adding an operation amount determined based on the outlet temperature of the heating furnace of the passage as a weight.
JP2040633A 1990-02-21 1990-02-21 Multi-branch control method for gas-liquid mixed phase fluid Expired - Lifetime JP2539691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040633A JP2539691B2 (en) 1990-02-21 1990-02-21 Multi-branch control method for gas-liquid mixed phase fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040633A JP2539691B2 (en) 1990-02-21 1990-02-21 Multi-branch control method for gas-liquid mixed phase fluid

Publications (2)

Publication Number Publication Date
JPH03243694A JPH03243694A (en) 1991-10-30
JP2539691B2 true JP2539691B2 (en) 1996-10-02

Family

ID=12585955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040633A Expired - Lifetime JP2539691B2 (en) 1990-02-21 1990-02-21 Multi-branch control method for gas-liquid mixed phase fluid

Country Status (1)

Country Link
JP (1) JP2539691B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905044B2 (en) 2004-05-12 2014-12-09 Fa Young Park Multi-layered color-enhancing nail applique
US8826917B2 (en) 2004-05-12 2014-09-09 Park Global Holdings, Llc Method and product for attaining a french manicure using a dry nail applique
KR101906154B1 (en) 2010-11-02 2018-10-11 이노베이티브 코스메틱 컨셉, 엘엘씨 Method and apparatus for enhancing uv gel nail application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365393A (en) 1964-04-02 1968-01-23 Phillips Petroleum Co Process control system
US4234314A (en) 1978-09-25 1980-11-18 Uop Inc. Guard-bed vapor bypass to overcome pressure drop in mixed-phase reactions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD206681A3 (en) * 1981-12-17 1984-02-01 Petrolchemisches Kombinat METHOD FOR CONVERTING HYDROCARBON FRACTIONS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365393A (en) 1964-04-02 1968-01-23 Phillips Petroleum Co Process control system
US4234314A (en) 1978-09-25 1980-11-18 Uop Inc. Guard-bed vapor bypass to overcome pressure drop in mixed-phase reactions

Also Published As

Publication number Publication date
JPH03243694A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
US10739798B2 (en) Incipient temperature excursion mitigation and control
US3167113A (en) Equalization of loads on heat exchangers
WO2015064035A1 (en) Pressure-type flow rate control device
JP2017510797A (en) Natural gas liquid sample collection, vaporization and pressure regulation system
JP2539691B2 (en) Multi-branch control method for gas-liquid mixed phase fluid
US4236218A (en) Control of a cracking furnace
WO2004033956A1 (en) Automatic valve characterization of digital valve positioners
US3450105A (en) Temperature balancing of multipass heat exchanger flows
US3159345A (en) Control system for utilization of variable flow fuel
US4197868A (en) Flow control system and control method for parallel flow process equipment
US4231753A (en) Control of a cracking furnace
Wang et al. Difference control of parallel streams temperatures
US4318178A (en) Control of a cracking furnace
US10345040B2 (en) Method for controlling a coupled heat exchanger system and heat exchanger system
US2467174A (en) Method and apparatus for controlling fractionating columns
US4817009A (en) Furnace zone temperature control
US20090211948A1 (en) Method and device for switching over shut-off members on cracking furnaces
US4434746A (en) Control of a system for supplying heat
US4380317A (en) Furnace control
JP2964274B2 (en) Heating furnace and its operation method
US4298363A (en) Fractionator feed tank pressure control
US4781324A (en) Preheat temperature balancing control
US4598669A (en) Control of a system for supplying heat
US3582630A (en) Process and apparatus for controlling a furnace
Luyben Control structures for process piping systems