JP2539426B2 - Pelton turbine controller - Google Patents

Pelton turbine controller

Info

Publication number
JP2539426B2
JP2539426B2 JP62110545A JP11054587A JP2539426B2 JP 2539426 B2 JP2539426 B2 JP 2539426B2 JP 62110545 A JP62110545 A JP 62110545A JP 11054587 A JP11054587 A JP 11054587A JP 2539426 B2 JP2539426 B2 JP 2539426B2
Authority
JP
Japan
Prior art keywords
needle
cam
setting
water
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62110545A
Other languages
Japanese (ja)
Other versions
JPS63277872A (en
Inventor
和夫 高橋
博 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62110545A priority Critical patent/JP2539426B2/en
Publication of JPS63277872A publication Critical patent/JPS63277872A/en
Application granted granted Critical
Publication of JP2539426B2 publication Critical patent/JP2539426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

〔産業上の利用分野〕 本発明は、ペルトン水車の制御装置に係り、特に、ペ
ルトン水車を備える水力発電所において、系統事故等に
より発電運転が不可能になつた際、デフレクタだけ急閉
鎖させ水車を止め水槽水位を変化させることなく放流運
転を継続させるのに好適な制御装置に関する。 〔従来の技術〕 従来の装置は、特開昭59−229062号あるいは、特開昭
60−195384号公報に記載のように、ペルトン水車で水車
を急停止する際、デフレクタとニードルの連動を制御
弁、あるいは、オフカム切換弁により解除し、デフレク
タは全閉、ニードルは全開とし水車を停止すると同時に
放流運転を継続する様になつていた。 〔発明が解決しようとする問題点〕 一般に、ペルトン水車は高落差地点に適用される衝動
水車であり、横軸形および立軸形が採用されている。 以下、第2図の横軸ペルトン水車を用いその概要を説
明する。 水圧鉄管10からの圧力水は入口曲管11a,11bで二つの
ノズル1,2に分配されそれぞれのノズル1,2で加速され高
速のジエツト12a,12bとなつてバケツト5aに水動力を加
えて仕事をしたのち下部放水路14に排出される。それぞ
れのノズル1,2内のニードル1a,2aは、通常運転時は、そ
れぞれが備えるサーボモータ1c,2cによつて負荷に応じ
て開閉され、その流量を調整する。それぞれのノズル1,
2とランナ5との間にはデフレクタ1b,2bがノズル1,2に
軸支され回転自在に設けられ、負荷が急激に減少したと
き、あるいは、故障が発生したときに、サーボモータ6
によりリンク機構7を介してそれぞれのデフレクタ1b,2
bが連動して、同時に回動され、ジエツトの方向をバケ
ツト5aの方向からそらせて、水車の回転数が増大するの
を制御している。 一方、ニードル1a,2aとデフレクタ1b,2bとの制御例え
ば閉じる場合について第3図により説明する。 油切替弁103を矢印方向Aに上昇すると、圧油は配管
内を流れ、サーボモータ6内のピストンは矢印方向Aに
移動して、デフレクタ1bを右方向に回動して閉じると共
に、デフレクタ1bの回動力はレバーを介して追尾用カム
1Eに伝わる。 追尾用カム1eはノズル1内にニードル1aを支持した支
持座1Xを支点として矢印方向Aに回動し、カムロッドが
ニードル配圧弁1f内で移動し、圧油タンク104内の圧油
がオフカム切替弁102を介して、ニードルサーボモータ1
Cに供給し、ニードルピストン1Yを押圧して、ニードル1
aがノズル1を閉じる方向に移動して一定開度を保持
し、上水槽に連通するノズル1より放流運転を継続して
いる。尚、ノズル1を開放する時は圧油の矢印方向は上
述の矢印方向Aと逆にすればよい。 ところで、電力需要の高い重負荷から軽負荷になり、
水車の回転数が増大し、重負荷時の系統周波数より周波
数が上昇すると、周波数上昇検出装置(この装置は通常
系統周波数より異常に系統周波数が上昇した時に動作す
る)よりオフカム切替弁102に停止指令を入力して、オ
フカム切替弁102を停止する。そうすると、ニードル1a
がノズル1を閉じる方向に移動中には、ニードル1aは制
御位置に移動せず、ノズル1が一定開度にならず、水の
放流が一定になれず、多い場合には無駄になる。 しかし、上記従来技術は周波数上昇値により追尾用カ
ムとニードルとの連動を解除していたため、周波数上昇
が発生しない故障停止、すなわち、機械故障による故障
停止では系統に繋がつたままの状態でデフレクタを急閉
鎖し、全閉になつた後に系統と切り離すので、周波数上
昇が発生することがないこの様な故障停止が起つた場
合、オフカム切換弁は動作せず追尾用カムとニードルと
の連動は解除できないのでニードルはデフレクタ同様全
閉にしてしまいデフレクタのみで流水しや断し放流運転
を続けるという目的を達成することができない。 又、一旦追尾用カムとニードルとの連動を解除し、ニ
ードルをある開度に固定した後は、逐次変化する水槽水
位からの余水量に対し、全くニードル開度を制御せず、
常に、一定水量を放流するだけなので、水槽のオーバー
フローや水槽水位の異常低下が発生し再起動不可能とい
つた問題が起る恐れがある。 更に、オフカム切換弁により追尾用カムとニードルの
連動の解除,使用を行なつているので、解除している状
態から連動を使用状態にする時、正規の連動状態に対し
偏差を持つて切り換わるのを防ぐのは不可能に近い。従
つて、連動が再開された時ニードルはこの偏差を打ち消
す方向に動作してしまい負荷変動が起きてしまうという
問題があつた。 本発明は、ペルトン水車で、放流運転が要求された
時、どの様な条件のもとでもニードルによる放流運転を
可能とし、放流量を常時制御でき、又、放流運転から負
荷運転への移行もスムーズにできるようにして、余水路
を省略した発電所の安全性を向上できるペルトン水車の
制御装置を提供することを目的とする。 〔問題点を解決するための手段〕 本発明の追尾用カム1eとニードル配圧弁1fとの間に設
けた高信号選択回路100は、上水槽の設定水位より水位
が高い時及び低い時に応じて開き及び閉じに応じて回動
し設定位置を設定する余水量設定カム13、追尾用カム1e
からの開き及び閉じに応じて回動する追尾カム12、 余水量設定カム13の回動に応じて降下し開き及び閉じ
設定位置を設定すると共に、追尾カム12の回動に応じて
昇降するのを当該設定位置で降下を止める設定レバー機
構100A、 設定レバー機構100Aの開き及び閉じ方向の昇降に応じ
て昇降し、二方向切替弁11で圧油を切り替え、開き及び
閉じ方向に昇降し、設定位置に設定サーボモータ10を保
持する調整レバー機構100Bとより成り、 設定サーボモータ10の設定位置信号によりニードル配
圧弁1fの圧油をニードルサーボモータ1cに送り、ピスト
ン1Yを設定位置に移動して、ニードル1aをノズル1の設
定位置で開口して放水して、上水槽の水位を設定水位に
維持することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a Pelton turbine, and in particular, in a hydroelectric power plant equipped with a Pelton turbine, when the power generation operation becomes impossible due to a system accident or the like, only the deflector is suddenly closed to make it a turbine. The present invention relates to a control device suitable for stopping the discharge tank and continuing the discharge operation without changing the water level. [Prior Art] A conventional apparatus is disclosed in JP-A-59-229062 or JP-A-59-229062.
As described in JP-A-60-195384, when the turbine is suddenly stopped by the Pelton turbine, the interlocking of the deflector and the needle is released by the control valve or the off-cam switching valve, the deflector is fully closed, the needle is fully open, and the turbine is closed. At the same time it stopped, the discharge operation was continued. [Problems to be Solved by the Invention] Generally, Pelton turbines are impulse turbines applied at high heads, and horizontal axis type and vertical axis type are adopted. The outline of the horizontal axis Pelton turbine shown in FIG. 2 will be described below. The pressure water from the penstock 10 is distributed to the two nozzles 1 and 2 by the inlet bent pipes 11a and 11b and accelerated by the respective nozzles 1 and 2 to form the high speed jets 12a and 12b, and the water is added to the bucket 5a. After working, it is discharged into the lower discharge channel 14. During normal operation, the needles 1a and 2a in the nozzles 1 and 2 are opened and closed by the servomotors 1c and 2c provided in the nozzles 1 and 2 according to the load, and the flow rates thereof are adjusted. Each nozzle 1,
Deflectors 1b and 2b are rotatably supported by the nozzles 1 and 2 between the runner 5 and the runner 5, and when the load suddenly decreases or a failure occurs, the servomotor 6
Via the link mechanism 7 by the respective deflectors 1b, 2
b is interlocked and simultaneously rotated to deflect the jet from the direction of the bucket 5a, thereby controlling the increase in the rotational speed of the water turbine. On the other hand, control of the needles 1a, 2a and the deflectors 1b, 2b, for example, the case of closing will be described with reference to FIG. When the oil switching valve 103 is raised in the arrow direction A, the pressure oil flows in the pipe, the piston in the servomotor 6 moves in the arrow direction A, and the deflector 1b is rotated rightward to close and the deflector 1b. The turning power of the tracking cam via the lever
It is transmitted to 1E. The tracking cam 1e rotates in the direction of arrow A with the support seat 1X supporting the needle 1a in the nozzle 1 as a fulcrum, the cam rod moves in the needle pressure distribution valve 1f, and the pressure oil in the pressure oil tank 104 is switched off cam. Needle servo motor 1 via valve 102
Supply to C and press needle piston 1Y to
a moves in the direction of closing the nozzle 1 and maintains a constant opening, and the discharge operation is continued from the nozzle 1 communicating with the water tank. When the nozzle 1 is opened, the direction of the pressure oil arrow may be opposite to the above-described arrow direction A. By the way, from heavy load with high power demand to light load,
When the rotation speed of the water turbine increases and the frequency rises above the system frequency under heavy load, the frequency rise detection device (this device operates when the system frequency rises abnormally above the system frequency) is stopped by the off-cam switching valve 102. The command is input and the off-cam switching valve 102 is stopped. Then, needle 1a
While the nozzle 1 is moving in the direction of closing the nozzle 1, the needle 1a does not move to the control position, the nozzle 1 does not have a constant opening degree, and the discharge of water cannot be constant. However, in the above-mentioned conventional technology, since the tracking cam and the needle are released from the interlock depending on the frequency increase value, a failure stop in which a frequency increase does not occur, that is, a failure stop due to a mechanical failure causes the deflector to remain connected to the system. Since the system is disconnected suddenly after it is fully closed and the system is not closed, the frequency does not rise.When such a failure stop occurs, the off-cam switching valve does not operate and the tracking cam and needle interlock are released. Since it is not possible, the needle is fully closed like the deflector, and it is impossible to achieve the purpose of continuing the discharge operation by flowing or cutting off the water only by the deflector. Further, once the tracking cam and the needle are released from the interlock, and after fixing the needle to a certain opening, the needle opening is not controlled at all with respect to the amount of spillage from the water level of the aquarium that changes sequentially,
Since a fixed amount of water is always discharged, there is a risk that an overflow of the water tank or an abnormal decrease in the water level of the water tank will occur, making it impossible to restart the tank. Furthermore, since the tracking cam and needle are released and used by the off-cam switching valve, when switching from the released state to the use state, there is a deviation from the normal interlocking state. It is almost impossible to prevent this. Therefore, when the interlocking is restarted, the needle operates in a direction of canceling this deviation, which causes a problem of load fluctuation. INDUSTRIAL APPLICABILITY The present invention enables a discharge operation by a needle under any condition when a discharge operation is required in a Pelton turbine, can constantly control the discharge amount, and can also shift from discharge operation to load operation. An object of the present invention is to provide a control device for a Pelton turbine that enables smoothness and improves the safety of a power plant without an spillway. (Means for solving the problem) The high signal selection circuit 100 provided between the tracking cam 1e and the needle pressure distribution valve 1f of the present invention is used when the water level is higher or lower than the set water level of the water tank. A surplus water amount setting cam 13 that rotates according to opening and closing to set a setting position, a tracking cam 1e
The tracking cam 12 rotates according to the opening and closing of the track, and the tracking cam 12 descends according to the rotation of the residual water amount setting cam 13 to set the open and close setting position, and moves up and down according to the rotation of the tracking cam 12. The setting lever mechanism 100A that stops the descent at the setting position moves up and down according to the opening and closing directions of the setting lever mechanism 100A, and the two-way switching valve 11 switches the pressure oil to move up and down in the opening and closing directions. It consists of an adjusting lever mechanism 100B that holds the setting servo motor 10 in the position, and sends the pressure oil of the needle pressure distributing valve 1f to the needle servo motor 1c by the setting position signal of the setting servo motor 10 to move the piston 1Y to the setting position. The purpose is to maintain the water level in the upper water tank at the set water level by opening the needle 1a at the set position of the nozzle 1 and discharging water.

【作用】[Action]

このように、本発明によれば、追尾カム12の回動力は
常に余水量設定カム13の設定位置に制限されるので、追
尾カム12のロッドはこれ以上を回動出来ず、追尾用カム
1eのロッドをニードル配圧弁1f内の設定位置までしか移
動できず、ニードル1aをノズル1の設定位置で放水し、
上水槽の水位を設定水位に維持するようにしたので、常
に、ノズル1から一定の放水が出来るようになった。 〔実施例〕 以下、本発明の一実施例を説明する。 第1図は本発明の系統図であって、従来装置に比べ
て、ニードル配圧弁1fと追尾用カム1eの間に高信号選択
回路100を設けた点が異なる。高信号選択回路100と加算
器100Kの間に設けたスイッチ100Sは2水系統のうちどち
らかを使用する場合の切り替えスイッチである。 余水量設定器101で上水槽の設定水位に応じて設定位
置を決める。例えば上水槽の90(%)の水位を設定水位
とし、設定水位より水が多く上水槽より溢出る場合、ニ
ードル1aをノズル1の放水口を開口する右方向に移動す
る。また設定水位より水が少なく上水槽に水を溜める場
合、ノズル1の放水口を閉める左方向(−)にニードル
1aを移動させるように追尾用カム1eが回動をするが、こ
の回動力は余水量設定器101により余水量設定カム13の
設定位置で回動が制限された閉信号(−)を高信号選択
回路100から加算器100Kに入力する。加算器100Kからの
閉信号(−)に応じてニードル配圧弁1f及びニードルサ
ーボモータ1cが閉方向の設定位置まで移動した信号
(+)をフィードバックして、加算器100Kで常に±0に
なるように制御をして、ニードル1aをノズル1の設定位
置で開口して、上水槽の水位を設定水位に維持するよう
にしている。 又、第4図は第3図に示す追尾用カム1eとニードル配
圧弁1fとの間に高信号選択回路100を配した本発明の要
部詳細図である。高信号選択器100はニードルの開度を
設定する開度設定用サーボモータ10と、二方向切換弁11
と、追尾用カムからの制御目標ニードル開度信号により
回転する追尾カム12と、余水量設定器からの制御目標ニ
ードル開度信号により回転する余水量設定カム13とから
構成され、レバー機構により連結されている。又、追尾
カム12および余水量設定カム13と設定レバー100Aを連結
するための力は各々のレバーに取り付けられ重錘により
与えられている。従つて、重錘よりも大きな上向きの力
が働くと容易に追尾カム12,余水量設定カム13と設定レ
バー100Aの連結は解除できる。 通常、ペルトン水車は、水位に応じた負荷を取る水位
調整運転を行なうのが一般的であるので、余水量設定器
101に水位調整運転用ニードル開度を設定して置けば、
追尾用カム1eと余水量設定器101から出力される制御目
標ニードル開度信号はほぼ同じである。尚、追尾用カム
1eからの信号は追尾用カム1eの前後にデフレクタ制御系
があるため制御遅れがあり、余水量設定器101からの信
号より若干遅れる。これにより追尾用カム1eからの信号
と余水量設定器101からの信号が干渉し問題を発生する
場合は、余水量設定器101からの信号を若干低開度にな
るように設定すれば容易に解決できる。この装置におい
て、水車の停止指令があるとデフレクタ1bは全閉動作す
るので、デフレクタに連動した追尾用カム1eからの制御
目標ニードル開度信号は閉鎖信号となり、追尾カム12も
カム高さが低くなる閉方向に回転する。一方、余水量設
定器には水位調整用ニードル開度が設定されているので
余水量設定器からの制御目標ニードル開度は水位が変化
しないかぎり、不変である。従つて、追尾カム12が閉方
向に回転するとレバー機構は重錘の力により追尾カム12
に連動して下方向に動き、点Xは点Zを支点として点Y
と共に下方向に動く。このレバー機構の動きにより二方
向切換弁11はラツプを切り、開度設定用サーボモータ10
の圧油を排油するので、開度設定用サーボモータ10は閉
側に動作し、ニードル配圧弁を閉側に駆動する。 この動作中、点Yも下動しているが、点Yと余水量設
定カム13の間にあるレバーBが余水量設定カム13と接触
し、運動状態となると余水量設定カム13は不変を保つて
いるので、レバーAに取り付けられた重錘より大きな上
方向の力が働き、レバーAと追尾カム12の連動を解除し
点Xの下動を停止させる。さらに、開度設定用サーボモ
ータ10は二方向切換弁11を中立状態にする様に動作を帰
還しているので、点Xの停止した位置、すなわち、余水
量設定カム13より与えられる余水量設定器からの制御目
標ニードル開度と一致すると、二方向切換弁11は中立状
態となり、開度設定用サーボモータ10の動作が止むつま
り、本発明の高信号選択回路によれば、追尾用カムのロ
ッドがニードル配圧弁内で移動する移動量が余水量設定
器の設定位置を越えた時、高信号選択回路を動作させ
て、追尾用カムのロッドをニードル配圧弁内の設定位置
まで移動し、ニードルをノズル内で設定位置に保持する
ようにしたので、系統周波数の上昇に係らず、常にノズ
ル1から一定の水の放流を続けるこが出来るようになっ
た。 更に、高信号選択回路100の動作を図4により、ニー
ドル1aがノズル1を閉方向に移動する場合を例に説明す
る。 設定水位より水が少なく上水槽に水を溜める場合、ニ
ードル1aをノズル1の放水口を閉じ方向に移動する。こ
の閉じ指令に応じて余水量設定器101より回動して余水
量設定カム13及び支点Zを介して昇降する設定レバー機
構100Aにより設定位置を決める。この状態で速度調整機
器100H及び103を経由してデフレクタ1bに閉指令が出さ
れると、追尾用カム1eが閉方向に回動するが、この回動
力は設定レバー機構100Aの設定位置までしか回動するこ
とが出来ない。 調整レバー機構100Bは鎖線位100Cまで移動し、二方向
切替弁11のパイロッド11Aが降下し、設定用サーボモー
タ10の油が二方向切替弁11の点線のように廃油11Cさ
れ、設定用サーボモータ10の油が無くなり、設定用サー
ボモータ10のパイロッド10Aが上昇し、それに応じて二
方向切替弁11が再び上昇し、調整レバー機構100Bとパイ
ロッド10Aとを設定位置100Dに維持する。 この結果、パイロッド10Aの設定位置信号(閉信号)
が図3のニードル配圧弁1fのロッドを右方向に移動し、
圧油をA系統に流し、ピストン1Yを放水口側に移動し
て、ニードル1aをノズル1の放水口を狭くする設定位置
に移動して放水し、上水槽の水位を設定水位に維持す
る。又設定水位より水が多く上水槽より溢出る場合に
は、上述と逆に圧油をB系統に流通させればよい。 本実施例によれば、放流運転から負荷運転への移行も
スムーズに行なえるので、余水路を省略した発電所の安
定性,安全性を向上できるペルトン水車の制御装置を提
供できる。 〔発明の効果〕 本発明によれば、放流運転が要求されたどの様な停止
にも放流運転の継続を可能とし、常時放流量を制御でき
るので適正な余水量を放流し、放流運転時の水槽水位の
異常変化を防止できる。
As described above, according to the present invention, since the turning power of the tracking cam 12 is always limited to the setting position of the extra water amount setting cam 13, the rod of the tracking cam 12 cannot rotate any further, and the tracking cam 12 cannot rotate.
The rod of 1e can move only to the set position in the needle pressure distribution valve 1f, and the needle 1a discharges water at the set position of the nozzle 1,
Since the water level in the upper water tank is maintained at the set water level, it is possible to constantly discharge a certain amount of water from the nozzle 1. [Example] An example of the present invention will be described below. FIG. 1 is a system diagram of the present invention, which is different from the conventional device in that a high signal selection circuit 100 is provided between the needle pressure distribution valve 1f and the tracking cam 1e. The switch 100S provided between the high signal selection circuit 100 and the adder 100K is a changeover switch when either one of the two water systems is used. The surplus water setting device 101 determines the set position according to the set water level of the water tank. For example, when the water level of 90% of the water tank is set as the set water level and more water than the set water level overflows from the water tank, the needle 1a is moved to the right to open the water outlet of the nozzle 1. When there is less water than the set water level and water is stored in the water tank, the needle is moved to the left (-) to close the water outlet of the nozzle 1.
The tracking cam 1e rotates so as to move the 1a, but this rotation power is a high signal indicating a closed signal (-) in which the rotation is restricted by the remaining water amount setting device 101 at the setting position of the remaining water amount setting cam 13. Input from the selection circuit 100 to the adder 100K. According to the closing signal (-) from the adder 100K, the signal (+) that the needle pressure distribution valve 1f and the needle servomotor 1c have moved to the set position in the closing direction is fed back so that the adder 100K always keeps ± 0. Is controlled to open the needle 1a at the set position of the nozzle 1 to maintain the water level in the upper water tank at the set water level. Further, FIG. 4 is a detailed view of the essential portions of the present invention in which the high signal selection circuit 100 is arranged between the tracking cam 1e and the needle pressure distribution valve 1f shown in FIG. The high signal selector 100 includes an opening setting servomotor 10 for setting the needle opening and a two-way switching valve 11
And a tracking cam 12 that rotates according to the control target needle opening signal from the tracking cam, and a spillage amount setting cam 13 that rotates according to the control target needle opening signal from the spillage volume setting device, and are connected by a lever mechanism. Has been done. Further, the force for connecting the tracking cam 12 and the surplus water amount setting cam 13 and the setting lever 100A is attached to each lever and given by a weight. Therefore, when an upward force larger than that of the weight acts, the connection between the tracking cam 12, the surplus water amount setting cam 13 and the setting lever 100A can be easily released. Normally, Pelton turbines perform a water level adjustment operation that takes a load according to the water level.
If you set the needle opening for water level adjustment operation to 101 and put it,
The control target needle opening signal output from the tracking cam 1e and the surplus water amount setting device 101 are substantially the same. A tracking cam
The signal from 1e has a control delay due to the deflector control system before and after the tracking cam 1e, and is slightly behind the signal from the surplus water amount setting device 101. As a result, if the signal from the tracking cam 1e interferes with the signal from the surplus water amount setting device 101 and causes a problem, it is easy to set the signal from the surplus water amount setting device 101 to a slightly low opening degree. Solvable. In this device, the deflector 1b is fully closed when there is a stop command for the water turbine, so the control target needle opening signal from the tracking cam 1e linked to the deflector becomes a closing signal, and the tracking cam 12 also has a low cam height. Rotate in the closing direction. On the other hand, since the water level adjusting needle opening is set in the remaining water amount setting device, the control target needle opening from the remaining water amount setting device remains unchanged unless the water level changes. Therefore, when the tracking cam 12 rotates in the closing direction, the lever mechanism causes the weight of the weight to cause the tracking cam 12 to move.
It moves downwards in conjunction with, and point X is point Y with point Z as a fulcrum.
Moves downward with. Due to the movement of this lever mechanism, the two-way switching valve 11 is turned off and the opening setting servomotor 10
Since the pressure oil is discharged, the opening setting servomotor 10 operates to the closing side and drives the needle pressure distribution valve to the closing side. During this operation, the point Y is also moving downward, but when the lever B between the point Y and the surplus water amount setting cam 13 comes into contact with the surplus water amount setting cam 13, the surplus water amount setting cam 13 remains unchanged. Since it is kept, a force in the upward direction larger than that of the weight attached to the lever A acts to release the interlocking between the lever A and the tracking cam 12 and stop the downward movement of the point X. Further, since the opening degree setting servomotor 10 feeds back the operation so as to make the two-way switching valve 11 in the neutral state, the position X at the stop position, that is, the remaining water amount setting provided by the remaining water amount setting cam 13 is set. When the control target needle opening from the device coincides with the control target needle opening, the two-way switching valve 11 is in a neutral state, and the operation of the opening setting servomotor 10 stops, that is, according to the high signal selection circuit of the present invention, When the amount of movement of the rod in the needle pressure regulating valve exceeds the setting position of the surplus water amount setting device, the high signal selection circuit is activated to move the rod of the tracking cam to the setting position in the needle pressure regulating valve. Since the needle is held at the set position in the nozzle, it is possible to constantly discharge a constant amount of water from the nozzle 1 regardless of the increase in the system frequency. Further, the operation of the high signal selection circuit 100 will be described with reference to FIG. 4 as an example in which the needle 1a moves the nozzle 1 in the closing direction. When the amount of water is less than the set water level and water is stored in the upper water tank, the needle 1a is moved in the direction in which the water outlet of the nozzle 1 is closed. The setting position is determined by the setting lever mechanism 100A which rotates from the spillage amount setting device 101 in accordance with the closing command and moves up and down via the spillage amount setting cam 13 and the fulcrum Z. In this state, when a closing command is issued to the deflector 1b via the speed adjusting devices 100H and 103, the tracking cam 1e rotates in the closing direction, but this turning power only turns to the setting position of the setting lever mechanism 100A. I can't move. The adjusting lever mechanism 100B moves to the chain line position 100C, the pilot rod 11A of the two-way switching valve 11 descends, the oil of the setting servomotor 10 is wasted 11C as shown by the dotted line of the two-way switching valve 11, and the setting servomotor The oil in 10 is exhausted, the pilot rod 10A of the setting servomotor 10 rises, and the two-way switching valve 11 accordingly rises again to maintain the adjusting lever mechanism 100B and the pilot rod 10A at the set position 100D. As a result, the set position signal (closed signal) of the pyroid 10A
Moves the rod of the needle pressure regulating valve 1f in FIG. 3 to the right,
The pressure oil is caused to flow into the system A, the piston 1Y is moved to the water discharge port side, the needle 1a is moved to a setting position where the water discharge port of the nozzle 1 is narrowed, and water is discharged, and the water level in the water tank is maintained at the set water level. Further, when there is more water than the set water level and it overflows from the water tank, the pressure oil may be passed through the B system contrary to the above. According to the present embodiment, since the discharge operation can be smoothly switched to the load operation, it is possible to provide the control device for the Pelton turbine that can improve the stability and safety of the power plant without the spillway. [Effect of the Invention] According to the present invention, the discharge operation can be continued at any stop for which the discharge operation is required, and the discharge amount can be controlled at all times so that an appropriate amount of spillage is discharged and the discharge operation is performed. It is possible to prevent abnormal changes in the water level of the aquarium.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のフローチヤート、第2図は
ペルトン水車の概要を示す説明図、第3図は従来の制御
装置の系統図、第4図は本発明の要部説明図である。 1,2……ノズル、1a,2a……ニードル、1b,2b……デフレ
クタ。
FIG. 1 is a flow chart of an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an outline of a Pelton turbine, FIG. 3 is a system diagram of a conventional control device, and FIG. 4 is an explanatory diagram of main parts of the present invention. Is. 1,2 ... Nozzle, 1a, 2a ... Needle, 1b, 2b ... Deflector.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】進退自在なニードル1a、前記ニードルの進
退で開閉された上水槽に連通するノズル1、前記ノズル
からの水を噴射するジエットをバケット5aに受けその衝
動で回転するランナ5、前記ジエット方向をランナから
反らす回動自在なデフレクタ1b、前記デフレクタの回動
に連動しニードルサーボモータ1cへの圧油を制御するニ
ードル配圧弁1fに作用して、前記ニードルを進退させる
追尾用カム1eを備えたペルトン水車において、 追尾用カム1eとニードル配圧弁1fとの間に設けた高信号
選択回路100は、上水槽の設定水位より水位が高い時及
び低い時に応じて開き及び閉じに応じて回動し設定位置
を設定する余水量設定カム13、追尾用カム1eからの開き
及び閉じに応じて回動する追尾カム12、 余水量設定カム13の回動に応じて降下し開き及び閉じ設
定位置を設定すると共に、追尾カム12の回動に応じて昇
降するのを当該設定位置で降下を止める設定レバー機構
100A、 設定レバー機構100Aの開き及び閉じ方向の昇降に応じて
昇降し、二方向切替弁11で圧油を切り替え、開き及び閉
じ方向に昇降し、設定位置に設定サーボモータ10を保持
する調整レバー機構100Bとより成り、 設定サーボモータ10の設定位置信号によりニードル配圧
弁1fの圧油をニードルサーボモータ1cに送り、ピストン
1Yを設定位置に移動して、ニードル1aをノズル1の設定
位置で開口して放水して、上水槽の水位を設定水位に維
持することを特徴とするペルトン水車の制御装置。
1. A needle 1a capable of advancing and retreating, a nozzle 1 communicating with a water tank opened and closed by advancing and retracting the needle, a jet 5 for jetting water from the nozzle into a bucket 5a, and a runner 5 rotating by its impulse, A rotatable deflector 1b that deflects the jet direction from the runner, a tracking cam 1e that moves the needle back and forth by acting on a needle pressure distribution valve 1f that controls the pressure oil to the needle servomotor 1c in conjunction with the rotation of the deflector. In the Pelton turbine equipped with, the high signal selection circuit 100 provided between the tracking cam 1e and the needle pressure regulating valve 1f is opened and closed depending on whether the water level is higher or lower than the set water level of the upper water tank. A spillage cam 13 that rotates to set the setting position, a tracking cam 12 that rotates in response to opening and closing of the tracking cam 1e, and a descent to open and close in accordance with the rotation of the spillage cam 13. Sets a set position, setting lever mechanism from moving up and down according to rotation of the tracking cam 12 stops the descent in the set position
100A, setting lever mechanism 100A moves up and down according to the opening and closing directions, and the two-way switching valve 11 switches the pressure oil, moves up and down directions to open and close, and holds the setting servomotor 10 at the setting position. It consists of the mechanism 100B, and sends the pressure oil of the needle pressure distribution valve 1f to the needle servomotor 1c by the setting position signal of the setting servomotor 10,
A control device for a Pelton turbine characterized in that 1Y is moved to a set position, the needle 1a is opened at the set position of the nozzle 1 and water is discharged to maintain the water level in the upper water tank at the set water level.
JP62110545A 1987-05-08 1987-05-08 Pelton turbine controller Expired - Lifetime JP2539426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110545A JP2539426B2 (en) 1987-05-08 1987-05-08 Pelton turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110545A JP2539426B2 (en) 1987-05-08 1987-05-08 Pelton turbine controller

Publications (2)

Publication Number Publication Date
JPS63277872A JPS63277872A (en) 1988-11-15
JP2539426B2 true JP2539426B2 (en) 1996-10-02

Family

ID=14538538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110545A Expired - Lifetime JP2539426B2 (en) 1987-05-08 1987-05-08 Pelton turbine controller

Country Status (1)

Country Link
JP (1) JP2539426B2 (en)

Also Published As

Publication number Publication date
JPS63277872A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
KR920001093B1 (en) Blade feathering system for wind turbines
JP2539426B2 (en) Pelton turbine controller
JP3828167B2 (en) Hydroelectric power plant suppression device
JPS60195384A (en) Controlling device for pelton wheel power plant
JP2744693B2 (en) Control device for water turbine flow
US4624622A (en) Fail-safe system for a reversible pump-turbine apparatus
JP2920384B2 (en) Pelton turbine generator
US2965764A (en) Control for multijet impulse turbine
JPH02286881A (en) Nozzle switching method for pelton hydraulic wheel
JP2950068B2 (en) Pelton turbine deflector controller
JPS6112116B2 (en)
EP0913577B1 (en) Reversible pump-turbine system
JPH0233474A (en) Control device for pelton turbine
JPS60204975A (en) Nozzle controlling apparatus for pelton waterwheel
CN109236554B (en) Guide vane closing system during pump storage unit fault and control method thereof
JP2816360B2 (en) Pelton turbine start-up control method and device
JPH0133668B2 (en)
JPS61167174A (en) Water-level adjusting apparatus
JP3247129B2 (en) Control device for water turbine
JP2005030286A (en) Control device of pelton turbine
JPH01147165A (en) Controller for pelton wheel
JPH05256247A (en) Pressure regulator valve control device for water turbine
JP2507914B2 (en) Underwater vehicle propulsion device
JPS5942882B2 (en) Control device
SU691583A1 (en) Turbine control apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term