JP2538955B2 - Design method of directional coupling type optical multiplexer / demultiplexer - Google Patents

Design method of directional coupling type optical multiplexer / demultiplexer

Info

Publication number
JP2538955B2
JP2538955B2 JP29637787A JP29637787A JP2538955B2 JP 2538955 B2 JP2538955 B2 JP 2538955B2 JP 29637787 A JP29637787 A JP 29637787A JP 29637787 A JP29637787 A JP 29637787A JP 2538955 B2 JP2538955 B2 JP 2538955B2
Authority
JP
Japan
Prior art keywords
waveguide
demultiplexer
optical multiplexer
type optical
coupling type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29637787A
Other languages
Japanese (ja)
Other versions
JPH01137203A (en
Inventor
扇太 鈴木
功雄 西
浩輔 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29637787A priority Critical patent/JP2538955B2/en
Publication of JPH01137203A publication Critical patent/JPH01137203A/en
Application granted granted Critical
Publication of JP2538955B2 publication Critical patent/JP2538955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、方向性結合形光合分波器の設計方法であ
り、特に一定の素子特性を有した方向性結合形光合分波
器を再現性よく製造することを可能にする設計方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a method for designing a directional coupling type optical multiplexer / demultiplexer, and particularly reproduces a directional coupling type optical multiplexer / demultiplexer having certain element characteristics. The present invention relates to a design method that enables manufacturing with good performance.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

第3図は、方向性結合形光合分波器の基本構造を示す
図であり、(a)は上面図、(b)は(a)のA-A′断
面図である。1は第1の導波路、2は第2の導波路、3
は間隔を設けた平行導波路から成る結合部、4-1及び4-2
はそれぞれ第1の導波路1の入射端及び出射端、5-1及
び5-2はそれぞれ第2の導波路2の入射端及び出射端、
6はクラッド層、7は基板である。第1の導波路1と第
2の導波路2の導波路パラメータは、ほぼ等しくなって
いる。結合部3の長さLを波長λ1の完全結合長の2N倍
(Nは自然数)、かつ波長λ2の完全結合長の2N+1倍
とすると、第1の導波路1の入射端4-1から入射された
波長λ1、λ2の光はそれぞれ第1の導波路1の出射端4-
2と第2の導波路2の出射端5-2から出射するので、第3
図の構成は方向性結合形光合分波器として動作する。
3A and 3B are diagrams showing the basic structure of the directional coupling type optical multiplexer / demultiplexer, wherein FIG. 3A is a top view and FIG. 3B is a sectional view taken along the line AA ′ in FIG. 1 is a first waveguide, 2 is a second waveguide, 3
Is a coupling part consisting of parallel waveguides with a space, 4-1 and 4-2
Are the entrance and exit ends of the first waveguide 1, 5-1 and 5-2 are the entrance and exit ends of the second waveguide 2, respectively.
Reference numeral 6 is a clad layer, and 7 is a substrate. The waveguide parameters of the first waveguide 1 and the second waveguide 2 are substantially equal. Complete coupling length 2N times of the coupling portion 3 of a length wavelength L lambda 1 (N is a natural number), and when the 2N + 1 times the coupling length of the wavelength lambda 2, the first incident end 4-1 of the waveguide 1 The light having the wavelengths λ 1 and λ 2 incident from the output ends 4- of the first waveguide 1 respectively.
2 and the output end 5-2 of the second waveguide 2, so that the third
The configuration shown in the figure operates as a directional coupling type optical multiplexer / demultiplexer.

従来、方向性結合形光合分波器は石英系導波路を用い
て作られており、その設計方法は以下に述べるようなも
のである。10μm角程度の単一モード光導波路を2本平
行に配置して方向性結合器を設計する場合に、始めに単
体の導波路として特性が保証される寸法(導波路幅W,導
波路厚D)を決定する。次いで、光導波路間隔Sに対す
る完全結合長を所定の2波長λ1、λ2についてL1、L2
し、L1、L2が、L1:L2=2N+1:2Nとなるような光導波路
間隔Sを設定し、結合部3の長さLをL=2NL1=(2N+1)
L2になるように設定する。このようにして、2波長
λ1、λ2で動作する方向性結合形光合分波器が設計でき
る。
Conventionally, the directional coupling type optical multiplexer / demultiplexer is made by using a silica-based waveguide, and the design method is as described below. When designing a directional coupler by arranging two single-mode optical waveguides of about 10 μm square in parallel, first the dimensions (waveguide width W, waveguide thickness D that guarantee the characteristics as a single waveguide) ) Is determined. Then, the complete coupling length with respect to the optical waveguide spacing S is set to L 1 and L 2 for predetermined two wavelengths λ 1 and λ 2 , and L 1 and L 2 are set to L 1 : L 2 = 2N + 1: 2N. The interval S is set, and the length L of the connecting portion 3 is L = 2NL 1 = (2N + 1)
Set to L 2 . In this way, a directional coupling type optical multiplexer / demultiplexer that operates at two wavelengths λ 1 and λ 2 can be designed.

しかし、このような設計手法においては、WとSとの
間に一定の関係をもたせずに設計しているため、現実の
製造工程において、W及びSの変動が生じた場合に、製
造された光合分波器の特性が設計通りのものにならない
という欠点があった。即ち、WとSとの間に特定の関係
を有さない方向性結合形光合分波器の従来設計法では、
導波路幅Wが導波路のエッチング加工中に設定値から変
動した場合に、導波路構造パラメータの変動が大きくな
る。その結果、光の強度分布状態が大きく影響を受け、
製造された方向性結合形光合分波器は素子の波長特性が
設計値から著しくずれてしまうという問題があった。
However, in such a designing method, since the design is made without having a fixed relationship between W and S, it is manufactured when W and S change in the actual manufacturing process. The optical multiplexer / demultiplexer has a drawback that the characteristics are not as designed. That is, in the conventional design method of the directional coupling type optical multiplexer / demultiplexer that does not have a specific relationship between W and S,
When the waveguide width W varies from the set value during the etching process of the waveguide, the variation of the waveguide structure parameter becomes large. As a result, the light intensity distribution is greatly affected,
The manufactured directional coupling type optical multiplexer / demultiplexer has a problem that the wavelength characteristics of the device deviate significantly from the designed values.

この問題を解決するために、従来は一つの手法とし
て、素子特性の再現性を向上するため導波路の加工精度
を著しく高めることが検討されていた。又、別の手法と
しては加工後の導波路構造パラメータを測定し,それに
適した上側クラッド層の屈折率n2を選択するという調整
法も行われていた(K.Imoto,H.Sano and M.Miyazaki:
“Guided-wave multi/demultiplexers with compensati
on for center wavelength shift by fabrication pro
cess fluctuations",Electron.Lett.,1987,23,14,pp.73
5-736,)。しかし、この方法は、素子を別個に調整しな
くてはならないという問題と、2波長両方を完全に調整
できないという問題があった。
In order to solve this problem, conventionally, as one method, it has been studied to remarkably improve the processing accuracy of the waveguide in order to improve the reproducibility of the device characteristics. As another method, there was also an adjustment method in which the waveguide structure parameter after processing was measured and the appropriate refractive index n 2 of the upper cladding layer was selected (K. Imoto, H. Sano and M. .Miyazaki:
“Guided-wave multi / demultiplexers with compensati
on for center wavelength shift by fabrication pro
cess fluctuations ", Electron. Lett., 1987, 23, 14, pp. 73
5-736,). However, this method has a problem that the elements have to be adjusted separately and a problem that both two wavelengths cannot be adjusted completely.

このように、従来の素子設計では、実際に製造した場
合に良好な波長特性を有する光合分波器を得ることがで
きず。その改善も、素子設計の改善によらず、製造方法
を改善することに主眼がおかれていて、新たな設計手法
は提案されていなかった。
As described above, with the conventional element design, an optical multiplexer / demultiplexer having good wavelength characteristics cannot be obtained when actually manufactured. The improvement is focused on improving the manufacturing method regardless of the improvement of the element design, and no new design method has been proposed.

〔発明の構成〕[Structure of Invention]

本願発明は、設計段階において、まず導波路幅Wと導
波路間隔Sとの間に特定の関係を満足するように定めた
場合に、良好な波長特性を満足する構造パラメータを決
定し得るという新たな知見に基づいてなされた、新設計
手法である。
According to the invention of the present application, in the design stage, when it is determined that a specific relationship between the waveguide width W and the waveguide spacing S is satisfied, it is possible to determine a structural parameter that satisfies a favorable wavelength characteristic. It is a new design method that was made based on such knowledge.

光合分波器として動作する方向性結合器の構造パラメ
ータ(導波路コアの屈折率n1,クラッドの屈折率n2,導
波路幅W,導波路厚D,導波路間隔S,結合部長L)の値を、
特定2波長に対して合分波が起こるように計算より求
め、得られた前記構造パラメータの組を、横軸に前記導
波路間隔Sをとり縦軸に前記結合部長Lをとったグラフ
上で、前記導波路幅W及び前記導波路コアの屈折率n1
グラフにおけるパラメータとして表し、設計チャートを
作成する。本願発明は、この設計チャート上で、結合部
長Lの導波路間隔Sに対する変化がほぼ零になり、かつ
導波路幅Wの変動と導波路間隔Sの変動が符号が反対で
絶対値が等しくなる点、即ち、 dL/dS≒0 dW/dS≒−1 を満足する点が示す構造パラメータで方向性結合形光合
分波器を製造する。
Structural parameters of the directional coupler operates as an optical demultiplexer (refractive index n 1 of the waveguide core, the refractive index n 2 of the cladding, the waveguide width W, electrical NamijiAtsu D, waveguide spacing S, bond manager L) The value of
A set of the obtained structural parameters is obtained by calculation so that the demultiplexing is generated for two specific wavelengths, and the obtained set of structural parameters is plotted on a graph with the waveguide spacing S on the horizontal axis and the coupling length L on the vertical axis. , The waveguide width W and the refractive index n 1 of the waveguide core are represented as parameters in the graph to create a design chart. According to the present invention, on this design chart, the change of the coupling length L with respect to the waveguide spacing S becomes substantially zero, and the variation of the waveguide width W and the variation of the waveguide spacing S have opposite signs and their absolute values are equal. A directional coupling type optical multiplexer / demultiplexer is manufactured with a structural parameter indicated by a point, that is, a point satisfying dL / dS≈0 dW / dS≈−1.

第2図に(中心波長の偏差)/(導波路幅の偏差)と
−(導波路幅の変化)/(導波路間隔の変化)の関係を
示す。n1を1.53、n2を1.46、Dを1μm、中心波長を1.
3μmとした。合わせて、グラフ中に本願発明と従来技
術の位置を示す。一般に、基板上に導波路を加工する場
合、導波路幅が変化すれば導波路間隔も変化する。この
時、導波路幅と導波路間隔の変化量は、符号が反対で絶
対値が同じである。つまり、−(導波路幅の変化)/
(導波路間隔の変化)はほぼ1になる。にもかかわら
ず、第2図中に示される様に従来技術ではこの点に対し
て配慮をしていないため、−(導波路幅の変化)/(導
波路間隔の変化)の値は、必ずしも、この条件を満足し
ていなかった。これに対して、本願発明は−(導波路幅
の変化)/(導波路間隔の変化)がほぼ1であり、しか
も、その時の(中心波長の偏差)/(導波路幅の偏差)
が最も0に近くなっている。よって、本願発明によって
求められる構造パラメータで方向性結合形光合分波器を
製造することにより、加工精度を上げることなく、所望
の素子特性を有した方向性結合形光合分波器を再現性良
く製造することができる。
FIG. 2 shows the relationship between (deviation in center wavelength) / (deviation in waveguide width) and − (change in waveguide width) / (change in waveguide interval). n 1 is 1.53, n 2 is 1.46, D is 1 μm, and the center wavelength is 1.
It was 3 μm. Together, the positions of the present invention and the prior art are shown in the graph. Generally, when a waveguide is processed on a substrate, the waveguide spacing changes as the waveguide width changes. At this time, the change amounts of the waveguide width and the waveguide interval have opposite signs and have the same absolute value. That is,-(change in waveguide width) /
(Change in waveguide spacing) is almost 1. Nevertheless, as shown in FIG. 2, the prior art does not consider this point, so the value of − (change of waveguide width) / (change of waveguide interval) is not always , Did not meet this condition. On the other hand, in the present invention, − (change in waveguide width) / (change in waveguide interval) is almost 1, and (deviation in center wavelength) / (deviation in waveguide width) at that time.
Is closest to 0. Therefore, by manufacturing the directional-coupling optical multiplexer / demultiplexer with the structural parameters required by the present invention, the directional-coupling optical multiplexer / demultiplexer having desired element characteristics can be reproduced with good reproducibility without increasing processing accuracy. It can be manufactured.

〔実施例〕〔Example〕

以下図面を用いて、本願発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

光合分波器として動作する方向性結合器の構造パラメ
ータ(導波路コアの屈折率n1,クラッドの屈折率n2,導
波路幅W,導波路厚D,導波路間隔S,結合部長L)の値を、
波長1.3μmと1.55μmに対して合分波が起こるように
計算より求め、得られた前記構造パラメータの組を、横
軸に前記導波路間隔Sをとり縦軸に前記結合部長Lをと
ったグラフ上で、前記導波路幅W及び前記導波路コアの
屈折率n1をグラフにおけるパラメータとして表し、設計
チャートを作成する。第1図にクラッドの屈折率n2=1.
46、導波路厚D=1μmの場合の設計チャートを示す。
この設計チャート上で、結合部長Lの導波路間隔Sに対
する変化がほぼ零になり、かつ導波路幅Wの変動と導波
路間隔Sの変動が符号が反対で絶対値が等しくなる点、
即ち、 dL/dS≒0 dW/dS≒−1 を満足する点が示す構造パラメータが決まる。以下、決
定した構造パラメータに基づいて方向性結合形光合分波
器を製造した例を示す。本実施例では、点Aに対応する
構造パラメータの組み合わせを用いて第3図と同様の構
造の方向性結合形光合分波器を製造した。基板7にはSi
ウェハを用いた。Siウェハ上に熱酸化法により4μmの
SiO2膜を形成し、この上にスパッタ法により7059ガラス
膜を1μm形成し、フォトリソグラフィ技術と反応性イ
オンエッチング技術を用いてストライプ状に加工した後
にスパッタ法によりSiO2膜をさらに4μm形成して導波
路1,2とした。導波路1,2の幅Wは1.2μm、厚さDは1
μm、導波路間隔Sは1.44μm、結合部長Lは554.8μ
mである。又導波路コアの屈折率n1は1.53、クラッドの
屈折率n2は1.46であり、合分波する設定波長は1.3μm
と1.55μmである。第1図の点A近傍では結合部長Lの
導波路間隔Sに対する変化がほぼ零になる。又、n1=1.
53の線上において、W=0.5,1.0,1.5,2.0μmの曲線と
の交点に対応する導波路間隔Sの値から、Wが0.5μm
変化した場合のSの変化を求めると、領域Iでは1.4μ
m、領域IIIでは0.2μmとWの変化との差が大きいが、
A点を含む領域IIでは、0.45μmとほぼWの変化と等し
く、導波路幅Wの変動を相殺するように導波路間隔Sも
変動する。さらに、詳細に検討すれば、A点においてdW
/dS≒−1となる。即ち、実際の加工上W+Sはフォト
リソグラフィに用いるマスクで決定され、その後の素子
加工工程中では一定であることを考慮すると、点A付近
で各々のパラメータの素子特性に対する感度が最小とな
る。また、このような点は結合部長Lの最小値近傍に存
在するので素子も小型化される。
Structural parameters of the directional coupler operates as an optical demultiplexer (refractive index n 1 of the waveguide core, the refractive index n 2 of the cladding, the waveguide width W, electrical NamijiAtsu D, waveguide spacing S, bond manager L) The value of
The set of the obtained structural parameters was obtained by calculation so that the wavelengths of 1.3 μm and 1.55 μm would be combined and demultiplexed, and the abscissa represents the waveguide spacing S and the ordinate represents the coupling length L. On the graph, the waveguide width W and the refractive index n 1 of the waveguide core are expressed as parameters in the graph, and a design chart is created. Figure 1 shows the refractive index of the cladding n 2 = 1.
46 shows a design chart when the waveguide thickness D = 1 μm.
On this design chart, the change of the coupling length L with respect to the waveguide spacing S becomes almost zero, and the variation of the waveguide width W and the variation of the waveguide spacing S have opposite signs and their absolute values are equal,
That is, the structural parameter indicated by the point satisfying dL / dS≈0 dW / dS≈−1 is determined. Hereinafter, an example of manufacturing a directional coupling type optical multiplexer / demultiplexer based on the determined structural parameters will be shown. In this example, a directional coupling type optical multiplexer / demultiplexer having the same structure as that shown in FIG. 3 was manufactured by using a combination of structural parameters corresponding to the point A. Si on substrate 7
A wafer was used. 4μm on Si wafer by thermal oxidation method
A SiO 2 film is formed, a 7059 glass film is formed to a thickness of 1 μm by a sputtering method, and a SiO 2 film is further formed to a thickness of 4 μm by a sputtering method using a photolithography technique and a reactive ion etching technique. Waveguides 1 and 2 are used. The width W of the waveguides 1 and 2 is 1.2 μm, and the thickness D is 1
μm, waveguide spacing S is 1.44 μm, coupling length L is 554.8 μm
m. The refractive index n 1 of the waveguide core is 1.53, and the refractive index n 2 of the clad is 1.46, and the set wavelength for multiplexing / demultiplexing is 1.3 μm.
And 1.55 μm. In the vicinity of the point A in FIG. 1, the change of the coupling length L with respect to the waveguide spacing S becomes almost zero. Also, n 1 = 1.
On the line 53, W is 0.5 μm from the value of the waveguide spacing S corresponding to the intersection with the curve of W = 0.5, 1.0, 1.5, 2.0 μm.
When the change of S when it changes is calculated, it is 1.4μ in the region I.
In the region m and region III, the difference between 0.2 μm and the change in W is large,
In the region II including the point A, the change of W is 0.45 μm, which is almost equal to the change of W, and the waveguide spacing S also changes so as to cancel the change of the waveguide width W. Furthermore, a closer examination shows that dW at point A
/ dS≈-1. That is, in consideration of the fact that W + S in actual processing is determined by the mask used for photolithography and is constant in the subsequent element processing step, the sensitivity of each parameter to the element characteristics becomes the minimum in the vicinity of point A. Further, since such a point exists near the minimum value of the coupling portion length L, the element is downsized.

第4図は、本発明の設計方法に基づき製造した光合分
波器の導波路幅Wの±0.1μmの変動に対する波長特性
変化を示している。又第5図は最適点からずれた点Bに
おける構造パラメータを用い製造した光合分波器の波長
特性変化を示している。第4図、第5図から分かるよう
に、本願発明では同じ±0.1μmの導波路幅Wの変動に
対して、波長特性変動を1/10以下に抑制することがで
き、極めて再現性よく一定の素子特性を有する方向性結
合形光合分波器が製造できた。
FIG. 4 shows a change in wavelength characteristic with respect to a change of ± 0.1 μm in the waveguide width W of the optical multiplexer / demultiplexer manufactured based on the designing method of the present invention. FIG. 5 shows changes in wavelength characteristics of the optical multiplexer / demultiplexer manufactured by using the structural parameters at the point B deviated from the optimum point. As can be seen from FIGS. 4 and 5, in the present invention, the wavelength characteristic variation can be suppressed to 1/10 or less with respect to the same variation of the waveguide width W of ± 0.1 μm, which is extremely reproducible and constant. A directional-coupling type optical multiplexer / demultiplexer having the above device characteristics was manufactured.

なお、本願発明の効果は本実施例の構造パラメータの
場合に限定されるものではなく、導波路コアの屈折率n1
が異なる場合においても有効であることは第1図より明
らかである。
The effect of the present invention is not limited to the case of the structural parameters of this embodiment, and the refractive index n 1 of the waveguide core is
It is clear from FIG. 1 that it is effective even when the values are different.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本願発明の設計方法に基づき方
向性結合形光合分波器を製造すれば、前述した構造パラ
メータの変動による素子特性への影響は最小に抑えられ
るため、従来のエッチング等による加工の精度を上げる
ことなく、又加工後の調整を必要とすることなく所望の
素子特性を有する方向性結合形光合分波器を再現性良く
製造することができ、歩留りが向上するといった利点が
ある。又、素子も小型化されるという利点がある。
As described above, when the directional coupling type optical multiplexer / demultiplexer is manufactured based on the designing method of the present invention, the influence on the element characteristics due to the variation of the structural parameters described above can be suppressed to the minimum, so that the conventional etching etc. It is possible to manufacture a directional coupling type optical multiplexer / demultiplexer having desired element characteristics with high reproducibility without increasing processing accuracy and without requiring adjustment after processing, and it is possible to improve yield. is there. In addition, there is an advantage that the element is downsized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本願発明の設計チャートの1例を示す図、第2
図は(中心波長の偏差)/(導波路幅の偏差)と−(導
波路幅の変化)/(導波路間隔の変化)の関係を示す
図、第3図は方向性結合形光合分波器の構造図、第4図
は本願発明の設計方法により製造した方向性結合形光合
分波器の導波路幅Wの変動に対する波長特性変化を示す
図、第5図は最適点からずれた構造パラメータに基づき
製造された方向性結合形光合分波器の導波路幅Wの変動
に対する波長特性変化を示す図である。 1……第1の導波路、2……第2の導波路、3……平行
直線導波路よりなる結合部、4-1……第1の導波路1の
入射端、4-2……第1の導波路1の出射端、5-1……第2
の導波路2の入射端、5-2……第2の導波路2の出射
端、6……クラッド層、7……基板。
FIG. 1 is a diagram showing an example of a design chart of the present invention, and FIG.
The figure shows the relationship between (deviation in center wavelength) / (deviation in waveguide width) and- (change in waveguide width) / (change in waveguide spacing), and FIG. 3 shows directional coupling type optical multiplexing / demultiplexing. FIG. 4 is a diagram showing the structure of the optical fiber, FIG. 4 is a view showing a change in wavelength characteristic with respect to a change in the waveguide width W of the directional coupling type optical multiplexer / demultiplexer manufactured by the designing method of the present invention, and FIG. It is a figure which shows the wavelength characteristic change with respect to the change of the waveguide width W of the directional coupling type | mold optical multiplexer / demultiplexer manufactured based on the parameter. 1 ... First waveguide, 2 ... Second waveguide, 3 ... Coupling part consisting of parallel straight waveguides, 4-1 ... Injection end of first waveguide 1, 4-2 ... Output end of the first waveguide 1, 5-1 ... second
Of the waveguide 2 of the above, 5-2 ... Outgoing end of the second waveguide 2, 6 ... Clad layer, 7 ... Substrate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2波長の光に対して光合分波器として動作
する方向性結合器が有する構造パラメータ(導波路のコ
アの屈折率n1,導波路のクラッドの屈折率n2,導波路幅
W,導波路厚D,導波路間隔S,結合部長L)の値を、前記2
波長に対して合分波が起こるように計算より求め、得ら
れた前記構造パラメータの組を、横軸に前記導波路間隔
Sをとり、縦軸に前記結合部長Lをとったグラフ上で、
前記導波路幅W及び前記導波路コアの屈折率n1をグラフ
におけるパラメータとして表し、設計チャートを作成
し、該設計チャート上で dL/dS≒0 dW/dS≒−1 を満足するように前記構造パラメータを決定することを
特徴とする方向性結合形光合分波器の設計方法。
1. Structural parameters of a directional coupler that operates as an optical multiplexer / demultiplexer for light of two wavelengths (refractive index n 1 of waveguide core, refractive index n 2 of clad of waveguide, waveguide width
W, waveguide thickness D, waveguide spacing S, coupling length L) is calculated as
Obtained by calculation so that multiplexing / demultiplexing occurs with respect to wavelength, the obtained set of structural parameters is plotted on a graph in which the horizontal axis represents the waveguide spacing S and the vertical axis represents the coupling length L.
The waveguide width W and the refractive index n 1 of the waveguide core are represented as parameters in the graph, a design chart is prepared, and dL / dS≈0 dW / dS≈−1 is satisfied on the design chart. A method of designing a directional coupling type optical multiplexer / demultiplexer characterized by determining structural parameters.
JP29637787A 1987-11-25 1987-11-25 Design method of directional coupling type optical multiplexer / demultiplexer Expired - Lifetime JP2538955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29637787A JP2538955B2 (en) 1987-11-25 1987-11-25 Design method of directional coupling type optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29637787A JP2538955B2 (en) 1987-11-25 1987-11-25 Design method of directional coupling type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPH01137203A JPH01137203A (en) 1989-05-30
JP2538955B2 true JP2538955B2 (en) 1996-10-02

Family

ID=17832762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29637787A Expired - Lifetime JP2538955B2 (en) 1987-11-25 1987-11-25 Design method of directional coupling type optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP2538955B2 (en)

Also Published As

Publication number Publication date
JPH01137203A (en) 1989-05-30

Similar Documents

Publication Publication Date Title
US5253319A (en) Planar optical waveguides with planar optical elements
EP0304709B1 (en) Waveguide type optical device
US6580862B2 (en) Optical waveguide circuit
JPH11174246A (en) Planar type optical waveguide
JPH09166716A (en) Planar optical waveguide element
JP3112246B2 (en) Array waveguide grating
KR100695602B1 (en) Optical waveguide coupler circuit device
US6553164B1 (en) Y-branch waveguide
JP2538955B2 (en) Design method of directional coupling type optical multiplexer / demultiplexer
US20050196117A1 (en) Reduction of polarization dependence in planar optical waveguides
JPH11202126A (en) Dielectric multilayer film filter
JP2961057B2 (en) Optical branching device
US6483964B1 (en) Method of fabricating an optical component
JP3258542B2 (en) Branch-joining optical waveguide
JP2557455B2 (en) Optical multiplexer / demultiplexer
JP2000231026A (en) Optical waveguide type optical demultiplexing multiplexing circuit
JP2000171652A (en) Optical waveguide type optical branching/multiplexing circuit
JP2967428B2 (en) Wavelength independent star coupler
JPH03245107A (en) Branching/multiplexing optical waveguide circuit
JP3996971B2 (en) Manufacturing method of optical waveguide filter
Cozens et al. Special fibres for sensing
JP3013010B2 (en) Optical fiber type polarizing element
JPH1195052A (en) Optical device
JPH04179905A (en) Waveguide type optical branching element
JP2570822B2 (en) Manufacturing method of optical waveguide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12