JP2539279Y2 - Pure titanium or titanium alloy precision casting equipment - Google Patents

Pure titanium or titanium alloy precision casting equipment

Info

Publication number
JP2539279Y2
JP2539279Y2 JP4150091U JP4150091U JP2539279Y2 JP 2539279 Y2 JP2539279 Y2 JP 2539279Y2 JP 4150091 U JP4150091 U JP 4150091U JP 4150091 U JP4150091 U JP 4150091U JP 2539279 Y2 JP2539279 Y2 JP 2539279Y2
Authority
JP
Japan
Prior art keywords
mold
crucible
titanium
casting
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4150091U
Other languages
Japanese (ja)
Other versions
JPH04113146U (en
Inventor
廣 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Roentgen Industries Co Ltd
Original Assignee
Asahi Roentgen Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Roentgen Industries Co Ltd filed Critical Asahi Roentgen Industries Co Ltd
Priority to JP4150091U priority Critical patent/JP2539279Y2/en
Publication of JPH04113146U publication Critical patent/JPH04113146U/en
Application granted granted Critical
Publication of JP2539279Y2 publication Critical patent/JP2539279Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案は,純チタンまたはチタ
ン合金の歯科用補綴物などの小形精密鋳造品を鋳造する
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for casting small precision castings such as dental prostheses made of pure titanium or titanium alloy.

【0002】[0002]

【従来の技術】純チタンまたはチタンを主成分とする合
金からなるチタン材料は,耐食性にすぐれ生体とはきわ
めて安定で適合性のよい金属といわれ,また強度と延性
があり,熱膨脹が小さく軽いことなど歯科用金属として
最適と考えられる。しかし,チタンの融点は約1,70
0℃であり,溶融状態(標準鋳込温度1,800〜1,
900℃)では非常に高い活性度を有し,大気中の酸素
や窒素あるいはるつぼ材中のいろいろの元素と反応して
鋳造物を脆化させるので,義歯などの複雑で精巧な形状
の鋳造物を産業ベースで製造することはきわめて困難で
ある。しかし歯科用に最適な金属での精密鋳造物の活用
が強く要望される情況においてチタン精密鋳造技術の研
究が盛んに行われている現況である。筆者らも上記チタ
ン精密鋳造に関する研究を夜を日についで行って来た
が,当初研究の重点をチタンを融解するるつぼに置き,
るつぼ材中の酸化物から酸素を奪うか,またはるつぼ内
壁の気孔に残存している空気と反応して溶湯が酸化また
は窒化することを防止する方向で研究を行って来た。し
かるにるつぼの材質をチタン融解の際溶湯に反応しない
耐火材を用い,かつアルゴンガス置換によって気孔に残
存する空気を全く除去した条件においても完全に目的を
果すことができなかった。
2. Description of the Related Art Titanium material consisting of pure titanium or an alloy containing titanium as a main component is said to be a metal having excellent corrosion resistance and being extremely stable and compatible with living organisms, and having strength, ductility, small thermal expansion and lightness. It is considered optimal for dental metal. However, the melting point of titanium is about 1,70.
0 ° C and in a molten state (standard pouring temperature
At 900 ° C), it has a very high activity and reacts with oxygen and nitrogen in the atmosphere or various elements in the crucible material to embrittle the casting. It is extremely difficult to produce on an industrial basis. However, in the situation where there is a strong demand for the use of precision castings made of metal that is optimal for dental use, research on titanium precision casting technology is being actively conducted. The authors have also been conducting research on the above-mentioned titanium precision casting in the evening following the day, but initially focused on the crucible that melts titanium,
Research has been conducted to prevent oxygen from oxides in the crucible material or to prevent oxidation or nitridation of the molten metal by reacting with air remaining in the pores of the crucible inner wall. However, even if the material of the crucible was made of a refractory material that did not react with the molten metal during melting of titanium, and the air remaining in the pores was completely removed by purging with argon gas, the purpose could not be achieved completely.

【0003】したがって次に研究の対象を鋳型空洞部を
形成している埋没材に移した。すなわち従来用いていた
リン酸塩系埋没材の主成分は石英とクリストバライトお
よび石英とクリストバライトの混合物であり,上記石英
とクリストバライトがシリカであり,チタンの溶湯はこ
のシリカと反応し,シリカを分解し,チタンが酸化され
ることが判ってきた。したがってチタン溶湯に接触する
るつぼ・湯道および鋳型空洞部をリン酸塩系埋没材に比
し耐熱性にすぐれているマグネシア系埋没材でコーテン
グすることによって歯科用小物のチタン精密鋳造によう
やく成功の目途がついた。
[0003] Therefore, the subject of the study was then transferred to the investment material forming the mold cavity. In other words, the main components of the conventional phosphate investment are quartz and cristobalite and a mixture of quartz and cristobalite. The quartz and cristobalite are silica, and the molten titanium reacts with the silica to decompose the silica. It has been found that titanium is oxidized. Therefore, by successfully coating the crucible, runner and mold cavity in contact with the molten titanium with magnesia-based investment material, which has better heat resistance than phosphate-based investment material, titanium precision casting of small dental items was finally achieved. I have an eye for it.

【0004】しかるに実際の鋳造作業としてはるつぼ・
湯道および鋳型空洞部をマグネシウム系埋没材でコーテ
ングして,乾燥硬化するには,その大きさなどで1〜4
時間かかり,それをリン酸塩系埋没材で埋没し,乾燥硬
化させるのに約2時間要し,更にパタンワックス焼却に
約3時間の熱処理が必要である。このように鋳型の完成
までに約6〜9時間もの長時間がかかり,チタン鋳造の
実用化において鋳型製作の能率化が強く要望される現況
である。
However, as an actual casting operation, a crucible
To coat the runner and mold cavity with magnesium-based investment material and dry and harden,
It takes a long time, it takes about 2 hours to bury it in a phosphate-based investment material, dry and harden it, and furthermore, it takes about 3 hours of heat treatment to burn the pattern wax. As described above, it takes about 6 to 9 hours to complete the mold, and there is a strong demand for more efficient mold production in the practical use of titanium casting.

【0005】[0005]

【考案が解決しようとする課題】解決しようとする問題
点は,純チタンまたはチタン合金精密鋳造装置におい
て,融解した高温のチタン溶湯に反応せずチタンを酸化
させないマグネシア系埋没材によってるつぼ,湯道およ
び鋳型空洞部あるいは湯道・鋳型空洞部を被包形成し,
この被包部をリン酸塩埋没材で埋没せずに鋳型を作るこ
とによって良質のチタン鋳造品の鋳造の能率化を図ろう
とする点である。
The problem to be solved is that in a pure titanium or titanium alloy precision casting device, a crucible and a runway made of a magnesia-based investment material that does not react with molten high-temperature molten titanium and does not oxidize titanium. And the mold cavity or the runner / mold cavity is encapsulated and formed.
The point is to make the casting of a high quality titanium casting more efficient by making a mold without burying the encased portion with the phosphate investment material.

【0006】[0006]

【課題を解決するための手段】この考案は,鋳型の湯道
および鋳型空洞部をマグネシア系埋没材によって被包
し,この被包部を鋳型内部に形成した空間に収容するこ
とを最も主要な特徴とする。この考案の第一の構成は,
凸状鋳型を用いる高周波誘導加熱式加圧鋳造装置におい
て,マグネシア系埋没材によってるつぼを成型し,これ
に連通する湯道および鋳型空洞部を被包するとともに,
前記るつぼを耐火性筒状体に着脱自在に支承せしめ,か
つ前記被包部をこの筒状体内腔空間に収容してなる分離
型凸状鋳型を設けたものである。さらに別の構成はアー
ク放電または高周波誘導加熱式の別皿溶解加圧鋳造装置
において,鋳型の湯口に連通する湯道および鋳型空洞部
をマグネシア系埋没材で被包し,この被包部を鋳型外郭
部が形成する内部空間に収容するようにしたものであ
る。
The most important object of the present invention is to cover a mold runner and a mold cavity with a magnesia-based investment material, and to house the cover in a space formed inside the mold. Features. The first configuration of this invention is
In a high-frequency induction heating type pressure casting device using a convex mold, a crucible is molded with magnesia investment, and the runner and mold cavity communicating with it are covered.
The crucible is removably supported on a fire-resistant tubular body, and a separate convex mold is provided in which the envelope is accommodated in the tubular body space. Still another configuration is an arc discharge or high-frequency induction heating type separate plate melting and pressurizing apparatus, in which a runner communicating with a mold gate and a cavity of the mold are covered with a magnesia-based investment material, and the covered section is molded. It is designed to be accommodated in the internal space formed by the outer shell.

【0007】[0007]

【実施例】図1は,この考案の第一の構成にかかる純チ
タンまたはチタン合金精密鋳造装置の一実施例すなわち
凸状鋳型を用いる高周波誘導加熱式加圧鋳造装置の鋳造
部(1)の縦断面図である。この装置の真空排気系およ
びアルゴンガス供給系は既に出願した実願昭61−第8
0492号「加圧鋳造装置」の明細書に詳記しているの
で,ここでは図示を省略する。この考案の要部はチタン
を鋳造する分離型凸状鋳型(2)であり,この鋳型
(2)の説明に先立ち,鋳造部(1)の構成を概略説明
する。耐火性筒状体(3)で囲った加熱室(4)は上部
をのぞき窓(5)で密封し,外周に高周波誘導コイル
(6)を巻回している。加熱室(4)の下端はたとえば
アスベスト成型材にてなる台座(7)に係合し,下部開
口部(8)を形成している。上記分離型凸状鋳型(2)
は鋳型受台(9)上に載置され,鋳型受台(9)は図示
しない空気圧シリンダおよびそのピストン(10)など
にて構成される鋳型昇降機構によって,昇降し,上昇時
設定圧で凸状鋳型(2)を上記台座(7)に圧接し,加
熱室(4)を封止する。鋳型下部基台(12)を収容す
る下室筐体(13)は図示しない筐体昇降機構のピスト
ン(14)によって昇降し,上昇時上記台座(7)の周
縁に係合したリング状部材(15)にOリング(16)
を介して圧接し,下室内部空間(17)を外気に対し気
密に封止する。加熱室(4)にもどり,その上部側壁
(18)には加熱室を所定真空圧に減圧する真空排気孔
(19)およびアルゴンガスの置換ならびに加圧アルゴ
ンガス導入出孔(20)が設けられ,さらに下室空間
(17)を密封するリング状部材(15)にも同じく真
空排気孔(22)およびアルゴンガス導入出孔(23)
が設けられている。これらそれぞれの排気孔およびガス
導入出孔の導管などは図示を省く。以上がこの考案に用
いる鋳造部(1)の構成であり,従来装置と異なる点は
台座(7)と下部基台(12)との間に気密封止のガス
ケットを設けていないことである。それはつぎに述べる
分離型凸状鋳型(2)を用いることにより,加熱室
(4)と下室(17)との間の気密しゃ断を要しないか
らである。
FIG. 1 shows an embodiment of a pure titanium or titanium alloy precision casting apparatus according to the first structure of the present invention, ie, a casting part (1) of a high frequency induction heating type pressure casting apparatus using a convex mold. It is a longitudinal cross-sectional view. The vacuum evacuation system and the argon gas supply system of this apparatus are described in Japanese Utility Model Application No. 61-8
No. 0492, "Pressure Casting Apparatus" is not described here. The main part of the present invention is a separation type convex mold (2) for casting titanium. Prior to the description of the mold (2), the configuration of the casting part (1) will be schematically described. The heating chamber (4) surrounded by the refractory cylindrical body (3) is sealed at the top with a viewing window (5), and a high-frequency induction coil (6) is wound around the periphery. The lower end of the heating chamber (4) is engaged with a pedestal (7) made of, for example, an asbestos molding material to form a lower opening (8). The above separated mold convex mold (2)
Is mounted on a mold receiving stand (9), and the mold receiving stand (9) is moved up and down by a mold elevating mechanism constituted by a not-shown pneumatic cylinder and its piston (10), and is raised at a set pressure at the time of ascending. The mold (2) is pressed against the pedestal (7) to seal the heating chamber (4). The lower chamber housing (13) for housing the lower mold base (12) is moved up and down by a piston (14) of a housing elevating mechanism (not shown), and a ring-shaped member (7) engaged with the periphery of the pedestal (7) when ascending. 15) O-ring (16)
To seal the lower chamber interior space (17) airtightly to the outside air. Returning to the heating chamber (4), the upper side wall (18) is provided with a vacuum exhaust hole (19) for reducing the pressure of the heating chamber to a predetermined vacuum pressure, and an argon gas replacement and pressurized argon gas inlet / outlet (20). The ring-shaped member (15) for sealing the lower chamber space (17) also has a vacuum exhaust hole (22) and an argon gas inlet / outlet (23).
Is provided. The exhaust port and the conduits for the gas inlet / outlet are not shown. The configuration of the casting part (1) used in the present invention has been described above. The difference from the conventional apparatus is that no gas-tight gasket is provided between the pedestal (7) and the lower base (12). This is because the use of the separation-type convex mold (2) described below does not require airtight shutoff between the heating chamber (4) and the lower chamber (17).

【0008】ここでこの考案の第一の構成の要部である
分離型凸状鋳型(2)の説明に入る。下部基台(12)
はたとえば石こう材(11)で成型され,その中心に耐
火性筒状体(24)としてたとえばアルミナの中空円筒
の上端を基台(12)の上面より所定の高さ(H)突出
せしめるとともに,円筒の下面を平坦にして立設してい
る。したがって円筒(24)の内腔(25)は空間であ
る。この円筒(24)の上端に着脱自在に載置されてい
る被包状鋳型部(26)がマグネシア系埋没材たとえば
一般にマグネシアセメントと称ばれている耐火材に硬化
促進剤やジルコニア金属粉などを添加した埋没材によっ
てコーテングすなわち被包したものである。この被包状
鋳型部(26)は上部にるつぼ(27)を成型し,これ
に連通する湯道(28)と鋳型空洞部(29)とを一体
的に被包している。前述した円筒(24)の突出高さ
(H)はるつぼ(27)内の金属材料が加熱室(4)内
のもっとも熱効率の良い位置に位置決めするためのもの
である。このように円筒(24)にるつぼ(27)を載
せると,被包部(30)は円筒内腔(25)の空間に安
定して収容される。
Now, description will be given of the separation type convex mold (2) which is a main part of the first structure of the present invention. Lower base (12)
Is molded from, for example, a gypsum material (11), and the upper end of, for example, a hollow alumina cylinder is protruded from the upper surface of the base (12) by a predetermined height (H) as a refractory tubular body (24) at the center thereof. The cylinder is standing upright with its lower surface flat. Thus, the lumen (25) of the cylinder (24) is a space. An envelope-shaped mold part (26) removably mounted on the upper end of the cylinder (24) is made of a magnesia-based investment material such as a refractory material generally called magnesia cement and a hardening accelerator or zirconia metal powder. It was coated or encapsulated by the added investment material. The encased mold part (26) forms a crucible (27) on the upper part, and integrally encloses a runner (28) communicating with the crucible (27) and a mold cavity (29). The protruding height (H) of the above-mentioned cylinder (24) is for positioning the metal material in the crucible (27) at the position with the highest thermal efficiency in the heating chamber (4). When the crucible (27) is placed on the cylinder (24) in this manner, the encased portion (30) is stably accommodated in the space of the cylindrical lumen (25).

【0009】つぎに上記構成における鋳造の工程の一例
を概説する。真空排気系とアルゴンガス供給系の詳細は
省略するが,アルゴンガス供給系の蓄圧チヤンバの内容
量が加熱室(4)のそれより数倍大きくしてあることだ
け特記しておく。加熱室(4)下室(17)をともに気
密にしたのち約10−3Torr位まで減圧し,つぎに
0.1kg/cmGのアルゴンガスにてガス置換す
る。このガス置換されたるつぼ(27)内でチタン材料
が融解し,注湯のタイミングにおいて加熱室(4)に約
2kg/cmGに蓄圧されたアルゴンガスを一気に圧
入し,溶湯(M)を加圧して,ガス置換され,残存する
空気などが全くない鋳型空洞部(29)に注湯される。
この加圧ガスがるつぼ(27)と円筒(24)との当接
部(32)を経て円筒内腔(25)を加圧するのである
が,その直前に鋳型空洞部(29)への注湯は完了して
いる。前述した被包状鋳型部(26)は一般的にマグネ
シア系埋没材で一体的に作るが,ばあいによってはるつ
ぼ(27)だけを吸水率零パーセントのアルミナ耐火材
で成型し,これに連通する湯道(28)と鋳型空洞部
(29)とをマグネシア系埋没材で被包することもあ
る。
Next, an example of a casting process in the above configuration will be outlined. Although the details of the vacuum evacuation system and the argon gas supply system are omitted, it should be noted that the capacity of the accumulator chamber of the argon gas supply system is several times larger than that of the heating chamber (4). After both the heating chamber (4) and the lower chamber (17) are air-tight, the pressure is reduced to about 10 −3 Torr, and then the atmosphere is replaced with 0.1 kg / cm 2 G of argon gas. The titanium material is melted in the gas-replaced crucible (27), and at the timing of pouring, the argon gas stored at a pressure of about 2 kg / cm 2 G is injected into the heating chamber (4) at a stroke to remove the molten metal (M). It is pressurized, gas-replaced, and poured into a mold cavity (29) having no residual air or the like.
The pressurized gas pressurizes the cylindrical bore (25) through the contact portion (32) between the crucible (27) and the cylinder (24), but immediately before pouring it into the mold cavity (29). Has been completed. The above-mentioned encased mold part (26) is generally made of a magnesia-based investment material, but in some cases, only the crucible (27) is molded from an alumina refractory material having a water absorption of 0% and communicates therewith. The runner (28) and the mold cavity (29) may be covered with a magnesia-based investment material.

【0010】図2は請求項2にかかる純チタンまたはチ
タン合金精密鋳造装置の一実施例であるアーク放電式加
圧鋳造装置の鋳造部(33)の縦断面図である。加熱室
(34)はケース(35)によって密閉状に形成され,
横側面に設けた操作口(36)は蓋(37)ののぞき窓
(38)によって閉じられる。加熱室(34)の下方に
台板(39)を介して鋳込み室(40)が配設される。
鋳込み室(40)は上部開口状の鋳込みケース(42)
内に形成され,支柱(43),係止部材(44)などに
よりケース(42)は台板(39)に圧接され,Oリン
グ(45)にて気密に封止される。台板(39)上の中
央に銅または銅合金製のリング状るつぼ(27)が載置
され,かつ台板(39)の下面にリング状ガスケット
(46)によって鋳型(47)が気密圧接される。鋳型
(47)は受台(48)と調整ボルト(49)によって
鋳込みケース(42)に支持される。るつぼ(27)の
中央部に容室(50)をすり鉢状に形成され,その底部
に溶湯通孔(52)があけられ,その周囲を囲むように
材料受面(53)が扁平に形成される。鋳型外郭部(5
4)は鉄製の鋳造リングであり,その上部に載設される
湯口(55)はその中心を上記るつぼの溶湯通孔(5
2)の中心鉛直線上に合致せしめて固定する。上記湯口
(55)はたとえばマグネシア系あるいはアルミナ系耐
火材で成型する。この考案の要部は上記湯口(55)に
連通する湯道(28)と,鋳型空洞部(29)とを前述
したマグネシアセメントに若干添加剤を加えたマグネシ
ア系埋没材によって適切な厚みに被包し,この被包状鋳
型空洞部(56)を上記鋳型外郭部(54)の内部空間
(25)に収容する点である。上記湯口(55)をマグ
ネシア系埋没材にするばあいは湯口(55)を成型する
と同時に湯道(28)および鋳型空洞部(29)を被包
する。加熱室(34)にもどってその上面の一部にアル
ゴンガス注入口(57)を設け,下面一部に真空排気孔
(58)を設ける。また鋳込み室(40)の一部に真空
排気孔(59)と,アルゴンガス注入口(60)とを設
ける。以上の構成においてるつぼ(27)の材料受面
(53)上に円柱形の材料(62)を立てて置き,アー
ク放電電極(63)を所定の間隔をおいて図示しない電
源部から所要の直流電圧を印加し,材料(62)を融解
するのであるが,詳説は省略する。
FIG. 2 is a longitudinal sectional view of a casting section (33) of an arc discharge type pressure casting apparatus which is one embodiment of the pure titanium or titanium alloy precision casting apparatus according to the second embodiment. The heating chamber (34) is formed in a closed state by a case (35),
The operation port (36) provided on the lateral side is closed by a viewing window (38) of the lid (37). A casting chamber (40) is provided below the heating chamber (34) via a base plate (39).
The casting chamber (40) is a casting case (42) having an upper opening.
The case (42) is pressed into contact with the base plate (39) by columns (43), locking members (44) and the like, and is hermetically sealed by an O-ring (45). A ring-shaped crucible (27) made of copper or a copper alloy is placed at the center on the base plate (39), and a mold (47) is hermetically pressed to the lower surface of the base plate (39) by a ring-shaped gasket (46). You. The mold (47) is supported on the casting case (42) by the pedestal (48) and the adjustment bolt (49). A container (50) is formed in the center of the crucible (27) in a mortar shape, a through hole (52) is formed in the bottom thereof, and a material receiving surface (53) is formed flat so as to surround the periphery. You. Mold outer part (5
Reference numeral 4) denotes an iron casting ring, and a gate (55) mounted on the upper part thereof has a center located at the center of the molten metal through hole (5) of the crucible.
Fix to the center vertical line of 2). The gate (55) is formed of, for example, a magnesia-based or alumina-based refractory material. The essential part of this invention is that the runner (28) communicating with the gate (55) and the mold cavity (29) are covered to a suitable thickness by the magnesia-based investment material obtained by adding a slight additive to the magnesia cement described above. The point is that the encapsulated mold cavity (56) is accommodated in the internal space (25) of the mold outer shell (54). When the gate (55) is made of magnesia-based investment material, the gate (55) is molded and at the same time, the runner (28) and the mold cavity (29) are covered. Returning to the heating chamber (34), an argon gas injection port (57) is provided in a part of the upper surface, and a vacuum exhaust hole (58) is provided in a part of the lower surface. Further, a vacuum exhaust hole (59) and an argon gas injection port (60) are provided in a part of the casting chamber (40). In the above configuration, the columnar material (62) is placed upright on the material receiving surface (53) of the crucible (27), and the arc discharge electrodes (63) are provided at a predetermined interval from a power supply (not shown) to a required DC. A voltage is applied to melt the material (62), but the detailed description is omitted.

【0011】以上の構成における鋳造工程の一例を概説
する。まず加熱室(34)と鋳込み蓋(40)とを減圧
してのち,アルゴンガス置換を行う。この工程で鋳型空
洞部(29)内までアルゴンガスふん囲気に保たれる。
つぎに加熱室(34)内を5kg/cmG,鋳込み室
(40)を3kg/cmG,つまり差圧2kg/cm
Gに保つ。つぎに材料(62)の溶解工程であるが,
この記述は省略し,つぎの鋳込み工程を説明する。るつ
ぼ(27)内の融解材料が適正な温度範囲を保たれなが
ら,その全部が一団となって,溶湯通孔(52)を通り
抜けて,湯口(55),湯道(28)を介して鋳型空洞
部(29)に鋳込まれる。このとき融解材料は上記加圧
力で加圧され続け,その沸騰を抑止される。また融解材
料は鋳込み室の加圧力3kg/cmGによって鋳込み
速度を緩和され,その差圧2kg/cmGと自重とに
よって適正な速度で注湯されるのである。
An example of the casting process in the above configuration will be outlined. First, the pressure in the heating chamber (34) and the casting lid (40) is reduced, and then the atmosphere is replaced with argon gas. In this step, the inside of the mold cavity (29) is maintained in an argon gas atmosphere.
Next, the inside of the heating chamber (34) is 5 kg / cm 2 G, and the casting chamber (40) is 3 kg / cm 2 G, that is, the differential pressure is 2 kg / cm.
Keep to the 2 G. Next is the step of dissolving the material (62).
This description is omitted, and the next casting step will be described. While the molten material in the crucible (27) is kept in an appropriate temperature range, all of them are formed as a group, pass through the molten metal through hole (52), and enter the mold through the gate (55) and the runner (28). Cast into the cavity (29). At this time, the molten material is kept pressurized by the above pressure, and its boiling is suppressed. Also, the molten material is poured at a proper speed by the pressure of 3 kg / cm 2 G in the casting chamber, the casting speed is moderated, and the differential pressure of 2 kg / cm 2 G and its own weight are used.

【0012】以上が請求項2にかかる実施例の一例であ
るが,別皿式加圧鋳造装置は上記アーク放電式に限ら
ず,高周波誘導加熱式のものもあり,この方式では図2
に示した加熱室と鋳込み室がそれぞれ別室を形成するも
のに限らず,加熱と鋳込みを同室内で行う装置もある。
しかしながらそれらいずれの装置において湯口に連通す
る湯道と鋳型空洞部とをマグネシア系埋没材によって被
包し,鋳型内部空間に収容する構成がこの考案の要部で
ある。
The above is an example of the embodiment according to claim 2, but the separate plate type pressure casting apparatus is not limited to the arc discharge type, but may be a high frequency induction heating type.
The heating chamber and the casting chamber described in (1) are not limited to ones forming separate chambers, but there are also apparatuses that perform heating and casting in the same chamber.
However, in each of these devices, the main part of the present invention is a configuration in which the runner communicating with the gate and the mold cavity are covered with magnesia investment material and housed in the mold interior space.

【0013】[0013]

【考案の効果】この考案は上記のように構成されている
ので,従来のリン酸塩系埋没材のシリカがチタンに反応
され,チタンが硬化する問題点を解決し,歯科用の義歯
などの小型チタン鋳造物をチタンに反応しないマグネシ
ア系埋没材にてその湯道や鋳型空洞部を被包するだけの
簡素な被包体によって完全でかつ良質に鋳造することが
できるのである。したがって上記被包体をリン酸塩系埋
没材で埋没する工程を省き,その材料費が節約でき,か
つ鋳型の製作が迅速化され,チタン鋳造能率を向上させ
ることができることとなった。
[Effects of the Invention] Since the invention is constructed as described above, it solves the problem that the conventional phosphate-based investment material, silica, is reacted with titanium and hardens the titanium. A small titanium casting can be cast completely and with good quality by a simple encapsulant that encloses the runner and mold cavity with a magnesia-based investment material that does not react with titanium. Therefore, the step of burying the above-mentioned envelope in the phosphate-based investment material can be omitted, the material cost can be saved, the production of the mold can be speeded up, and the titanium casting efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この考案の第一の構成にかかる純チタンまたは
チタン合金精密鋳造装置の一実施例鋳造部の縦断面図で
ある。
FIG. 1 is a longitudinal sectional view of a casting section of an embodiment of a pure titanium or titanium alloy precision casting apparatus according to a first configuration of the present invention.

【図2】この考案の別の構成にかかる純チタンまたはチ
タン合金精密鋳造装置の一実施例鋳造部の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of a casting section of an embodiment of a pure titanium or titanium alloy precision casting apparatus according to another configuration of the present invention.

【符号の説明】[Explanation of symbols]

2 分離型凸状鋳型 4 筒状加熱室 11 封着材 12 下部基台 17 下室内部空間 24 耐火性筒状体 25 上記24の内腔空間 26 被包状鋳型部 27 るつぼ 28 湯道 29 鋳型空洞部 30 被包部 34 加熱部 40 鋳込み部 47 鋳型 54 鋳型外郭部 55 湯口 56 被包状鋳型空洞部 2 Separable convex mold 4 Cylindrical heating chamber 11 Sealing material 12 Lower base 17 Lower interior space 24 Fireproof cylindrical body 25 Lumen space of above 24 26 Enclosed mold part 27 Crucible 28 Runner 29 Mold Cavity part 30 Encapsulation part 34 Heating part 40 Casting part 47 Mold 54 Mold outer part 55 Gate 56 Encapsulation mold cavity part

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 少量の金属材料を収容する上部突出部の
るつぼ(27)と,下部基台(12)の鋳型部とでなる
凸状鋳型を有し,前記るつぼを収容し電気的手段で加熱
する筒状加熱室(4)と,その下方に前記鋳型部を収容
する下室(17)を備え,そのそれぞれの内部空間を前
記凸状鋳型の形状に相似する凸字状に形成するととも
に,加熱室と下室とをそれぞれ独自に減圧または加圧し
てるつぼ内の融解金属を鋳型空洞部(29)に注湯する
ようにした装置において,マグネシア系埋没材によって
るつぼを成型するとともに,るつぼに連通する湯道(2
8)および鋳型空洞部を被包してなる被包状鋳型部(2
6)と,前記被包状鋳型部を着脱自在に支承し,そのる
つぼを加熱室内に所定の位置決めするとともに,その被
包部(30)を収容するに足る内腔空間(25)を形成
する耐火性筒状体(24)を封着材(11)にて立設し
てなる下部基台とからなる分離型凸状鋳型(2)を設け
たことを特徴とする純チタンまたはチタン合金精密鋳造
装置。
1. A crucible (27) having an upper projecting portion for accommodating a small amount of metal material and a convex mold comprising a mold portion of a lower base (12). A cylindrical heating chamber (4) for heating and a lower chamber (17) for accommodating the mold section are provided below the cylindrical heating chamber, and the respective internal spaces are formed in a convex shape similar to the shape of the convex mold. In a device in which the heating chamber and the lower chamber are independently depressurized or pressurized to pour the molten metal in the crucible into the mold cavity (29), the crucible is formed by magnesia-based investment material, and the crucible is formed. (2)
8) and an encapsulated mold part (2) enclosing the mold cavity.
6), the above-mentioned encased mold part is removably supported, the crucible is positioned in the heating chamber at a predetermined position, and a lumen space (25) sufficient to accommodate the encased part (30) is formed. Pure titanium or titanium alloy precision characterized by providing a separate convex mold (2) comprising a lower base formed by standing a refractory tubular body (24) with a sealing material (11). Casting equipment.
【請求項2】 るつぼに収容した少量の金属材料を加熱
手段によって融解する加熱部(34)と,その下方に所
定の間隔をおいて鋳込み部(40)を配し,この鋳込み
部に前記るつぼの鉛直下に湯口(55)を有する鋳型
(47)を設けるとともに,前記加熱部と鋳込み部とを
それぞれ独自に,あるいは同時に減圧または加圧して,
るつぼ内の融解金属を鋳型空洞部に注湯するようにした
装置において,前記鋳型の湯口に連通する湯道および鋳
型空洞部をマグネシア系埋没材によって被包してなる被
包状鋳型空洞部(56)と,前記湯口を載設するととも
に,その被包部を収容するに足る内部空間を形成する鋳
型外郭部(54)とを設けたことを特徴とする純チタン
またはチタン合金精密鋳造装置。
2. A heating section (34) for melting a small amount of metal material contained in a crucible by a heating means, and a casting section (40) at a predetermined interval below the heating section (34). A mold (47) having a sprue (55) is provided vertically below and the heating section and the casting section are independently or simultaneously decompressed or pressurized,
In a device in which molten metal in a crucible is poured into a mold cavity, a runner communicating with a gate of the mold and a mold cavity formed by covering a mold cavity with a magnesia-based investment material. 56) and a precision titanium or titanium alloy precision casting apparatus comprising: a mold outer shell (54) for mounting the gate and forming an internal space sufficient to accommodate the envelope.
JP4150091U 1991-03-22 1991-03-22 Pure titanium or titanium alloy precision casting equipment Expired - Lifetime JP2539279Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150091U JP2539279Y2 (en) 1991-03-22 1991-03-22 Pure titanium or titanium alloy precision casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150091U JP2539279Y2 (en) 1991-03-22 1991-03-22 Pure titanium or titanium alloy precision casting equipment

Publications (2)

Publication Number Publication Date
JPH04113146U JPH04113146U (en) 1992-10-02
JP2539279Y2 true JP2539279Y2 (en) 1997-06-25

Family

ID=31922274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150091U Expired - Lifetime JP2539279Y2 (en) 1991-03-22 1991-03-22 Pure titanium or titanium alloy precision casting equipment

Country Status (1)

Country Link
JP (1) JP2539279Y2 (en)

Also Published As

Publication number Publication date
JPH04113146U (en) 1992-10-02

Similar Documents

Publication Publication Date Title
SU1722218A3 (en) Casting method by vacuum suction into gas-tight mould, and device therefor
US5168918A (en) Casting of dental metals
GB2204515A (en) Countergravity metal casting
JP2912941B2 (en) Dental metal casting method
US4512383A (en) Die casting process and apparatus therefor
JP2539279Y2 (en) Pure titanium or titanium alloy precision casting equipment
US5513693A (en) Method for casting low specific gravity metal with ultra-fine features using high differential pressure
JPS62151253A (en) Continuous casting furnace
JP3141615B2 (en) Differential pressure casting equipment
JP2802372B2 (en) Ingot for casting
JPH02295668A (en) Ingot for casting
JPH0349788Y2 (en)
JPH05309470A (en) Low pressure casting apparatus
JPH01157759A (en) Method and device for precisely casting titanium or titanium alloy
WO1994004299A1 (en) Method of non-oxidation casting active metal oxide
JPH09314309A (en) Vacuum suction casting method
JPH09300061A (en) Reduced pressure suction casting device and cast parts using this
JPS597460A (en) Precision casting method
JPH0788623A (en) Simple precision casting method for injection formation
JPH01317672A (en) Stoke for low pressure casting
JPH0420429Y2 (en)
JPS6045974B2 (en) Casting method for titanium products
JPH02217153A (en) Vessel for holding melt
JPS61180642A (en) Vacuum casting method
JPS62176664A (en) Casting method for pure titanium or alloy essentially consisting of titanium