JP2537317B2 - Hot working method for stainless steel slab - Google Patents

Hot working method for stainless steel slab

Info

Publication number
JP2537317B2
JP2537317B2 JP3254984A JP25498491A JP2537317B2 JP 2537317 B2 JP2537317 B2 JP 2537317B2 JP 3254984 A JP3254984 A JP 3254984A JP 25498491 A JP25498491 A JP 25498491A JP 2537317 B2 JP2537317 B2 JP 2537317B2
Authority
JP
Japan
Prior art keywords
slab
stainless steel
hot working
steel slab
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3254984A
Other languages
Japanese (ja)
Other versions
JPH0598346A (en
Inventor
祐司 三木
英就 北岡
三郎 森脇
昭 川原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3254984A priority Critical patent/JP2537317B2/en
Publication of JPH0598346A publication Critical patent/JPH0598346A/en
Application granted granted Critical
Publication of JP2537317B2 publication Critical patent/JP2537317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオーステナイト系ステン
レス鋼鋳片の熱間加工方法に関する。さらに詳しくは、
連続鋳造法によるステンレス鋼鋳片を1100℃以上に
加熱して熱間加工するに先だって、加熱前の鋳片を前処
理加工する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot working method for an austenitic stainless steel slab. For more information,
The present invention relates to a technique of pretreating a slab before heating before heating the stainless slab by a continuous casting method to 1100 ° C. or higher and hot working.

【0002】[0002]

【従来の技術】近年の急速な連続鋳造プロセスの普及に
より、ステンレス鋼板でも連続鋳造法から熱間圧延、冷
間圧延するプロセスが一般的となってきた。ステンレス
鋼板では、その表面の美しさから、他の鋼板と比べ外装
板として利用されることが多く、表面品質に対する要求
が特に厳しい。しかしながら、連続鋳造法においては、
モールドの上下振動(オシレーション)によって、モー
ルドと鋳片の間にパウダーを流入させるため、鋳片に周
期的な凹凸(オシレーションマーク)が形成され、この
凹部に形成される表面偏析(Ni、Pの濃化)に起因し
て、圧延、酸洗後に、木目模様状の欠陥が発生し、問題
となっている。このため、モールドの振動条件の最適化
によるオシレーションマークの軽減対策のみならず、例
えば、特開平1−321012号公報や特開昭61−1
57627号公報に開示されるような、鋳片のブラスト
処理による精整条件の最適化によって、木目模様状欠陥
を低減する試みがなされてきた。
2. Description of the Related Art Due to the rapid spread of continuous casting processes in recent years, the process of continuous casting, hot rolling and cold rolling has become common even for stainless steel sheets. Stainless steel sheets are often used as exterior plates compared to other steel sheets because of their beautiful surfaces, and the requirements for surface quality are particularly strict. However, in the continuous casting method,
The vertical vibration (oscillation) of the mold causes the powder to flow between the mold and the slab, so that periodic irregularities (oscillation marks) are formed on the slab and the surface segregation (Ni, Ni, Due to (P concentration), a grain-like defect occurs after rolling and pickling, which is a problem. For this reason, not only measures for reducing the oscillation marks by optimizing the vibration conditions of the mold but also, for example, JP-A-1-321012 and JP-A-61-1.
Attempts have been made to reduce wood grain pattern defects by optimizing the conditioning conditions by blasting a slab, as disclosed in Japanese Patent No. 57627.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来
は、鋳片ブラスト処理の条件を決定するにあたり、鋳片
の偏析深さに対応したブラスト処理条件を決定する指標
がなく、処理条件は各工程ラインの経験から試行錯誤で
決定せざるを得なかった。
However, conventionally, in determining the conditions for the slab blast treatment, there is no index for determining the blast treatment conditions corresponding to the segregation depth of the slab, and the treatment conditions are set in each process line. From experience, I had no choice but to decide by trial and error.

【0004】[0004]

【課題を解決するための手段】本発明者らは、加熱炉内
で形成される酸化被膜が加熱前の鋳片の表層部に与えら
れた歪分布に大きく影響を受けることを見出した。すな
わち鋳片表層部の歪量、特に歪を受けている深さが深い
ほど、酸化被膜厚みが厚くなり、加熱後の脱スケール工
程で鋳片表面欠陥が除去され易くなる。詳細な調査の結
果、この現象は歪回復温度の高いオーステナイト系ステ
ンレス鋼で顕著に現われ、オーステナイト系ステンレス
鋼では、マイクロビッカース高度(Hv)が340以上
の深さまで酸化被膜が形成されることがわかった。ま
た、このような適切な歪の導入は、ブラスト処理条件と
してブラスト処理時のショットの投射密度、初速度、粒
径を最適化することによって達成することができる。
The present inventors have found that the oxide film formed in the heating furnace is greatly affected by the strain distribution given to the surface layer of the slab before heating. That is, as the amount of strain in the surface layer of the cast slab, in particular, the depth under strain, the oxide film becomes thicker, and the cast slab surface defects are easily removed in the descaling step after heating. As a result of detailed investigation, it was found that this phenomenon is prominently exhibited in austenitic stainless steel having a high strain recovery temperature, and in the austenitic stainless steel, an oxide film is formed up to a depth of 340 or more in the micro Vickers altitude (Hv). It was In addition, such appropriate introduction of strain can be achieved by optimizing shot projection density, initial velocity, and grain size during blasting as blasting conditions.

【0005】本発明は、このような知見に基づいて完成
されたもので、連続鋳造法によるステンレス鋼鋳片を1
100℃以上に加熱して熱間加工するに際して、鋳片表
面からオシレーションマークの平均深さ(mm)の0.
3倍の深さ位置におけるマイクロビッカース硬度(H
v)が340以上になるように、加熱前の鋳片を前処理
加工した後、加熱して熱間加工することを特徴とする。
この方法において、前処理加工を下記(1)式を満足す
る条件のショットブラスト処理とすれば好適である。
The present invention has been completed on the basis of such findings, and a stainless steel slab made by continuous casting method
When heating to 100 ° C. or higher and hot working, the average depth (mm) of the oscillation mark from the surface of the slab was 0.
Micro Vickers hardness (H
The slab before heating is pretreated so that v) is 340 or more, and then heated and hot-worked.
In this method, it is preferable that the pretreatment is shot blasting under the condition that the following formula (1) is satisfied.

【0006】 0.3H≦7×10-7W・d・V …(1) ただし、 H:オシレーションマークの平均深さ(mm) W:ブラスト処理の粒子投射密度(kg/m2 ) 200〜1000kg/m2 d:ブラスト処理の粒子径(mm) 1.0〜3.0mmφ V:ブラスト処理の粒子初速度(m/sec) 50〜200m/sec である。0.3H ≦ 7 × 10 −7 W · d · V (1) where H: average depth of oscillation mark (mm) W: particle projection density of blast treatment (kg / m 2 ) 200 ˜1000 kg / m 2 d: Blast treatment particle diameter (mm) 1.0 to 3.0 mmφ V: Blast treatment particle initial velocity (m / sec) 50 to 200 m / sec.

【0007】[0007]

【作用】本発明方法は、鋳片を加熱炉に挿入する前に鋳
片表層部に歪を導入しておき、その後の加熱炉で起こる
歪回復の際の金属原子の拡散速度を増加させることによ
って、酸化被膜生成を促進させようとするものである。
オーステナイト系ステンレス鋼では歪回復温度が900
℃〜1000℃と高く、酸化温度に近いために、歪回復
と酸化が同時に進行する。したがって、酸化被膜厚みに
及ぼす歪量分布、特に歪の与えられている領域の深さの
影響が顕著に現われる。
In the method of the present invention, strain is introduced into the surface layer of the slab before the slab is inserted into the heating furnace, and the diffusion rate of metal atoms is increased when the strain is recovered in the subsequent heating furnace. Therefore, the formation of an oxide film is promoted.
The strain recovery temperature of austenitic stainless steel is 900
Since it is as high as ℃ to 1000 ℃ and is close to the oxidation temperature, strain recovery and oxidation proceed at the same time. Therefore, the influence of the strain amount distribution on the thickness of the oxide film, particularly the depth of the region to which the strain is applied, appears remarkably.

【0008】一方、鋳片の表面偏析厚みを詳細に調査し
た結果、偏析厚みは鋳片のオシレーションマーク深さH
と一次関数で近似できることがわかった。そこで、測定
の容易なオシレーションマーク深さHを用い、平均的な
偏析層厚みを0.3Hと近似し、鋳片表面から0.3H
の深さの歪量を、硬度を測定することによって基準と
し、ブラスト処理等の加工条件を決定する。詳細な実験
室実験の結果、マイクロビッカース硬度(Hv)で、3
40以上まで酸化スケールが形成されることが明かとな
った。そこで、本発明方法では、鋳片表面から0.3H
の深さの位置でマイクロビッカース硬度が340以上と
なるような加工を施すことにした。
On the other hand, as a result of detailed investigation of the surface segregation thickness of the slab, the segregation thickness is determined by the oscillation mark depth H of the slab.
It turns out that can be approximated by a linear function. Therefore, using an oscillation mark depth H that is easy to measure, approximate the average segregation layer thickness to 0.3H,
The amount of strain at the depth is used as a reference by measuring hardness, and processing conditions such as blasting are determined. As a result of detailed laboratory experiments, the micro Vickers hardness (Hv) is 3
It was revealed that oxide scale was formed up to 40 or more. Therefore, in the method of the present invention, 0.3H from the surface of the slab
It was decided to perform processing so that the micro Vickers hardness becomes 340 or more at the position of the depth.

【0009】また、ショットブラスト処理によりこのよ
うな硬度分布を得るには、硬度がブラスト処理の粒子径
d、ブラスト処理の粒子の初速度V及びブラスト処理の
粒子の投射密度Wに大きく影響されることから、上記
(1)式の条件を導いた。
In order to obtain such hardness distribution by shot blasting, the hardness is greatly influenced by the particle diameter d of the blasting treatment, the initial velocity V of the blasting treatment particles and the projection density W of the blasting treatment particles. Therefore, the condition of the above formula (1) was derived.

【0010】[0010]

【実施例】SUS304の連続鋳造において、トーチ切
断後、鋳片を表面温度700℃で、水槽に入れ水温まで
冷却した。この鋳片に表1に示す各種条件のショットブ
ラスト処理を施した。この後これらの鋳片の一部をサン
プリングし、表層部から0.3H(〜100μm)深さ
の位置の硬度を測定した。一方残りの鋳片は、生産設備
で実験的に1240℃、酸素分圧(Po2 )1%下で加
熱、熱間圧延及び酸洗後、鋼板の表面欠陥を調査した。
結果を図1と図2にまとめた。図1、図2中に記入した
参照記号(A、B、C、D、E、a、b、c、d)は表
1と一致している。図1から、0.3Hの深さでの硬度
(Hv)が340以上のとき表面欠陥が発生しないこと
がわかる。また、c、dのように、ショットブラストを
強化、すなわち、W・d・Vを大きくしても、元のスラ
ブの表面偏析が深い場合には木目模様欠陥が残留するこ
とがわかる。そこで、図2のように、偏析深さ0.3H
とW・d・Vの関係を整理してみると、0.3H<7×
10-7W・d・Vの条件下で表面欠陥が発生しないこと
がわかった。
[Example] In continuous casting of SUS304, after cutting the torch, the slab was placed in a water tank at a surface temperature of 700 ° C and cooled to the water temperature. This slab was shot blasted under various conditions shown in Table 1. After that, a part of these cast pieces was sampled, and the hardness at a position at a depth of 0.3 H (-100 μm) from the surface layer portion was measured. On the other hand, the remaining slabs were experimentally heated in a production facility at 1240 ° C. under an oxygen partial pressure (Po 2 ) of 1%, hot-rolled and pickled, and then the surface defects of the steel sheet were investigated.
The results are summarized in Figures 1 and 2. The reference symbols (A, B, C, D, E, a, b, c, d) entered in FIGS. 1 and 2 are in agreement with Table 1. From FIG. 1, it can be seen that no surface defect occurs when the hardness (Hv) at a depth of 0.3H is 340 or more. Further, as shown in c and d, even if the shot blast is strengthened, that is, even if W · d · V is increased, when the surface segregation of the original slab is deep, the grain pattern defect remains. Therefore, as shown in FIG. 2, the segregation depth is 0.3H.
The relationship between W and d · V is 0.3H <7 ×
It was found that surface defects did not occur under the condition of 10 −7 W · d · V.

【0011】また、図3は、鋳片5の表層のオシレーシ
ョンマーク部の断面を模式的に示した図である。表面偏
析層3は、オシレーションマーク凹部1とオシレーショ
ンマーク突部2との差Hに対して表面から0.3Hの深
さの位置、すなわち、破線4で示した、硬度Hvが34
0の位置まで、酸化被膜が形成されることも確認した。
FIG. 3 is a diagram schematically showing a cross section of the oscillation mark portion on the surface layer of the cast slab 5. The surface segregation layer 3 has a hardness Hv of 34 at a depth of 0.3H from the surface with respect to the difference H between the oscillation mark recess 1 and the oscillation mark protrusion 2.
It was also confirmed that an oxide film was formed up to the position of 0.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によればステンレス鋼鋳片の精整
に当り、鋳片のオシレーションマーク深さに応じた精整
条件を選択することができる。この結果、不必要な精整
設備、処理が不要となるばかりではなく、スケールオフ
による歩留り低下を最小限にして、鋳片表層部の欠陥を
除去でき、低コストで製品欠陥を低く抑えることができ
る。
According to the present invention, when the stainless steel slab is refined, the refinement condition can be selected according to the oscillation mark depth of the slab. As a result, not only unnecessary refining equipment and treatment are not required, but the yield loss due to scale-off can be minimized, defects in the surface layer of the slab can be removed, and product defects can be kept low at low cost. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において行った処理条件をまと
めた図である。
FIG. 1 is a diagram summarizing processing conditions performed in an example of the present invention.

【図2】同じく実施例で行った硬度の測定の結果と木目
模様状欠陥をまとめた散布図である。
FIG. 2 is a scatter diagram summarizing the results of hardness measurement and the wood grain pattern defects similarly performed in the example.

【図3】鋳片表層部の断面を概念的に示した模式図であ
る。
FIG. 3 is a schematic view conceptually showing a cross section of a surface layer of a cast slab.

【符号の説明】[Explanation of symbols]

1 オシレーションマーク凹部 2 オシレーションマーク凸部 3 表面偏析層 4 破線 1 Oscillation mark concave part 2 Oscillation mark convex part 3 Surface segregation layer 4 Dashed line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川原田 昭 千葉市川崎町1番地 川崎製鉄株式会社 千葉製鉄所内 (56)参考文献 特開 平1−321012(JP,A) 特開 昭61−157627(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kawarada No. 1 Kawasaki-cho, Chiba City Kawasaki Steel Co., Ltd. Chiba Works (56) JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造法によるステンレス鋼鋳片を1
100℃以上に加熱して熱間加工するに際して、鋳片表
面からオシレーションマークの平均深さの0.3倍の深
さ位置におけるマイクロビッカース硬度(Hv)が34
0以上になるように加熱前の鋳片を前処理加工した後、
加熱して熱間加工することを特徴とするステンレス鋼鋳
片の熱間加工方法。
1. A stainless steel slab produced by a continuous casting method
When heated to 100 ° C. or higher and subjected to hot working, the micro Vickers hardness (Hv) at a depth position of 0.3 times the average depth of oscillation marks from the surface of the slab is 34.
After pretreatment of the slab before heating to 0 or more,
A method for hot working a stainless steel slab, which comprises heating and hot working.
【請求項2】 前処理加工が下記(1)式を満足する条
件のショットブラスト処理であることを特徴とする請求
項1記載のステンレス鋼鋳片の熱間加工方法。 0.3H≦7×10-7W・d・V …(1) ただし、200kg/m2 <W<1000kg/m2 1.0mmφ<d<3.0mmφ 50m/s<V<200m/s ここで、H:オシレーションマークの平均深さ(mm) W:ブラスト処理の粒子投射密度(kg/m2 ) d:ブラスト処理の粒子径(mm) V:ブラスト処理の粒子初速度(m/sec)。
2. The hot working method for a stainless steel slab according to claim 1, wherein the pretreatment is shot blasting under the condition that the following formula (1) is satisfied. 0.3H ≦ 7 × 10 −7 W · d · V (1) However, 200 kg / m 2 <W <1000 kg / m 2 1.0 mmφ <d <3.0 mmφ 50 m / s <V <200 m / s Where: H: average depth of oscillation mark (mm) W: particle projection density of blast treatment (kg / m 2 ) d: particle diameter of blast treatment (mm) V: initial velocity of blast treatment particles (m / sec) ).
JP3254984A 1991-10-02 1991-10-02 Hot working method for stainless steel slab Expired - Fee Related JP2537317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254984A JP2537317B2 (en) 1991-10-02 1991-10-02 Hot working method for stainless steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254984A JP2537317B2 (en) 1991-10-02 1991-10-02 Hot working method for stainless steel slab

Publications (2)

Publication Number Publication Date
JPH0598346A JPH0598346A (en) 1993-04-20
JP2537317B2 true JP2537317B2 (en) 1996-09-25

Family

ID=17272596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254984A Expired - Fee Related JP2537317B2 (en) 1991-10-02 1991-10-02 Hot working method for stainless steel slab

Country Status (1)

Country Link
JP (1) JP2537317B2 (en)

Also Published As

Publication number Publication date
JPH0598346A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US5181970A (en) Process for production of stainless steel thin strip and sheet having superior surface gloss and high rusting resistance
JP2002086252A (en) Continous casting method
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JP2537317B2 (en) Hot working method for stainless steel slab
JPH0414171B2 (en)
JP3215573B2 (en) Continuous casting method of nickel-containing steel
CN114058951A (en) 65Mn saw blade steel and preparation method thereof
JPH0327811A (en) Manufacture of stainless steel sheet of excellent surface quality
JPS61117291A (en) Manufacture of cr stainless steel plate
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
KR20040058814A (en) Method for manufacturing slab of martensitic stainless steel
JP3491432B2 (en) Manufacturing method of austenitic stainless steel sheet
JP2962634B2 (en) Processing method of cooling drum for twin drum type continuous casting equipment
JP2506510B2 (en) How to refine stainless steel slabs
JPH093543A (en) Production of hot rolled plate and cold rolled sheet of austenitic stainless steel
JPH10296410A (en) Manufacture of thin steel sheet excellent in surface quality
JP4207324B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate
JPH10219358A (en) Production of hot rolled steel sheet from thin cast slab for stainless steel and apparatus therefor
JPH08281305A (en) Manufacture of cr-ni base stainless steel without generating surface defect in hot rolling
RU2365632C1 (en) Method of making converter chromium-nickel-molybdenum steel
JPS6240902A (en) Method for preventing crack in direct hot rolling of continuously cast steel ingot
JP2001348619A (en) Method for producing austenitic stainless steel sheet
JP2831297B2 (en) Manufacturing method of stainless steel strip with excellent surface properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees