JP2539491B2 - Liquid metering device - Google Patents

Liquid metering device

Info

Publication number
JP2539491B2
JP2539491B2 JP63157592A JP15759288A JP2539491B2 JP 2539491 B2 JP2539491 B2 JP 2539491B2 JP 63157592 A JP63157592 A JP 63157592A JP 15759288 A JP15759288 A JP 15759288A JP 2539491 B2 JP2539491 B2 JP 2539491B2
Authority
JP
Japan
Prior art keywords
liquid
measuring
liquid supply
supply pipe
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63157592A
Other languages
Japanese (ja)
Other versions
JPH026716A (en
Inventor
均 菅原
陽一 清水
清美 松島
清一 小松
善朗 内沼
俊幸 高橋
繁 坂口
哲也 佐渡
正紀 関野
修 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63157592A priority Critical patent/JP2539491B2/en
Publication of JPH026716A publication Critical patent/JPH026716A/en
Application granted granted Critical
Publication of JP2539491B2 publication Critical patent/JP2539491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体の計量装置に関する。TECHNICAL FIELD The present invention relates to a liquid metering device.

〔従来の技術〕[Conventional technology]

従来の液体計量装置の一例を第2図の従来例に基づき
説明する(第2図の液体計量装置のタイプは、例えば特
開昭61−130819号公報に開示される)。
An example of a conventional liquid metering device will be described based on the conventional example of FIG. 2 (the type of the liquid metering device of FIG. 2 is disclosed, for example, in JP-A-61-130819).

第2図において、30は計量容器(カツプ)で、計量容
器30は回収タンク34の中に設けられ、計量容器30の底と
被注入容器(混合タンク)36とがバルブ38付の注入管37
を介して接続される。回収タンク34は、その底部が回収
タンク下方の給液タンク31と接続され、給液タンク31
は、計量容器30に液体を供給するためのポンプ35及び給
液管33を介して回収タンク34の上部と接続される。
In FIG. 2, reference numeral 30 is a measuring container (cup), the measuring container 30 is provided in a recovery tank 34, and the bottom of the measuring container 30 and a container to be injected (mixing tank) 36 are injection pipes 37 with valves 38.
Connected via The bottom of the recovery tank 34 is connected to the liquid supply tank 31 below the recovery tank.
Is connected to the upper part of the recovery tank 34 via a pump 35 for supplying liquid to the measuring container 30 and a liquid supply pipe 33.

そして、計量容器30に給液タンク31内の液体を供給す
る場合には、注入管37のバルブ38を閉め、ポンプ35を駆
動して、液体を給液管33を通して計量容器30に供給す
る。計量容器30の液が満杯になると余分の液はあふれ出
し、回収タンク34に回収される。そして、液の供給を停
止し、計量容器30からあふれる液の適下がなくなつた
ら、バルブ38を開いて、計量容器30中の液体が被注入タ
ンク36側に注入される。
When supplying the liquid in the liquid supply tank 31 to the measuring container 30, the valve 38 of the injection pipe 37 is closed and the pump 35 is driven to supply the liquid to the measuring container 30 through the liquid supplying pipe 33. When the liquid in the measuring container 30 is full, the excess liquid overflows and is collected in the recovery tank 34. Then, when the supply of the liquid is stopped and the liquid overflowing from the measuring container 30 is no longer suitable, the valve 38 is opened and the liquid in the measuring container 30 is injected into the tank 36 to be injected.

このような計量装置は、複雑な計量機構を要さず計量
容器自信が自ずと計量を行い、また、計量容器30からあ
ふれた余分な液体は回収されて再び液の供給に使用され
る合理性を有している。
Such a metering device does not need a complicated metering mechanism, and the metering container itself performs the metering, and the excess liquid overflowing from the metering container 30 is recovered and used again for supplying the liquid. Have

その他の液体計量装置としては、図示しないが、例え
ば特開昭56−154614号公報に開示されるように、容積の
等しい2個の計量容器(液槽)を並列配置しこれらの計
量容器同志を計量面となる上部位置で互いに連通させた
ものがある。この装置も、複雑な計量機構を必要とせ
ず、しかも計量容器のオーバフローを利用して、計量容
器の交互に液体を供給して、交互に計量を行い得る利点
を有する。
As another liquid measuring device, although not shown, for example, as disclosed in Japanese Patent Laid-Open No. 56-154614, two measuring containers (liquid tanks) having the same volume are arranged in parallel, and these measuring containers are connected to each other. There is one that communicates with each other at the upper position that is the measuring surface. This device also has an advantage that a complicated metering mechanism is not required and the overflow of the metering container can be used to supply the liquid alternately to the metering containers to perform the metering alternately.

更に、特殊な用途をもつ液体計量装置としては、例え
ば特開昭56−63780号公報に開示されるような(ナトリ
ウム・硫黄電池のナトリウム充填装置」がある。このナ
トリウム充填装置は、ナトリウム計量室の上部に計量機
構を配置し、計量室の内部に計量機構に接続される検針
を設けて、ナトリウム計量を行つている。このナトリウ
ム充填装置は、ナトリウム計量室にナトリウムを供給す
るに際して、計量室内部を真空にしてナトリウムの計量
室内への供給を行い易くし、且つ真空中で計量を行うこ
とで、不純物を除去する等の配慮がなされている。
Further, as a liquid metering device having a special use, there is, for example, “Sodium filling device for sodium / sulfur battery” disclosed in JP-A-56-63780. The sodium measuring device is installed in the upper part of the measuring chamber, and the meter is connected to the measuring mechanism inside the measuring chamber to measure sodium. It is considered that impurities are removed by vacuuming the inside to facilitate the supply of sodium into the measuring chamber and by measuring in vacuum.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述した如く、従来より種々の液体計量装置が提案さ
れている。
As described above, various liquid measuring devices have been proposed conventionally.

ところで、これらの液体計量装置のうち、特開昭61−
130819号,特開昭56−154614号公報等に開示されるもの
は、複雑な計量機構を必要とせず、簡易である利点を有
するが、反面、計量容器で液を計量する時、表面張力に
より計量容器上面に液の盛り上がりが生じ、且つ、その
盛り上がりは、計量容器が広口であるため、盛り上がり
高さにばらつきが生じて、計量誤差が比較的大きくなる
傾向がある。また、液を給液管で計量容器へ戻す方式を
採用した場合には、計量容器へ戻す時に液に気泡が生じ
る。特に、高粘度の液体の場合には、気泡が生じ易く消
失しない可能性が大きい。気泡があると、計量容器で測
定する時に誤差になると共に、細い配管では気泡が詰ま
りの原因となつて液体の供給に支障をきたすおそれがあ
つた。
By the way, among these liquid measuring devices, Japanese Patent Laid-Open No. 61-
The ones disclosed in 130819, JP-A-56-154614, etc. have the advantage that they do not require a complicated measuring mechanism and are simple, but on the other hand, when the liquid is measured in a measuring container, the surface tension causes The swelling of the liquid occurs on the upper surface of the weighing container, and because the swelling of the liquid is wide, the swelling height varies, and the weighing error tends to be relatively large. Further, when the method of returning the liquid to the measuring container by the liquid supply pipe is adopted, bubbles are generated in the liquid when returning to the measuring container. In particular, in the case of a highly viscous liquid, bubbles are likely to be generated and there is a high possibility that the bubbles will not disappear. The presence of air bubbles causes an error when measuring with a measuring container, and the thin pipes may cause air bubbles to be clogged, which may hinder the liquid supply.

また、特開昭56−63780号公報に開示される方式は、
高精度の液体計量を期待できる反面、計量機構が複雑で
装置が高価になる。特に、同時に多くの液体計量を行う
生産工場においては、多数の計量機構を必要とし、設備
コストが高価なものとなる。
Further, the method disclosed in JP-A-56-63780 is
While highly accurate liquid metering can be expected, the metering mechanism is complicated and the device becomes expensive. In particular, in a production factory that measures many liquids at the same time, a large number of measuring mechanisms are required, and the equipment cost becomes high.

本発明は以上の点に鑑みてなされたものであり、その
目的とするところは、複雑な計量機構を要することな
く、簡易な装置によつて精度の良い計量を行い、且つ1
つの計量システムに計量容器を1個は勿論、複数配置で
き、設備コストの低廉化を図り得る、液体計量装置を提
供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to perform accurate weighing with a simple device without requiring a complicated weighing mechanism, and
It is an object of the present invention to provide a liquid measuring device that can arrange not only one measuring container but also a plurality of measuring containers in one measuring system and can reduce the equipment cost.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、次のようにして達成される。 The above object is achieved as follows.

以下、本発明の内容を、理解を容易にするため第1図
の実施例の符号を引用して説明する。
The contents of the present invention will be described below with reference to the reference numerals of the embodiment shown in FIG. 1 for easy understanding.

すなわち、本発明は、液体を計量容器に供給して計量
を行う装置において、計量容器1(或いは2、又は1,2
双方で、ここでは便宜上符号1として統一する)の上端
に形成される液体入口1aの断面積を計量容器断面積に比
べて充分に小さくし、この液体入口1aに給液管3を、液
体入口1aを横切る状態で接続して、この液体入口1aの給
液管接続口6を計量液面とし、且つ給液管3の上流側に
給液タンク4を、下流側に回収タンク5を配置すると共
に、計量容器1を弁を介して真空ポンプ8に接続してな
る。
That is, the present invention provides a measuring container 1 (or 2, or 1, 2) in a device that supplies liquid to a measuring container to perform measurement.
In both cases, the cross-sectional area of the liquid inlet 1a formed at the upper end of (here, unified as 1 for convenience) is made sufficiently smaller than the cross-sectional area of the measuring container, and the liquid supply pipe 3 is connected to this liquid inlet 1a. 1a is connected in a crossing state, the liquid supply pipe connection port 6 of the liquid inlet 1a is used as a measuring liquid surface, and the liquid supply tank 4 is arranged upstream of the liquid supply pipe 3 and the recovery tank 5 is arranged downstream thereof. At the same time, the measuring container 1 is connected to the vacuum pump 8 via a valve.

〔作用〕[Action]

このような構成よりなれば、先ず計量容器1に液体を
供給して計量を行う場合は、弁を開いて真空ポンプ8を
駆動し、計量容器1内を真空にする。計量容器内を真空
にするのは、計量容器1の入口1aの断面積を小さく絞つ
たため、計量容器1内に空気やその他のガスが入つてい
ると、液体が入りにくくなるので、予めこれらの空気,
ガス抜きを真空排気により行つて、液体を計量容器1内
に入り易くしたものである。
With such a configuration, when the liquid is first supplied to the measuring container 1 for measurement, the valve is opened and the vacuum pump 8 is driven to evacuate the measuring container 1. The inside of the measuring container is evacuated because the cross-sectional area of the inlet 1a of the measuring container 1 is narrowed down. Therefore, if air or other gas is contained in the measuring container 1, it becomes difficult for liquid to enter. The air of
The gas is vented by evacuation so that the liquid can easily enter the measuring container 1.

次いで、給液タンク4から給液管3に液体を流すと、
計量容器1内に液体入口1aを介して液体が流入し、この
液体の流れ過程により、液体が計量容器1を満すと、余
分な液体は給液管接続口6より給液管3内にオーバフロ
ーし、このオーバフローの液体が回収タンク5に送給さ
れる。このオーバフローの時点で液体を停止させれば、
計量容器1内の液体は、液体入口1aの給液管接続口6の
液面レベルまで満たされる。この給液管接続口6の液面
レベルは、予め計量容器1の計量液面になるよう設定さ
れており、自ずと計量がなされる。このようにして計量
がなされるが、本発明の場合は、計量容器1の液体入口
1aの断面積を容器に比べ充分に小さくしているので、計
量液面での液の盛り上り高さがばらついても、その量的
誤差を支障のない程度に極めて小さくすることができ、
計量精度の向上化を図れる。更に本発明では、計量容器
1の液体入口1aに給液管3が横切る状態で接続されるの
で、給液管接続口(計量液面)6に泡が生じても、液の
オーバフローと給液管内の流れによつて、泡が流れ去つ
てしまう構造で、計量容器に泡が停滞することを防止す
る。従つて、計量精度の低下を防止できる。
Next, when the liquid is made to flow from the liquid supply tank 4 to the liquid supply pipe 3,
When the liquid flows into the measuring container 1 through the liquid inlet 1a, and the liquid fills the measuring container 1 by the flow process of the liquid, excess liquid flows from the liquid supply pipe connection port 6 into the liquid supply pipe 3. Overflow, and the overflow liquid is sent to the recovery tank 5. If you stop the liquid at the time of this overflow,
The liquid in the measuring container 1 is filled to the liquid level of the liquid supply pipe connection port 6 of the liquid inlet 1a. The liquid level of the liquid supply pipe connection port 6 is set in advance so as to be the measured liquid level of the measuring container 1, and the measurement is automatically performed. Although the measurement is performed in this manner, in the case of the present invention, the liquid inlet of the measuring container 1
Since the cross-sectional area of 1a is sufficiently smaller than that of the container, even if the rising height of the liquid on the measuring liquid surface varies, the quantitative error can be made extremely small to the extent that it does not hinder,
The measurement accuracy can be improved. Further, in the present invention, since the liquid supply pipe 3 is connected to the liquid inlet 1a of the measuring container 1 in a state of traversing the liquid supply pipe 1 and the liquid supply pipe connection port (measuring liquid surface) 6, even if bubbles occur, the liquid overflow and the liquid supply The flow in the pipe causes the bubbles to flow away, and prevents the bubbles from stagnating in the measuring container. Therefore, it is possible to prevent the measurement accuracy from decreasing.

なお、本発明では、給液タンク4と回収タンク5との
間に高低差をつけて、給液管3を傾斜配置すれば、ポン
プ等を用いず、給液タンク4と回収タンク5間の落差を
利用して、液体を自然に給液管3中を流すことができ
る。また、給液管3に計量容器1を複数並列に接続する
ことで、1台の計量装置で多数の計量を行うことも可能
である。更に、粘度の高い液体の場合には、給液管3に
液が付着するので、この場合には、不活性ガスで給液管
3に付着した液体を回収タンク5側に吹き払うように設
定すれば、計量容器1,2内の液体を注中容器に注入する
場合に、前記付着液体が被注入容器に入る事態がなくな
り、計量精度を更に向上させることができる。
In the present invention, if a height difference is provided between the liquid supply tank 4 and the recovery tank 5 and the liquid supply pipe 3 is arranged in an inclined manner, a pump or the like is not used between the liquid supply tank 4 and the recovery tank 5. The liquid can naturally flow through the liquid supply pipe 3 by utilizing the head. Further, by connecting a plurality of measuring containers 1 to the liquid supply pipe 3 in parallel, it is possible to perform a large number of measurements with one measuring device. Further, in the case of a highly viscous liquid, since the liquid adheres to the liquid supply pipe 3, in this case, the liquid attached to the liquid supply pipe 3 is blown off to the recovery tank 5 side with an inert gas. Then, when the liquid in the measuring containers 1 and 2 is poured into the pouring container, the adhered liquid does not enter the container to be injected, and the measuring accuracy can be further improved.

〔実施例〕〔Example〕

本発明の一実施例を第1図に基づき説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は本発明の一実施例を示す液体計量装置のシス
テム構成図である。本実施例の液体計量装置は、例えば
ナトリウム等の溶融塩を計量するものとして用いる。
FIG. 1 is a system configuration diagram of a liquid measuring apparatus showing an embodiment of the present invention. The liquid measuring device of the present embodiment is used for measuring a molten salt such as sodium.

図中、1及び2は計量容器(枡)、3は給液管、4は
給液タンク、5は回収タンクである。
In the figure, 1 and 2 are measuring containers (cells), 3 is a liquid supply pipe, 4 is a liquid supply tank, and 5 is a recovery tank.

給液タンク4と回収タンク5とは、前者が高く後者が
低くなるよう高低差をつけて配置される。
The liquid supply tank 4 and the recovery tank 5 are arranged with a height difference such that the former is higher and the latter is lower.

給液管3は、一端が給液タンク4の底部に接続され、
他端が回収タンク5の上部に接続されて、給液タンク3
側から次第に下るように傾斜する。
One end of the liquid supply pipe 3 is connected to the bottom of the liquid supply tank 4,
The other end is connected to the upper part of the recovery tank 5, and the liquid supply tank 3
Incline to gradually descend from the side.

計量容器1,2は互いに並列状態で給液管3の下面側に
垂下しつつ接続される。この接続は、各計量容器1,2の
上端に設けた液体入口1a,2aに給液管3が横切る状態で
接続される。そして、この液体入口1a,2aの給液管接続
口6が計量容器1,2の計量液面となるように設定され
る。計量容器1,2の入口1a,2aは、その断面積が容器1,2
の断面積に較べて充分に小さくなるよう、絞り形成して
ある。程度でいえば、液体入口1a,2aの各断面積を液体
の流入に支障のない限り、できるだけ小さくする。
The measuring containers 1 and 2 are connected in parallel with each other while hanging down to the lower surface side of the liquid supply pipe 3. This connection is made in a state where the liquid supply pipe 3 crosses the liquid inlets 1a and 2a provided at the upper ends of the respective measuring containers 1 and 2. Then, the liquid supply pipe connecting ports 6 of the liquid inlets 1a and 2a are set to be the measuring liquid surfaces of the measuring containers 1 and 2. The inlets 1a and 2a of the weighing containers 1 and 2 have cross-sectional areas of the containers 1 and 2, respectively.
Is formed so as to be sufficiently smaller than the cross-sectional area of In terms of degree, the cross-sectional areas of the liquid inlets 1a and 2a are made as small as possible, as long as they do not hinder the liquid inflow.

計量容器1,2の下端には管状の出口1b,2bが配設され、
出口1b,2bが各被注入容器13の入口に接続される。
Tubular outlets 1b and 2b are arranged at the lower ends of the measuring containers 1 and 2,
The outlets 1b and 2b are connected to the inlets of the respective containers 13 to be injected.

7は、回収容器5の底部と給液タンク4の入口4aとを
接続する給液戻し管である。
Reference numeral 7 is a liquid supply return pipe that connects the bottom of the recovery container 5 and the inlet 4a of the liquid supply tank 4.

給液管3の両端には、液体の流通制御を行う弁15,16
が、計量容器1,2の出口側には弁17,18が、液体戻し管7
の一端(給液タンク入口側)4aには弁19が配設される。
At both ends of the liquid supply pipe 3, valves 15 and 16 for controlling the flow of liquid are provided.
However, valves 17 and 18 are provided on the outlet side of the measuring containers 1 and 2 and a liquid return pipe 7 is provided.
A valve 19 is provided at one end (the inlet side of the liquid supply tank) 4a.

8は真空ポンプで、真空ポンプ8は、配管14a,14b,14
c及び給液管3を介して計量容器1,2の入口1a,2aと接続
され、また、配管14a,14dを介して被注入容器13と接続
され、更に配管14a′,トラツプ10,配管14gを介して給
液タンク4と接続され、配管14a′,トラツプ10,配管14
fを介して回収タンク5と接続される。給液タンク4,回
収タンク5等をトラツプ10を介して真空ポンプ8と接続
するのは、液体が溶融塩等である場合も、真空ポンプ8
の機能に悪影響を与えないようにするためである。
8 is a vacuum pump, and the vacuum pump 8 is piping 14a, 14b, 14
It is connected to the inlets 1a and 2a of the measuring containers 1 and 2 via the c and the liquid supply pipe 3, and is connected to the injecting container 13 via the pipes 14a and 14d, and further the pipe 14a ', the trap 10 and the pipe 14g. Is connected to the liquid supply tank 4 via the pipe 14a ', the trap 10, and the pipe 14
It is connected to the recovery tank 5 via f. The liquid supply tank 4, the recovery tank 5 and the like are connected to the vacuum pump 8 via the trap 10 even when the liquid is molten salt or the like.
This is so as not to adversely affect the function of.

12は不活性ガス(例えばアルゴンガス)の供給源で、
不活性ガスの圧力調節計11付きの配管14h,配管14cを介
して給液管3と接続され、配管14h,14b,14eを介して回
収タンク5と接続され、配管14h,14i,14gを介して給液
タンク4と接続される。
12 is a source of an inert gas (for example, argon gas),
It is connected to the liquid supply pipe 3 through the pipe 14h and the pipe 14c with the pressure regulator 11 for the inert gas, is connected to the recovery tank 5 through the pipes 14h, 14b and 14e, and is connected through the pipes 14h, 14i and 14g. Connected to the liquid supply tank 4.

なお、各配管14a〜14iまでの適宜箇所にバルブ20〜25
が配設される。
In addition, valves 20 to 25 should be installed at appropriate points on each pipe 14a to 14i.
Is arranged.

また、計量容器1,2,給液管3,給液タンク4,回収タンク
5,戻し配管7,被注入容器13には、溶融塩を液体状に保持
するための加熱装置(図示せず)が設置される。
In addition, weighing container 1, 2, liquid supply pipe 3, liquid supply tank 4, recovery tank
A heating device (not shown) for holding the molten salt in a liquid state is installed in the return pipe 7, and the injection container 13.

次に本実施例の動作について説明する。 Next, the operation of this embodiment will be described.

被注入容器13へ液体(溶融塩)を計量し注入する場合
には、予め給液タンク4にホツパ等により粉体、又は固
体の塩を投入し、真空ポンプ8で給液タンク4内を真空
にしつつ異物,不純物ガスを除去するよう徐々に加熱
し、溶融液をつくり出す。この時、バルブ24は開、その
他のバルブを閉とする。
When the liquid (molten salt) is measured and injected into the injection target container 13, powder or solid salt is previously charged into the liquid supply tank 4 by a hopper or the like, and the inside of the liquid supply tank 4 is vacuumed by the vacuum pump 8. While gradually heating to remove foreign matter and impurity gas, a molten liquid is produced. At this time, the valve 24 is opened and the other valves are closed.

その後、バルブ20,21,22を開の状態とし、配管14a,14
b,14cを介して計量容器1,2、及び回収タンク5上のバル
ブ16までの給液管3内を真空排気した後、給液タンク4
下のバルブ15を開く。また、バルブ20〜21を元の閉に戻
し、バルブ25,24を開として、配管14i,14gを介して給液
タンク4に不活性ガス供給源12より不活性ガスを供給し
て、給液タンク4内に圧力をかける。この圧力により、
給液タンク4内の溶融塩が計量容器1内に給液管3を介
して送給される。計量容器1が満杯になると接続口6よ
りオーバフローし、給液管3の下り勾配により溶融塩が
計量容器2に入る。そして、溶融塩が計量容器2をオー
バフローすると、回収タンク5上のバルブ16迄の給液管
3に溶融塩が満たされる。その後、給液タンク下のバル
ブ15を閉め、バルブ23を開いて、回収タンク5内を真空
引きし、回収タンク5上のバルブ16を開いて、計量容器
1,2をオーバフローした給液管3内の溶融塩を回収タン
ク5内に回収すると共に、不活性ガス源12の接続バルブ
22を開いて、給液管3に不活性ガスを送給し、給液管3
の内面に付着した溶融塩を吹き払つて、回収タンク5へ
送る。その後、回収タンク5上のバルブ16を閉じ、計量
容器1,2下のバルブ17,18を開け、真空状態の注入容器13
へ溶融塩を注入する。この時、不活性ガス源12より、不
活性ガスを計量容器1,2内に供給し、計量容器1,2の溶融
液面に圧力をかけ注入を助けてもよい。
After that, open the valves 20, 21, 22 and connect the pipes 14a, 14
After evacuation of the measuring containers 1 and 2 and the liquid supply pipe 3 up to the valve 16 on the recovery tank 5 via b and 14c, the liquid supply tank 4
Open valve 15 below. Further, the valves 20 to 21 are returned to the original closed state, the valves 25 and 24 are opened, and the inert gas is supplied from the inert gas supply source 12 to the liquid supply tank 4 through the pipes 14i and 14g to supply the liquid. Pressure is applied in the tank 4. With this pressure,
The molten salt in the liquid supply tank 4 is fed into the measuring container 1 via the liquid supply pipe 3. When the measuring container 1 becomes full, it overflows from the connection port 6, and the molten salt enters the measuring container 2 due to the descending gradient of the liquid supply pipe 3. When the molten salt overflows the measuring container 2, the liquid supply pipe 3 up to the valve 16 on the recovery tank 5 is filled with the molten salt. After that, the valve 15 under the liquid supply tank is closed, the valve 23 is opened, the inside of the recovery tank 5 is evacuated, the valve 16 on the recovery tank 5 is opened, and the measuring container is opened.
The molten salt in the liquid supply pipe 3 that overflows 1, 2 is recovered in the recovery tank 5, and a connection valve for the inert gas source 12
22 is opened and the inert gas is supplied to the liquid supply pipe 3,
The molten salt adhering to the inner surface of is blown off and sent to the recovery tank 5. After that, the valve 16 on the recovery tank 5 is closed, the valves 17 and 18 below the measuring containers 1 and 2 are opened, and the injection container 13 in a vacuum state is opened.
Inject molten salt into. At this time, an inert gas may be supplied from the inert gas source 12 into the measuring vessels 1 and 2 to apply pressure to the molten liquid surface of the measuring vessels 1 and 2 to assist the injection.

注入後、計量容器1,2下のバルブ17,18及び回収タンク
5上のバルブ16を閉じ、給液タンク4を真空排気した
後、バルブ21を開いて、不活性ガス供給源12より配管14
b,14eを介して、不活性ガスを回収タンク5に供給し、
回収タンク液面に圧力をかけることにより、回収タンク
5内の溶融塩を戻し管7を通して給液タンク4に戻す。
そして、このような一連の動作を繰返すことにより、被
注入容器13に定量の液体が注入充填される。なお、これ
らの一連の動作は、例えば各過程ごとに時間を定めて行
う。
After the injection, the valves 17 and 18 under the measuring containers 1 and 2 and the valve 16 on the recovery tank 5 are closed, the liquid supply tank 4 is evacuated, and then the valve 21 is opened to connect the pipe 14 from the inert gas supply source 12.
Inert gas is supplied to the recovery tank 5 via b and 14e,
By applying pressure to the liquid level in the recovery tank, the molten salt in the recovery tank 5 is returned to the liquid supply tank 4 through the return pipe 7.
Then, by repeating such a series of operations, the container 13 to be injected is filled with a fixed amount of liquid. It should be noted that these series of operations are performed, for example, by setting a time for each process.

しかして本実施例によれば、次のような効果を奏す
る。
Therefore, according to this embodiment, the following effects can be obtained.

(1)溶融塩を真空中で溶解することにより、溶融塩中
の不純物や湿分を除去でき、また、給液タンク4,給液管
3,戻し管7,被注入容器13を加熱状態で真空排気でき、装
置全体を清浄に維持できる。従つて、溶融塩を汚さずに
注入できるので、注入後純度の高い溶融塩を得ることが
できる。
(1) Impurities and moisture in the molten salt can be removed by melting the molten salt in a vacuum, and the liquid supply tank 4 and the liquid supply pipe
3, the return pipe 7, and the injection target container 13 can be evacuated in a heated state, and the entire apparatus can be kept clean. Therefore, since the molten salt can be injected without being polluted, a highly pure molten salt can be obtained after the injection.

(2)計量容器1,2内に液体(溶融塩)が満たされて、
液面が給液管接続口6まで達すると自ずと計量され、且
つ計量容器1,2の入口断面積が、計量面となる給液管接
続口6まで、計量容器本体より小さくなつているため、
表面張力により液面位置が多少ばらついても、全体の容
積に占める割合が小さいので、計量精度を向上させる効
果がある。すなわち、計量容器本体の断面積S1と給液管
接続口6の断面積S2の比(S2/S1)に比例して、計量誤
差は小さくなる。
(2) The measuring containers 1 and 2 are filled with liquid (molten salt),
When the liquid level reaches the liquid supply pipe connecting port 6, the liquid is automatically measured, and the inlet cross-sectional areas of the measuring containers 1 and 2 are smaller than the measuring container main body up to the liquid supplying pipe connecting port 6 which is the measuring surface.
Even if the liquid surface position varies to some extent due to the surface tension, the ratio to the entire volume is small, so that there is an effect of improving the measurement accuracy. That is, the measurement error becomes smaller in proportion to the ratio (S 2 / S 1 ) of the cross-sectional area S 1 of the measuring container body and the cross-sectional area S 2 of the liquid supply pipe connection port 6.

(3)また計量容器1,2の入口1a,2aの断面積を小さく絞
り形成しても、計量容器1,2を真空にしてあるので、液
体を計量容器内にスムーズに導くことができる。
(3) Even if the cross-sectional areas of the inlets 1a and 2a of the measuring containers 1 and 2 are formed to be small, since the measuring containers 1 and 2 are in a vacuum, the liquid can be smoothly introduced into the measuring containers.

(4)実施例では、計量容器は2個であるが、給液タン
ク4と回収タンク5との間に多数個設置することも容易
であり、その場合には量産に適した設備となる。
(4) In the embodiment, the number of measuring containers is two, but it is easy to install a large number between the liquid supply tank 4 and the recovery tank 5, and in that case, the equipment is suitable for mass production.

(5)給液タンク4と回収タンク5との間に高低差をつ
け、給液管3に傾斜をつけることで、給液管3にポンプ
を設置しなくとも、液体を落差により給液管3内に流
し、計量容器1,2に送給できる。
(5) By providing a height difference between the liquid supply tank 4 and the recovery tank 5 and sloping the liquid supply pipe 3, even if a pump is not installed in the liquid supply pipe 3, the liquid supply pipe is caused by a drop in liquid. It can be poured into 3 and sent to measuring containers 1 and 2.

また回収タンク5より、給液タンク4への戻しには戻
し配管7にポンプを設けて行うことも可能であるが、本
実施例では、回収タンク5の溶融塩液面に不活性ガスで
圧力をかけるとともに、給液タンク4内を真空排気する
ことにより、溶融塩を回収タンク5より給液タンク4へ
ポンプを用いず移送することができる。
In addition, a pump may be provided in the return pipe 7 for returning the liquid from the recovery tank 5 to the liquid supply tank 4, but in the present embodiment, the molten salt liquid surface of the recovery tank 5 is pressurized with an inert gas. By applying a vacuum and evacuating the inside of the liquid supply tank 4, the molten salt can be transferred from the recovery tank 5 to the liquid supply tank 4 without using a pump.

(6)給液タンク4に回収タンク5より戻された液体
を、加熱,真空排気することにより、戻す途中で不活性
ガス等により生じた気泡を除去できるので、計量容器1,
2へは液体のみを供給でき、計量精度を上げることがで
きる。又、気泡がないため、配管中を液体が通過し易
い。
(6) Since the liquid returned from the recovery tank 5 to the liquid supply tank 4 is heated and evacuated, bubbles generated by an inert gas or the like can be removed during the returning, so that the measuring container 1,
Only liquid can be supplied to 2, and the measurement accuracy can be improved. Further, since there are no bubbles, the liquid easily passes through the pipe.

(7)計量容器へ給液後、不活性ガスを給液管3へ適当
な圧力で流して、給液管3に付着した溶融液を吹き払い
回収タンク5へ送り込むので、計量後の被注入容器13へ
の注入作業時に、給液管3に付着していた溶融塩が被注
入容器13に入る事態をなくし、計量精度を上げることが
できる。
(7) After the liquid is supplied to the measuring container, an inert gas is caused to flow into the liquid supply pipe 3 at an appropriate pressure, and the molten liquid adhering to the liquid supply pipe 3 is blown off and sent to the recovery tank 5. The molten salt adhering to the liquid supply pipe 3 does not enter the container 13 to be injected at the time of the injection work into the container 13, and the measurement accuracy can be improved.

(8)更に本実施例によれば、単純な構造の計量容器1,
2を給液タンク4,回収タンク5,被注入容器13と接続する
ことにより計量装置を構成でき、また複雑な計量機構を
要さないので、装置を簡単に構成でき、経済性のある装
置とすることができる。
(8) Further, according to the present embodiment, the weighing container 1 having a simple structure 1,
By connecting 2 with the liquid supply tank 4, the recovery tank 5, and the injecting container 13, a weighing device can be configured, and since a complicated weighing mechanism is not required, the device can be configured easily and is an economical device. can do.

なお、本実施例では計量容器1つにつき被注入容器13
を1個取り付けるが、計量容器1つに複数個の被注入容
器を取り付け、バルブの切換により複数個の被注入容器
に液体を順次注入することも可能である。
In addition, in this embodiment, the injection container 13 is provided for each weighing container.
However, it is also possible to attach a plurality of containers to be injected to one measuring container and sequentially inject the liquid into the plurality of containers to be injected by switching the valve.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、計量容器の入口断面積
や、計量容器と給液管の接続等に工夫をこらすことで、
複雑な計量機構を要することなく、簡易な装置によつて
精度の良い計量を行うことができる。また、1つの計量
システムに計量容器を1個は勿論複数配置できるので、
設備コストの低廉化を図ることができ、実用性に優れた
計量装置を提供できる。
As described above, according to the present invention, by devising the inlet cross-sectional area of the measuring container and the connection between the measuring container and the liquid supply pipe,
It is possible to perform accurate weighing with a simple device without requiring a complicated weighing mechanism. In addition, one weighing container can of course be placed in one weighing system, so
It is possible to reduce the equipment cost and provide a highly practical weighing device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す構成図、第2図は従来
の液体計量装置の一例を示す構成図である。 1,2……計量容器、1a,2a……液体入口、3……給液管、
4……給液タンク、5……回収タンク、6……給液管接
続口、7……液体戻し管、8……真空ポンプ、12……不
活性ガス源。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing an example of a conventional liquid measuring device. 1,2 …… Measuring container, 1a, 2a …… Liquid inlet, 3 …… Liquid supply pipe,
4 ... Liquid supply tank, 5 ... Recovery tank, 6 ... Liquid supply pipe connection port, 7 ... Liquid return pipe, 8 ... Vacuum pump, 12 ... Inert gas source.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 清一 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 内沼 善朗 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 高橋 俊幸 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 坂口 繁 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 佐渡 哲也 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 関野 正紀 茨城県日立市弁天町3丁目10番2号 日 立協和工業株式会社内 (72)発明者 浜島 修 茨城県日立市弁天町3丁目10番2号 日 立協和工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichi Komatsu 3-1-1 Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Yoshiro Uchinuma 3-chome, Hitachi City, Ibaraki Prefecture No. 1 inside Hitachi factory, Hitachi, Ltd. (72) Inventor Toshiyuki Takahashi 3-1-1, Saiwaicho, Hitachi city, Ibaraki Prefecture Inside Hitachi factory, Hitachi Ltd. (72) Shigeru Sakaguchi, 3 Saiwaicho, Hitachi city, Ibaraki prefecture 1-1-1, Hitachi Ltd., Hitachi Factory (72) Inventor Tetsuya Sado 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. (72) Inventor, Masanori Sekino Benten, Hitachi City, Ibaraki Prefecture 3-10-2, Machi Hitate Kyowa Industry Co., Ltd. (72) Inventor Osamu Hamajima 3-10-2, Bentencho, Hitachi City, Ibaraki Prefecture Hitate Kyowa Industry Co., Ltd.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体を計量容器に供給して計量を行う装置
において、前記計量容器の上端に形成される液体入口の
断面積を計量容器の本体断面積に比べて充分に小さく
し、前記液体入口に給液管をこの液体入口を横切る状態
で接続して、この液体入口の給液管接続口を計量液面と
し、且つ前記給液管の上流側に給液タンクを、下流側に
回収タンクを配置すると共に、前記計量容器を弁を介し
て真空ポンプに接続してなることを特徴とする液体計量
装置。
1. A device for supplying a liquid to a measuring container for measuring, wherein the cross-sectional area of a liquid inlet formed at the upper end of the measuring container is made sufficiently smaller than the main body cross-sectional area of the measuring container. A liquid supply pipe is connected to the inlet so as to cross the liquid inlet, the liquid supply pipe connection port of the liquid inlet is used as a measuring liquid surface, and a liquid supply tank is collected on the upstream side of the liquid supply pipe and on the downstream side. A liquid measuring apparatus, wherein a tank is arranged and the measuring container is connected to a vacuum pump via a valve.
【請求項2】第1請求項において、前記給液管は、上流
側が高く下流側が低くなるように傾斜させてなる液体計
量装置。
2. The liquid metering device according to claim 1, wherein the liquid supply pipe is inclined so that the upstream side is high and the downstream side is low.
【請求項3】第1請求項又は第2請求項において、前記
計量容器は複数よりなり、これらの計量容器が並列の状
態で前記給液管に接続される液体計量装置。
3. The liquid measuring device according to claim 1 or 2, wherein the measuring container is composed of a plurality of containers, and the measuring containers are connected in parallel to the liquid supply pipe.
【請求項4】第1請求項ないし第3請求項のいずれか1
項において、前記真空ポンプは、前記給液管を介して前
記計量容器に接続される液体計量装置。
4. Any one of claims 1 to 3
In the paragraph above, the vacuum pump is a liquid measuring device connected to the measuring container via the liquid supply pipe.
【請求項5】第1請求項ないし第4請求項のいずれか1
項において、前記給液管の上流側は、不活性ガス源に弁
を介して接続される液体計量装置。
5. Any one of claims 1 to 4
In the paragraph, the liquid metering device in which an upstream side of the liquid supply pipe is connected to an inert gas source via a valve.
【請求項6】第1請求項ないし第5請求項のいずれか1
項において、前記給液タンクと前記回収タンクとを液体
戻し管を介して接続すると共に、前記回収タンクを不活
性ガス源に弁を介して接続して、回収タンク内の液体を
不活性ガス圧で前記液体戻し管を介して前記給液タンク
に戻すように設定し、且つ前記給液タンクを弁を介して
真空ポンプと接続してなる液体計量装置。
6. Any one of claims 1 to 5
In the paragraph 1, the liquid supply tank and the recovery tank are connected via a liquid return pipe, and the recovery tank is connected to an inert gas source via a valve so that the liquid in the recovery tank is kept under an inert gas pressure. And a liquid metering device which is set to return to the liquid supply tank via the liquid return pipe, and which is connected to a vacuum pump via a valve.
JP63157592A 1988-06-25 1988-06-25 Liquid metering device Expired - Lifetime JP2539491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157592A JP2539491B2 (en) 1988-06-25 1988-06-25 Liquid metering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157592A JP2539491B2 (en) 1988-06-25 1988-06-25 Liquid metering device

Publications (2)

Publication Number Publication Date
JPH026716A JPH026716A (en) 1990-01-10
JP2539491B2 true JP2539491B2 (en) 1996-10-02

Family

ID=15653081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157592A Expired - Lifetime JP2539491B2 (en) 1988-06-25 1988-06-25 Liquid metering device

Country Status (1)

Country Link
JP (1) JP2539491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613033B2 (en) 2010-05-19 2014-10-22 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH026716A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
US6019116A (en) Liquid transfer system
JP2008503399A (en) Foldable fluid container
CN102180430B (en) Liquid filling machine
CN107677585B (en) Device and method for measuring water permeability coefficient of water permeable material
JP2539491B2 (en) Liquid metering device
CN109690261A (en) Gas separator and equipment for knowing the multiphase medium especially flow of the one or more components of natural gas-aqueous mixtures
CN211391782U (en) Liquid filling device
US3827610A (en) Volumetric filling device
US3397576A (en) Liquid metering systems
JP3039747B2 (en) Method and device for injecting electrolyte for storage battery
CN107328452A (en) A kind of device and its operating method for determining irregular seal cavity volume
TOEI et al. Gas Interchange between Bubble Phase and Continuous Phase in Gas-Solid Fluidised Bed at Coalescence
CN218766519U (en) Water permeability detection device of brick permeates water
JPH0446814Y2 (en)
JP2598064B2 (en) Apparatus and method for measuring wetness of powders
CN210427281U (en) Simple device for testing hydrophilicity of solar cell
CN209173902U (en) High viscosity liquid meausring apparatus
CN111974025A (en) Method for filling automatic glue spraying chromatographic column
JP4096129B2 (en) Droplet dropping device
JP2000302196A (en) Valve having air inlet tube
KR910002279B1 (en) Filled amount control system
SU1203371A1 (en) Metering tank
JPS6229042Y2 (en)
SU976298A1 (en) Siphon metering pump
CN115138229A (en) Liquid medicine preparation device