JP2537947C - - Google Patents
Info
- Publication number
- JP2537947C JP2537947C JP2537947C JP 2537947 C JP2537947 C JP 2537947C JP 2537947 C JP2537947 C JP 2537947C
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- piezoelectric element
- ultrasonic motor
- metal elastic
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 claims description 63
- 239000011347 resin Substances 0.000 claims description 63
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 38
- 239000000853 adhesive Substances 0.000 claims description 37
- 230000001070 adhesive Effects 0.000 claims description 37
- 230000001629 suppression Effects 0.000 claims description 7
- 230000035515 penetration Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000002783 friction material Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 8
- 238000010292 electrical insulation Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000005061 synthetic rubber Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920001225 Polyester resin Polymers 0.000 description 1
- 229920001721 Polyimide Polymers 0.000 description 1
- 229920002803 Thermoplastic polyurethane Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000029578 entry into host Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Description
【発明の詳細な説明】
産業上の利用分野
本発明は圧電体による超音波振動を利用した超音波モータに関するものである
。
従来の技術
一般に超音波モータは、電極を有する圧電体素子を接着固定した金属弾性体よ
りなる振動体と移動体とが加圧接触した構成であり、圧電体素子への電気入力に
よって、圧電体素子と振動体に第5図に示すような超音波振動の進行波を発生さ
せ、その振動体と移動体との摩擦力によって移動体を駆動させて機械エネルギー
を得る原理である。第5図において、1は圧電体素子であり、その表面に金属弾
性体2が接着固定されて、振動体を構成する。3は移動体であり、その表面に摩
擦材4が固定されている。圧電体素子1に電気入力を加えることによって金属弾
性体2にA方向の超音波振動の進行波が発生する。金属弾性体2の各質点はBの
ような楕円運動をしており、その各波頭は進行波の方向に対し、逆向きの横に動
く性質がある。進行波の谷の部分は進行波と同じ方向の横に動く性質がある。し
たがって、金属弾性体2の表面に置かれた移動体3は波頭の上部のみに接触して
、金属弾性体2との摩擦力によってC方向の横に駆動する。
このような超音波モータにおいて、金属弾性体2および移動体3の材質として
鉄やステンレスおよびアルミなどが使用されている。
圧電体素子1は所定の方向に分離された板状圧電セラミックの両方の表面に、
進行波を励起させるために所定の形状に複数個に分割された電極が付着形成され
ている。この電極が形成された板状圧電体素子の一方の面は、接着剤を用いて金
属弾性体2に接着固定されて振動体を構成している。
発明が解決しようとする課題
以上の構成よりなる超音波モータを高い湿度雰囲気中で駆動させた場合、圧電
セラミックの表面に形成された電極が電気絶縁不良を生じ、モータが駆動しなく
なる問題点がある。また、接着剤部の吸湿による接着力の劣下により、圧電体素
子と金属弾性体との接着が剥がれたり、また圧電セラミックが割れるという問題
点がある。
本発明は、これらの問題点に鑑み、高湿度雰囲気中において、電気絶縁不良の
発生がなく、耐湿信頼性に優れた超音波モータを提供することを目的とするもの
である。
また、高湿度雰囲気中において、圧電体素子の剥離や割れが生じなく、耐湿信
頼性に優れた超音波モータの提供を目的とするものである。
課題を解決するための手段
上記の目的を達成するために本発明は、電極が付着された板状圧電体素子の表
面を可撓性耐湿性樹脂で被覆して構成する。また、他の手段は、圧電体素子と金
属弾性との接着面に露出する接着剤表面を可撓性耐湿性樹脂で被覆して構成する
。また他の手段は、電極が付着された板状圧電体素子の表面および、圧電体素子
と金属弾性体との接着剤部表面を、可撓性耐湿性樹脂で被覆して構成する。
さらに他の手段は、電極が付着された板状圧電体素子の表面または(および)
、圧電体素子と金属弾性体との接着剤部表面を、可撓性樹脂で被覆し、さらにそ
の上に耐湿性樹脂で被覆して構成するものである。
作用
上記の構成によれば、電極が付着された板状圧電体素子の表面を可撓性耐湿性
樹脂で被覆することにより、電極部および電極間への水分の侵入が抑制されるた
めに、電極部の電気的絶縁が向上し、また、被覆樹脂が可撓性を有しているため
に圧電体素子の振動に応じて容易に変形が可能であるため共振周波数に与える影
響が少なく、さらに、被覆樹脂の亀裂や剥がれの発生がないなど耐湿信頼性に優
れた超音波モータを得ることができる。
また、圧電体素子と金属弾性体の接着剤表面を可撓性耐湿性樹脂で被覆するこ
とにより、接着剤部への水分の侵入が抑制されるために、接着力の劣化や圧電体
の割れが少なくなり、被覆樹脂が可撓性を有しているために圧電体素子と金属弾
性体の振動に応じて容易に変形が可能であるために共振周波数に与える影響が少
なく、さらに被覆樹脂の亀裂や剥がれの発生がないなど耐湿信頼性に優れた超音
波モータを得ることができる。
また、電極が付着された板状圧電体素子の表面および圧電体素子と金属弾性体
との接着剤部表面を、可撓性耐湿性樹脂で被覆することにより、電極部および接
着剤部への水分の侵入が抑制されるために、電極部の電気的絶縁が向上し、また
、接着剤部の接着力の劣化や圧電セラミックの割れが少なくなり、同時に被覆樹
脂
が可撓性を有しているために圧電体素子および金属弾性体の振動に応じて容易に
変形が可能であるために共振周波数に与える影響が少なく、さらに被覆樹脂の亀
裂や剥離の発生がないなど耐湿信頼性に優れた超音波モータを得ることができる
。
さらに、電極が付着された板状圧電体素子の表面または(および)、圧電体素
子と金属弾性体との接着剤部表面を、可撓性樹脂で被覆し、さらにその上に耐湿
性樹脂で被覆することにより、電極部および接着剤部への水分の侵入が抑制され
るために、電極部の電極的絶縁が向上し、また、接着剤部の接着力の劣化や圧電
体の割れが少なくなり、同時に、内層に可撓性樹脂を構成しているために圧電体
素子および金属弾性体に発生する振動を機械的に吸収し、共振周波数に与える影
響が少なく、さらに可撓性樹脂および耐湿性樹脂の亀裂や剥離の発生がないなど
耐湿信頼性に優れた超音波モータを得ることができる。
実施例
(実施例1)
本発明の耐湿信頼性に優れた超音波モータの主要部構成例、すなわち、圧電体
セラミック,電極,金属弾性体、移動体、および可撓性耐湿性樹脂被覆部の各積
層構造および配置関係の一例を第1図に示す。
図示する如く、所定の方向に分極された圧電セラミック11の両面に、複数個
に分割された電極12が付着形成されている。この電極が形成された板状圧電体
素子1の一方の面は、接着剤5を用いて金属弾性体2に接着固定されている。6
は可撓性耐湿性樹脂層であり、そのうち、61は電極が付着形成された板状圧電
体素子1の表面に被覆された可撓性耐湿性樹脂層であり、2は圧電体素子1と金
属弾性体2との接合部の接着剤5の露出する表面に被覆された可撓性耐湿性樹脂
層である。圧電体素子1を接着した金属弾性体2および可撓性耐湿性樹脂6とに
よって振動部7を構成する。移動部8は本体としての移動体3と動作面に摩擦材
4を固定し、この摩擦材4と金属弾性体2の表面とが加圧接触した構成である。
可撓性耐湿性樹脂としては特に制限はないがシリコーン樹脂,フッ素樹脂,合
成ゴム,ウレタン樹脂,可撓性ポリエステル樹脂などの可撓性耐湿性樹脂が使用
できる。
以下に、具体的な実施例によって、本発明をさらに詳しく説明する。
第2図aに示すような直径40mm,厚さ8mmの円板型超音波モータで構成
した。第2図aにおいて、超音波モータの振動部7は、銀製の厚さ5μmの電極
12が付着形成された厚さ0.5mmの円板型圧電セラミック11の表面に、ほ
ぼ同一直径であって表面に多数の突起セグメント21の円周配列を有するステン
レス製弾性体2の裏面をエポキシ樹脂製の接着剤5を用いて接着固定し、前記電
極12が付着形成された円板型圧電セラミック11の他の表面および前記接着剤
層5の露出する表面をシリコーン樹脂製の塗料を用いて0.5mmの厚さに被覆
塗布,乾燥してそれぞれ可撓性耐湿性樹脂層61および62を構成したものであ
る。突起セグメント21は振動部7を機械的に振動しやすくし、振動を大きくす
るために設けられる。対応する移動部8を構成する円板型ステンレス製移動体3
に複合プラスチックよりなる摩擦材4が接着固定されている。振動部7および移
動部8は、図示しないが適宜のバネの締め付け手段によって互いに加圧され、弾
性体2の突起21面と摩擦材4とが接触している。圧電体素子1の外観図を第2
b図に示すが、厚さ約0.5mmの円板状圧電セラミック11の表面に、銀塗料
を塗布,焼成した電極12が分割して形成されている。このような電極配置にお
いて、電極を2組に分けて結線し、時間的に90度位相を変えて、約70KHz
の共振周波数,電圧80Vの電力を入力することによって、円板の円周方向に4
波の進行波が励起される。
このようにして得た超音波モータの24℃60%RHにおける出力性能は、無
負荷回転数500rpm,起動トルク1200gf−cmであった。また40℃
,90%RHの高湿度雰囲気中で200時間、無負荷駆動させた場合、電極部の
リーク,モータの停止,圧電体の剥離や割れ等の異常は認められなかった。また
、可撓性耐湿性樹脂の亀裂の発生はなかった。さらに、その後の出力特性は24
℃で、無負荷回転数500rpm,起動トルク1200gf−cmであり、初期
と同じであった。
これに対して、上記の超音波モータ構成において、電極が形成された圧電体素
子の表面にシリコーン樹脂を被覆しない超音波モータは、40℃,90%RHの
高湿度雰囲気中で駆動させた場合、電極部がリークして超音波モータが駆動しな
くなった。
また、接着剤部の表面をシリコーン樹脂で被覆しない超音波モータは、40℃
,90%RHの高湿度雰囲気中で駆動させた場合、約100時間後に圧電体素子
と金属弾性体との接着が剥離し、また、圧電セラミックが割れて、超音波モータ
が駆動しなくなった。
以上の実施例と比較例から明らかなように、電極が付着形成された円板型圧電
セラミックの表面または(および)、圧電体素子と金属弾性体との接着剤層の表
面に可撓性耐湿性樹脂を被覆することにより、高湿度雰囲気中において、電極間
の絶縁不良がなく、また、接着力の劣化や圧電セラミックの破壊が生じなくなる
など耐湿信頼性に優れた超音波モータを得ることができる。
(実施例2)
本発明の耐湿信頼性に優れた超音波モータの主要部構成の他の一例を第3図に
示す。所定の方向に分極された圧電セラミック11の両面に、複数個に分割され
た電極12が付着形成されている。この電極が形成された板状圧電体素子1の一
方の面は、接着剤5を用いて金属弾性体2に接着固定されている。6は本発明の
特徴である2層で構成された可撓性耐湿性樹脂層であり、そのうち、61aは電
極が付着形成された板状圧電体素子1の表面に被覆された可撓性樹脂層であり、
その上面に耐湿性樹脂61bが被覆された構成である。62aは圧電体素子1と
金属弾性体2との接着剤5の露出する表面に被覆された可撓性樹脂層であり、そ
の上面に耐湿性樹脂層62bが被覆された構成である。圧電体素子1を接着した
金属弾性体2および可撓性耐湿性樹脂6とによって振動部7を構成する。移動部
8は本体としての移動体3の動作面に摩擦材4を固定し、この摩擦材4と金属弾
性体2の表面とが加圧接触した構成である。
可撓性樹脂61aおよび62aとしては、特に制限はないが、合成ゴム,ウレ
タンゴム,シリコーンゴムなどの可撓性樹脂が使用できる。耐湿性樹脂61bお
よび62bとしては、特に制限はないが、エポキシ樹脂,アクリル樹脂,ポリイ
ミド樹脂などの耐湿性樹脂が使用できる。以下に本発明を具体的実施例によって
、さらに詳しく説明する。
第4a図に示すような直径50mm,内径42mm,高さ5mmの円環型超音
波モータを構成した。第4a図において、超音波モータの振動部7は、合金製の
厚さ1μmの電極12が蒸着形成された厚さ0.3mmの円環状圧電セラミック
11の表面に、ほぼ同一直径であって表面に多数の突起セグメント21の円周配
列を有する鉄製弾性体2の裏面をエポキシ樹脂製の接着剤5を用いて接着固定し
、前記電極12が形成された円環状圧電体セラミック11の他の表面および前記
接着剤層5の露出する表面を合成ゴム製の塗料を用いて0.3mmの厚さに被覆
塗布,乾燥して、それぞれ可撓性樹脂層61aおよび62aを形成し、さらにそ
の上層に耐湿性エポキシ樹脂製の塗料を用いて0.2mmの厚さに被覆塗布,硬
化して、それぞれ耐湿性樹脂61aおよび62bを構成した。突起セグメント2
1は振動部7を機械的に振動しやすくし、振幅を大きくするために設けられる。
対応する移動部8を構成する円環状永久磁石製移動体3に複合プラスチックより
なる摩擦材4が接着固定されている。振動部7および移動部8は、磁力によって
加圧され、弾性体2の突起21面と摩擦材4とが接触している。圧電体素子1の
外観図を第4b図に示すが、圧電セラミック11の表面に、金を蒸着形成した電
極12が分割して形成されている。このような電極配置において、電極を2組に
分けて結線し、時間的に90度位相を変えて、約30KHzの共振周波数、圧電
40Vの電力を入力することによって、円周方向に7波の進行波が励起される。
このようにして得た超音波モータの24℃,60%RHにおける出力特性は、
無負荷回転数200rpm,起動トルク600gf−cmであった。また、40
℃,90%RHの高湿度雰囲気中で200時間、無負荷駆動させた場合、電極部
のリークやモータの停止、圧電体素子の剥離や割れ等の異常は認められなかった
。また、その後の出力特性は24℃,60%RHで測定した結果、初期と同じで
あり、出力特性の劣化は認められなかった。
これに対して、上記の超音波モータ構成において、電極が形成された圧電体素
子の表面に可撓性樹脂層および耐湿性樹脂層を被覆しない超音波モータは、40
℃,90%RHの高湿度雰囲気中で駆動させた場所、電極部がリークして超音波
モータが駆動しなくなった。
また、接着剤部の表面を可撓性樹脂層および耐湿性樹脂層で被覆しない超音波
モータは、40℃,90%RHの高湿度雰囲気中で駆動させた場合、約80時間
後に圧電体素子と金属弾性体との接着が剥離し、また、圧電体セラミックが割れ
て、超音波モータが駆動しなくなった。
以上の実施例と比較例から明らかなように、電極が形成された圧電セラミック
の表面または(および)、圧電体素子と金属弾性体との接着剤層の表面に可撓性
樹脂層を被覆し、さらにその上層に耐湿性樹脂層を被覆することにより、高湿度
雰囲気中において、電極間の絶縁不良がなく、また、接着力の劣化や圧電セラミ
ックの破壊が生じなくなるなど耐湿信頼性に優れた超音波モータを得ることがで
きる。
発明の効果
以上の説明から明らかな如く本発明は、電極が付着形成された板状圧電体素子
の表面を、可撓性樹脂で被覆して構成することにより、または、可撓性樹脂で被
覆後さらにその上に耐湿性樹脂層で被覆して構成することにより、高湿度雰囲気
中において、電極部および電極間への水分の浸入が抑制され、電極部の電極絶縁
性能が向上し、また、共振周波数の変動が少なく、該樹脂の亀裂がない等耐湿信
頼性に優れた超音波モータを得ることができる。
また、圧電体素子と金属弾性体との接着剤表面を、可撓性耐湿性樹脂で被覆し
て構成することにより、または、可撓性樹脂で被覆後さらにその上に耐湿性樹脂
層で被覆して構成することにより、高湿度雰囲気中において、接着剤部への水分
の侵入が抑制されるために、接着力の劣化や圧電体の割れが少なくなり、また、
共振周波数の変動が少なく、該樹脂の亀裂がない等耐湿信頼性に優れた超音波モ
ータを得ることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor using ultrasonic vibration by a piezoelectric body. 2. Description of the Related Art In general, an ultrasonic motor has a configuration in which a moving body and a vibrating body made of a metal elastic body having a piezoelectric element having electrodes fixed thereto are brought into pressure contact with each other. The principle is that a traveling wave of ultrasonic vibration is generated in the element and the vibrating body as shown in FIG. 5, and the moving body is driven by the frictional force between the vibrating body and the moving body to obtain mechanical energy. In FIG. 5, reference numeral 1 denotes a piezoelectric element, and a metal elastic body 2 is adhered and fixed to the surface of the piezoelectric element to form a vibrating body. Reference numeral 3 denotes a moving body, on which a friction material 4 is fixed. When an electric input is applied to the piezoelectric element 1, a traveling wave of ultrasonic vibration in the direction A is generated in the metal elastic body 2. Each mass point of the metal elastic body 2 has an elliptical motion like B, and each wave front has a property of moving laterally in a direction opposite to the traveling wave direction. The valley portion of the traveling wave has the property of moving sideways in the same direction as the traveling wave. Therefore, the moving body 3 placed on the surface of the metal elastic body 2 contacts only the upper part of the crest and is driven laterally in the direction C by the frictional force with the metal elastic body 2. In such an ultrasonic motor, iron, stainless steel, aluminum, or the like is used as the material of the metal elastic body 2 and the moving body 3. The piezoelectric element 1 is provided on both surfaces of a plate-like piezoelectric ceramic separated in a predetermined direction.
In order to excite the traveling wave, a plurality of divided electrodes having a predetermined shape are attached and formed. One surface of the plate-like piezoelectric element on which the electrodes are formed is adhered and fixed to the metal elastic body 2 using an adhesive to form a vibrating body. Problems to be Solved by the Invention When an ultrasonic motor having the above configuration is driven in a high-humidity atmosphere, the electrodes formed on the surface of the piezoelectric ceramic cause electrical insulation failure and the motor stops driving. is there. Further, there is a problem that the adhesion between the piezoelectric element and the metal elastic body is peeled off or the piezoelectric ceramic is cracked due to the deterioration of the adhesive force due to the moisture absorption of the adhesive portion. The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic motor which does not cause electrical insulation failure and has excellent humidity resistance reliability in a high humidity atmosphere. It is another object of the present invention to provide an ultrasonic motor having excellent humidity resistance without peeling or cracking of a piezoelectric element in a high humidity atmosphere. Means for Solving the Problems In order to achieve the above object, the present invention comprises a plate-like piezoelectric element to which electrodes are attached, which is covered with a flexible moisture-resistant resin. Another means is to coat the surface of the adhesive exposed on the bonding surface between the piezoelectric element and the metal elastic with a flexible moisture-resistant resin. In another means, the surface of the plate-shaped piezoelectric element to which the electrodes are attached and the surface of the adhesive portion between the piezoelectric element and the metal elastic body are covered with a flexible moisture-resistant resin. Still another means is that the surface of the plate-like piezoelectric element to which the electrode is attached or (and)
The surface of the adhesive part between the piezoelectric element and the metal elastic body is covered with a flexible resin, and further covered with a moisture-resistant resin. According to the above configuration, the surface of the plate-shaped piezoelectric element to which the electrodes are attached is covered with a flexible moisture-resistant resin, so that the invasion of moisture between the electrode portions and the electrodes is suppressed. The electrical insulation of the electrode portion is improved, and since the coating resin has flexibility, it can be easily deformed in accordance with the vibration of the piezoelectric element, so that the influence on the resonance frequency is small, and Thus, it is possible to obtain an ultrasonic motor having excellent moisture resistance reliability such as no cracking or peeling of the coating resin. In addition, since the surface of the adhesive between the piezoelectric element and the metal elastic body is covered with a flexible moisture-resistant resin, penetration of moisture into the adhesive portion is suppressed. And the coating resin has flexibility, so that it can be easily deformed according to the vibration of the piezoelectric element and the metal elastic body, so that the influence on the resonance frequency is small. It is possible to obtain an ultrasonic motor having excellent moisture resistance reliability such as no cracks or peeling. In addition, the surface of the plate-like piezoelectric element to which the electrodes are attached and the surface of the adhesive part between the piezoelectric element and the metal elastic body are covered with a flexible moisture-resistant resin, so that the electrode part and the adhesive part are covered. Since the intrusion of moisture is suppressed, the electrical insulation of the electrode part is improved, and the deterioration of the adhesive force of the adhesive part and the cracking of the piezoelectric ceramic are reduced, and at the same time, the coating resin has flexibility. Since it can be easily deformed in response to the vibration of the piezoelectric element and metal elastic body, it has little effect on the resonance frequency, and has excellent moisture resistance reliability such as no cracking or peeling of the coating resin An ultrasonic motor can be obtained. Further, the surface of the plate-like piezoelectric element to which the electrodes are attached and / or the surface of the adhesive part between the piezoelectric element and the metal elastic body are covered with a flexible resin, and furthermore, a moisture-resistant resin is further applied thereon. By coating, the penetration of moisture into the electrode portion and the adhesive portion is suppressed, so that the electrode-like insulation of the electrode portion is improved, and the adhesive force of the adhesive portion is not deteriorated and the piezoelectric body is less cracked. At the same time, since the flexible resin is formed in the inner layer, the vibration generated in the piezoelectric element and the metal elastic body is mechanically absorbed, the influence on the resonance frequency is small, and the flexible resin and the moisture resistant It is possible to obtain an ultrasonic motor having excellent moisture resistance reliability such as no cracking or peeling of the conductive resin. Example (Example 1) An example of a main configuration of an ultrasonic motor having excellent moisture resistance reliability according to the present invention, that is, a piezoelectric ceramic, an electrode, a metal elastic body, a moving body, and a flexible moisture resistant resin coating part. FIG. 1 shows an example of each laminated structure and arrangement relationship. As shown in the drawing, a plurality of divided electrodes 12 are formed on both surfaces of a piezoelectric ceramic 11 polarized in a predetermined direction. One surface of the plate-shaped piezoelectric element 1 on which the electrodes are formed is bonded and fixed to the metal elastic body 2 using an adhesive 5. 6
Is a flexible moisture-resistant resin layer, of which 61 is a flexible moisture-resistant resin layer covering the surface of the plate-shaped piezoelectric element 1 on which electrodes are attached, and 2 is a piezoelectric moisture-resistant resin layer. The flexible moisture-resistant resin layer is coated on the exposed surface of the adhesive 5 at the joint with the metal elastic body 2. The vibrating part 7 is constituted by the metal elastic body 2 to which the piezoelectric element 1 is adhered and the flexible moisture-resistant resin 6. The moving unit 8 has a structure in which a friction member 4 is fixed to a moving body 3 as a main body and an operation surface, and the friction material 4 and the surface of the metal elastic body 2 are in pressure contact. The flexible moisture-resistant resin is not particularly limited, but a flexible moisture-resistant resin such as a silicone resin, a fluorine resin, a synthetic rubber, a urethane resin, and a flexible polyester resin can be used. Hereinafter, the present invention will be described in more detail with reference to specific examples. As shown in FIG. 2 (a), a disk-type ultrasonic motor having a diameter of 40 mm and a thickness of 8 mm was used. In FIG. 2a, the vibrating portion 7 of the ultrasonic motor has substantially the same diameter on the surface of a 0.5 mm-thick disk-shaped piezoelectric ceramic 11 on which a silver 5 μm-thick electrode 12 is attached. The back surface of the stainless steel elastic body 2 having a circumferential arrangement of a large number of projection segments 21 on the front surface is bonded and fixed using an adhesive 5 made of epoxy resin, and the disk-shaped piezoelectric ceramic 11 on which the electrodes 12 are attached is formed. The other surface and the exposed surface of the adhesive layer 5 are coated with silicone resin paint to a thickness of 0.5 mm, applied and dried to form flexible moisture-resistant resin layers 61 and 62, respectively. It is. The protruding segment 21 is provided for facilitating mechanical vibration of the vibrating portion 7 and increasing vibration. Disk-shaped stainless steel moving body 3 constituting corresponding moving section 8
A friction material 4 made of a composite plastic is adhered and fixed. Although not shown, the vibrating portion 7 and the moving portion 8 are pressed against each other by an appropriate spring tightening means, and the surface of the protrusion 21 of the elastic body 2 and the friction material 4 are in contact with each other. The external view of the piezoelectric element 1 is shown in FIG.
As shown in FIG. 2B, an electrode 12 obtained by applying and baking a silver paint is formed on the surface of a disk-shaped piezoelectric ceramic 11 having a thickness of about 0.5 mm. In such an electrode arrangement, the electrodes are divided into two sets and connected, and the phase is changed by 90 degrees with respect to time to about 70 KHz.
By inputting a power of 80V with a resonance frequency of
The traveling wave of the wave is excited. The output performance of the ultrasonic motor thus obtained at 24 ° C. and 60% RH was a no-load rotation speed of 500 rpm and a starting torque of 1200 gf-cm. 40 ℃
When the apparatus was driven in a high-humidity atmosphere of 90% RH for 200 hours under no load, no abnormalities such as leakage of the electrode portion, stopping of the motor, peeling or cracking of the piezoelectric body were observed. In addition, no crack was generated in the flexible moisture-resistant resin. Further, the output characteristics after that are 24
At 0 ° C., the no-load rotation speed was 500 rpm and the starting torque was 1200 gf-cm, which were the same as the initial values. On the other hand, in the above ultrasonic motor configuration, the ultrasonic motor in which the surface of the piezoelectric element on which the electrodes are formed is not coated with the silicone resin is driven in a high humidity atmosphere of 40 ° C. and 90% RH. Then, the electrode portion leaked and the ultrasonic motor stopped driving. In addition, the ultrasonic motor which does not cover the surface of the adhesive portion with the silicone resin has a temperature of 40 ° C.
When driven in a high humidity atmosphere of 90% RH, the adhesion between the piezoelectric element and the metal elastic body was peeled off after about 100 hours, the piezoelectric ceramic was cracked, and the ultrasonic motor stopped operating. As is clear from the above Examples and Comparative Examples, the surface of the disk-shaped piezoelectric ceramic on which the electrodes are attached and / or the surface of the adhesive layer between the piezoelectric element and the metal elastic body are provided with a flexible moisture-resistant material. By coating with a conductive resin, it is possible to obtain an ultrasonic motor having excellent moisture resistance reliability such that there is no insulation failure between electrodes in a high-humidity atmosphere, and no deterioration in adhesive strength or breakage of piezoelectric ceramics occurs. it can. Second Embodiment FIG. 3 shows another example of the configuration of the main part of the ultrasonic motor having excellent moisture resistance reliability according to the present invention. A plurality of divided electrodes 12 are attached to both surfaces of a piezoelectric ceramic 11 polarized in a predetermined direction. One surface of the plate-shaped piezoelectric element 1 on which the electrodes are formed is bonded and fixed to the metal elastic body 2 using an adhesive 5. Reference numeral 6 denotes a flexible moisture-resistant resin layer composed of two layers, which is a feature of the present invention. Among them, 61a denotes a flexible resin coated on the surface of the plate-shaped piezoelectric element 1 on which electrodes are formed. Layers,
The upper surface is covered with a moisture resistant resin 61b. A flexible resin layer 62a is coated on the exposed surface of the adhesive 5 between the piezoelectric element 1 and the metal elastic body 2, and has a structure in which a moisture-resistant resin layer 62b is coated on the upper surface. The vibrating part 7 is constituted by the metal elastic body 2 to which the piezoelectric element 1 is adhered and the flexible moisture-resistant resin 6. The moving unit 8 has a configuration in which the friction material 4 is fixed to the operating surface of the moving body 3 as a main body, and the friction material 4 and the surface of the metal elastic body 2 are in pressure contact. The flexible resins 61a and 62a are not particularly limited, but flexible resins such as synthetic rubber, urethane rubber, and silicone rubber can be used. There is no particular limitation on the moisture resistant resins 61b and 62b, but moisture resistant resins such as epoxy resins, acrylic resins, and polyimide resins can be used. Hereinafter, the present invention will be described in more detail with reference to specific examples. An annular ultrasonic motor having a diameter of 50 mm, an inner diameter of 42 mm and a height of 5 mm as shown in FIG. 4a was constructed. In FIG. 4a, the vibrating portion 7 of the ultrasonic motor is provided on the surface of an annular piezoelectric ceramic 11 having a thickness of 0.3 mm on which an electrode 12 of a thickness of 1 μm made of an alloy is formed by vapor deposition. The back surface of the iron elastic body 2 having a circumferential arrangement of a large number of projection segments 21 is bonded and fixed using an adhesive 5 made of epoxy resin, and the other surface of the annular piezoelectric ceramic 11 on which the electrodes 12 are formed. Then, the exposed surface of the adhesive layer 5 is coated with a synthetic rubber paint to a thickness of 0.3 mm, applied and dried to form flexible resin layers 61a and 62a, respectively, and further formed on the upper layer. Using a coating made of a moisture-resistant epoxy resin, the coating was applied to a thickness of 0.2 mm and cured to form moisture-resistant resins 61a and 62b, respectively. Projection segment 2
Reference numeral 1 is provided to facilitate the mechanical vibration of the vibrating section 7 and increase the amplitude.
A friction material 4 made of composite plastic is adhered and fixed to the toroidal permanent magnet moving body 3 constituting the corresponding moving section 8. The vibrating part 7 and the moving part 8 are pressed by a magnetic force, and the surface of the protrusion 21 of the elastic body 2 and the friction material 4 are in contact. An external view of the piezoelectric element 1 is shown in FIG. 4b. On the surface of a piezoelectric ceramic 11, an electrode 12 formed by vapor deposition of gold is formed in a divided manner. In such an electrode arrangement, the electrodes are divided into two sets and connected, the phase is changed by 90 degrees with time, a resonance frequency of about 30 KHz, and a power of 40 V of the piezoelectric material are input, so that seven waves in the circumferential direction are formed. A traveling wave is excited. The output characteristics of the thus obtained ultrasonic motor at 24 ° C. and 60% RH are as follows.
The no-load rotation speed was 200 rpm, and the starting torque was 600 gf-cm. Also, 40
When the device was driven under no load for 200 hours in a high humidity atmosphere at 90 ° C. and 90% RH, no abnormality such as leakage of the electrode portion, stop of the motor, peeling or cracking of the piezoelectric element was observed. Further, the output characteristics thereafter were measured at 24 ° C. and 60% RH. As a result, the output characteristics were the same as those at the initial stage, and no deterioration of the output characteristics was observed. On the other hand, in the above-described ultrasonic motor configuration, the ultrasonic motor in which the surface of the piezoelectric element on which the electrodes are formed is not covered with the flexible resin layer and the moisture-resistant resin layer is 40%.
The electrode was leaked at a place driven in a high humidity atmosphere of 90 ° C. and 90% RH, and the ultrasonic motor stopped driving. An ultrasonic motor in which the surface of an adhesive portion is not covered with a flexible resin layer and a moisture-resistant resin layer, when driven in a high humidity atmosphere of 40 ° C. and 90% RH, after about 80 hours, has a piezoelectric element. The adhesive between the metal and the elastic metal was peeled off, and the piezoelectric ceramic was cracked, so that the ultrasonic motor could not be driven. As is clear from the above Examples and Comparative Examples, the surface of the piezoelectric ceramic on which the electrodes are formed and / or the surface of the adhesive layer between the piezoelectric element and the metal elastic body are covered with a flexible resin layer. In addition, by covering the upper layer with a moisture-resistant resin layer, in a high-humidity atmosphere, there is no insulation failure between the electrodes, and excellent in moisture-resistant reliability, such as deterioration of adhesive strength and breakage of the piezoelectric ceramic do not occur. An ultrasonic motor can be obtained. Effect of the Invention As is apparent from the above description, the present invention provides a method in which the surface of a plate-shaped piezoelectric element on which an electrode is attached and formed is covered with a flexible resin, or is covered with a flexible resin. After that, by further covering with a moisture-resistant resin layer, in the high humidity atmosphere, the infiltration of water between the electrode portion and the electrode is suppressed, and the electrode insulation performance of the electrode portion is improved, It is possible to obtain an ultrasonic motor having a small variation in resonance frequency and excellent in moisture resistance reliability such as no cracks in the resin. Further, the surface of the adhesive between the piezoelectric element and the metal elastic body may be covered with a flexible moisture-resistant resin, or may be covered with a flexible resin and then further covered with a moisture-resistant resin layer. By configuring, in a high humidity atmosphere, since the intrusion of moisture into the adhesive portion is suppressed, deterioration of the adhesive force and cracking of the piezoelectric body are reduced, and
It is possible to obtain an ultrasonic motor having a small variation in resonance frequency and excellent in moisture resistance reliability such as no cracks in the resin.
【図面の簡単な説明】
第1図と第3図は本発明の超音波モータの主要部構成の断面拡大図、第2図と
第4図は本発明の一実施例を説明する斜視図、第5図は超音波モータの原理を示
す動作説明図である。
1……圧電体素子、11……圧電セラミック、12……電極、2,21……振動
体、3……移動体、4……摩擦材、5……接着剤、6,61,62,61a,6
1b,62a,62b……可撓性耐湿性樹脂、7……振動部、8……移動部。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 3 are enlarged cross-sectional views of a main part of an ultrasonic motor according to the present invention, and FIGS. 2 and 4 are perspective views illustrating an embodiment of the present invention. FIG. 5 is an operation explanatory view showing the principle of the ultrasonic motor. 1 piezoelectric element, 11 piezoelectric ceramic, 12 electrode, 2, 21 vibrator, 3 moving body, 4 friction material, 5 adhesive, 6, 61, 62, 61a, 6
1b, 62a, 62b: flexible moisture-resistant resin, 7: vibrating section, 8: moving section.
Claims (1)
方の面が金属弾性体に接着固定されてなる表面に進行波を発生する超音波振動体
と、前記振動体に加圧接触する移動体とより構成され、前記振動体と前記移動体
との間の摩擦力を介して前記移動体を駆動する超音波モータにおいて、前記電極
が形成された板状圧電体素子の表面を前記振動体の振動に対応して変形可能な可
撓性を有し、かつ、水分の侵入を抑制する耐湿性を有する樹脂で被覆したことを
特徴とする超音波モータ。 (2)所定の方向に分極され所定の形状に電極が形成された板状圧電体素子の一
方の面が金属弾性体に接着固定されてなる表面に進行波を発生する超音波振動体
と、前記振動体に加圧接触する移動体とより構成され、前記振動体と前記移動体
との間の摩擦力を介して前記移動体を駆動する超音波モータにおいて、前記圧電
体素子と前記金属弾性体との前記接着剤部表面を前記振動体の振動に対応して変
形可能な可撓性を有し、かつ、水分の侵入を抑制する耐湿性を有する樹脂で被覆
したことを特徴とする超音波モータ。 (3)所定の方向に分極され所定の形状に電極が形成された板状圧電体素子の一
方の面が金属弾性体に接着固定されてなる表面に進行波を発生する超音波振動体
と、前記振動体に加圧接触する移動体とより構成され、前記振動体と前記移動体
との間の摩擦力を介して前記移動体を駆動する超音波モータにおいて、前記電極
が形成された板状圧電体素子の表面および、前記圧電体素子と前記金属弾性体と
の前記接着剤部表面を前記振動体の振動に対応して変形可能な可撓性を有し、か
つ、水分の侵入を抑制する耐湿性を有する樹脂で被覆したことを特徴とする超音
波モータ。 (4)樹脂が、下層が可撓性樹脂であり、その上層が耐湿性樹脂である2層構造
であることを特徴とする請求項1乃至3のいずれかに記載の超音波モータ。Claims: (1) A traveling wave is generated on a surface of a plate-shaped piezoelectric element which is polarized in a predetermined direction and has electrodes formed in a predetermined shape, and one surface of which is fixedly adhered to a metal elastic body. In an ultrasonic motor configured to include an ultrasonic vibrating body and a moving body that is in pressure contact with the vibrating body, and that drives the moving body through a frictional force between the vibrating body and the moving body, The surface of the plate-shaped piezoelectric element on which is formed is coated with a moisture-resistant resin that has flexibility that can be deformed in response to vibration of the vibrator and that suppresses intrusion of moisture. Ultrasonic motor. (2) an ultrasonic vibrator for generating a traveling wave on a surface of one side of a plate-shaped piezoelectric element which is polarized in a predetermined direction and has electrodes formed in a predetermined shape, which is adhered and fixed to a metal elastic body; An ultrasonic motor configured to drive the moving body through frictional force between the vibrating body and the moving body, wherein the piezoelectric element and the metal The surface of the adhesive part with a body is coated with a moisture-resistant resin that has flexibility that can be deformed in response to vibration of the vibrating body and that prevents moisture from entering. Sound wave motor. (3) an ultrasonic vibrator that generates a traveling wave on a surface formed by adhering and fixing one surface of a plate-shaped piezoelectric element that is polarized in a predetermined direction and has electrodes formed in a predetermined shape to a metal elastic body; In an ultrasonic motor configured to include a moving body that is in pressure contact with the vibrating body and that drives the moving body through a frictional force between the vibrating body and the moving body, The surface of the piezoelectric element and the surface of the adhesive portion between the piezoelectric element and the metal elastic body have flexibility such that the surface can be deformed in response to the vibration of the vibrating body, and the penetration of moisture is suppressed. An ultrasonic motor coated with a moisture-resistant resin. (4) The ultrasonic motor according to any one of claims 1 to 3, wherein the resin has a two-layer structure in which a lower layer is a flexible resin and an upper layer is a moisture-resistant resin.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2587837B1 (en) | Acoustic generator | |
JPS6058639B2 (en) | Piezoelectric bimorph or monomorph curved vibrator structure | |
TWI508577B (en) | Sound generator, sound generating device and electronic machine | |
JP2003527046A (en) | Packaged strain actuator | |
WO2004043617A1 (en) | Piezoelectric vibrator, production method therefor, and equipment provided with this piezoelectric vibrator | |
JP2537947C (en) | ||
JP2537947B2 (en) | Ultrasonic motor | |
JP2007185049A (en) | Vibrator and vibration wave drive unit | |
JP4311054B2 (en) | Piezoelectric actuator, device including the same, and method for manufacturing piezoelectric actuator | |
JPH0833097A (en) | Piezoelectric element | |
JP2919658B2 (en) | Ultrasonic motor | |
JP2671480B2 (en) | Ultrasonic motor | |
JPH055838Y2 (en) | ||
JP3164683B2 (en) | Ultrasonic motor | |
JP7361795B2 (en) | Ultrasonic radiation instruments and ultrasonic devices | |
JP2000245175A (en) | Vibration actuator | |
JPH0654557A (en) | Ultrasonic motor | |
JPS63178773A (en) | Ultrasonic wave motor | |
WO2020137265A1 (en) | Vibrating structure | |
JPH0453007Y2 (en) | ||
JPH0767365A (en) | Oscillatory wave driving equipment and its manufacture | |
JP3128307B2 (en) | Ultrasonic motor stator | |
RU2554591C2 (en) | Method to manufacture composite electroacoustic converter | |
JPH1056689A (en) | Piezoelectric sounding body | |
JP2022022735A (en) | Ultrasonic sensor |