JP2535764B2 - Method for separating nitrogen and carbon dioxide using ceramics as a separating material - Google Patents

Method for separating nitrogen and carbon dioxide using ceramics as a separating material

Info

Publication number
JP2535764B2
JP2535764B2 JP5305934A JP30593493A JP2535764B2 JP 2535764 B2 JP2535764 B2 JP 2535764B2 JP 5305934 A JP5305934 A JP 5305934A JP 30593493 A JP30593493 A JP 30593493A JP 2535764 B2 JP2535764 B2 JP 2535764B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
nitrogen
seconds
sepiolite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5305934A
Other languages
Japanese (ja)
Other versions
JPH0819722A (en
Inventor
正和 堀尾
憲司 鈴木
聰明 森
恵一 犬飼
信治 渡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5305934A priority Critical patent/JP2535764B2/en
Priority to EP94308317A priority patent/EP0652047B1/en
Priority to DE69421359T priority patent/DE69421359T2/en
Publication of JPH0819722A publication Critical patent/JPH0819722A/en
Priority to US08/653,999 priority patent/US5653785A/en
Application granted granted Critical
Publication of JP2535764B2 publication Critical patent/JP2535764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】今日、地球的規模の温暖化が大き
な社会問題となりつつあり、その主要原因物質のひとつ
は、生産活動の結果、工場等から排出される二酸化炭素
であると言われている。地球温暖化を解決するには、既
に排出された二酸化炭素を回収して固定したり、排ガス
発生源での高濃度かつ高温二酸化炭素の分離・回収等の
技術開発が必要かつ急務である。高温二酸化炭素の分離
・回収には有機系分離材料では耐熱性に問題があり、使
用することができない。したがって、熱的に安定なセラ
ミックスが分離材料の有力候補に挙がる。しかるに、本
発明は、粘土鉱物のセピオライトによる窒素と二酸化炭
素の分離方法を提供するものであり、地球的規模の環境
保全に大いに貢献するものと考えられる。
[Industrial application] Global warming is becoming a major social problem today, and one of the main causative agents is carbon dioxide emitted from factories as a result of production activities. There is. In order to solve global warming, it is necessary and urgent to develop technologies such as collecting and fixing carbon dioxide that has already been discharged, and separating and collecting high-concentration and high-temperature carbon dioxide at an exhaust gas source. Organic separation materials cannot be used for separation / recovery of high-temperature carbon dioxide because of problems with heat resistance. Therefore, thermally stable ceramics are listed as a strong candidate for the separation material. However, the present invention provides a method for separating nitrogen and carbon dioxide by the clay mineral sepiolite, and is considered to greatly contribute to global environmental protection.

【0002】[0002]

【従来の技術】従来、工場等の排ガス中の高温二酸化炭
素の分離・回収のためのセラミックス分離材は見出され
ていない。
2. Description of the Related Art Heretofore, no ceramic separating material has been found for separating and recovering high-temperature carbon dioxide in exhaust gas from factories and the like.

【0003】[0003]

【発明が解決しようとする課題】工場等の固定発生源か
ら排出される高温状態の窒素と二酸化炭素を分離するた
めには、熱的に安定なセラミックス分離材の開発が必要
かつ急務である。しかるに本発明は、高温状態の窒素と
二酸化炭素を分離することのできるセラミックスを提供
することにある。
In order to separate nitrogen and carbon dioxide in a high-temperature state discharged from a fixed source such as a factory, it is necessary and urgent to develop a thermally stable ceramic separating material. Therefore, the present invention is to provide a ceramic capable of separating nitrogen and carbon dioxide in a high temperature state.

【0004】[0004]

【課題を解決するための手段】本発明は、排ガス中の高
温状態の窒素と二酸化炭素を分離することのできるセラ
ミックスを提供することにある。窒素と二酸化炭素の分
子径はほぼ同じ大きさであるので、分子ふるい効果で両
者を分けることは非常に困難である。したがって、分子
ふるい以外の方法で分離することが求められる。窒素と
二酸化炭素の化学的性質を比べてみると、窒素は酸点お
よび塩基点のいずれにも吸着しないが、二酸化炭素は酸
性ガスで塩基点に吸着することが知られている。これか
ら窒素と二酸化炭素を分離する方法は、それぞれのガス
のセラミックスへの吸着現象を利用して行うことが考え
られる。
DISCLOSURE OF THE INVENTION The present invention is to provide a ceramic capable of separating nitrogen and carbon dioxide in exhaust gas at high temperature. Since the molecular diameters of nitrogen and carbon dioxide are almost the same, it is very difficult to separate them by the molecular sieving effect. Therefore, separation by a method other than molecular sieve is required. Comparing the chemical properties of nitrogen and carbon dioxide, it is known that nitrogen does not adsorb at either the acid site or the base site, but carbon dioxide adsorbs at the base site with an acidic gas. The method of separating nitrogen and carbon dioxide from this may be carried out by utilizing the adsorption phenomenon of each gas to the ceramics.

【0005】本発明のセラミックス分離材は、粘土鉱物
の一種であるセピオライトを亜鉛イオンでイオン交換し
た後、800℃以下の温度で加熱したものである。ここ
でセピオライトについて説明する。図1にセピオライト
の結晶構造モデルのab面投影図(Brauner,
K.and Preisinger,A.,Mine
r.Petro.Mitt.,Vol.6,pp.12
0−140(1956))を示す。セピオライトは、図
1に示したab面の垂直方向、すなわちc軸方向に伸び
る繊維状形態をとるので、図1はセピオライト繊維の断
面を示している。この構造は、タルクに類似している
2:1型層が約13.4Å周期でそのSi‐O四面体シ
−トの頂点方向を逆転させることによって形成されてい
る。セピオライトの結晶構造の特徴は、2:1型層の千
鳥格子状連鎖による約13.4×6.7の断面積をもつ
微細孔であるチャンネルの存在にある。このチャンネル
には、沸石水、交換性陽イオン、および2:1型層の八
面体層のMgに配位する水分子が存在している(大塚良
平、下田右、下坂康哉、永田洋、篠原也寸志、清水雅
浩、坂本尚史、粘土科学、第32巻、第3号、pp.1
54−172(1992))。
The ceramics separating material of the present invention is obtained by subjecting sepiolite, which is a kind of clay mineral, to ion exchange with zinc ions and then heating at a temperature of 800 ° C. or lower. Here, sepiolite will be described. FIG. 1 is an ab plane projection view of a crystal structure model of sepiolite (Brauner,
K. and Preisinger, A .; , Mine
r. Petro. Mitt. , Vol. 6, pp. 12
0-140 (1956)). Since sepiolite takes a fibrous form extending in the direction perpendicular to the ab plane shown in FIG. 1, that is, in the c-axis direction, FIG. 1 shows a cross section of the sepiolite fiber. This structure is formed by talc-like 2: 1 type layers inverting the apex direction of their Si-O tetrahedral sheets at a period of about 13.4 Å. A characteristic of the crystal structure of sepiolite is the presence of channels, which are micropores with a cross-sectional area of about 13.4 x 6.7 due to staggered chains of 2: 1 type layers. In this channel, there are zeolitic water, exchangeable cations, and water molecules that coordinate to Mg in the octahedron layer of the 2: 1 type layer (Ryohei Otsuka, Ryushi Shimoda, Yasuya Shimosaka, Hiroshi Nagata, Shinohara). Yasushi, Masahiro Shimizu, Naofumi Sakamoto, Clay Science, Volume 32, No. 3, pp. 1
54-172 (1992)).

【0006】セピオライトは、加熱により脱水挙動を示
し、次いで脱水にともなう構造変化が生じる。セピオラ
イトの熱重量曲線を調べると、100℃以下(ステップ
1)、200〜350℃(ステップ2)、400〜60
0℃(ステップ3)、750〜820℃(ステップ4)
の4段階の脱水による減量が認められる。また、示差熱
分析曲線にはこれらの減量に対応する吸熱ピ−クと、8
30℃付近の鋭い発熱ピ−クが認められる。ステップ1
の減量は吸着水と沸石水の脱水に、ステップ2および3
の減量はそれぞれ結合水の1/2量の脱水に、ステップ
4の減量は構造水の脱水に対応するものである。なお、
830℃付近の発熱ピ−クは頑火輝石への転移によるも
のである。各ステップの脱水挙動を再度組成式で示すと
以下の通りである。
[0006] Sepiolite exhibits a dehydration behavior upon heating, and then undergoes a structural change with dehydration. Examination of the thermogravimetric curve of sepiolite shows that the temperature is 100 ° C. or less (step 1), 200-350 ° C. (step 2), 400-60
0 ° C. (Step 3), 750-820 ° C. (Step 4)
Weight loss due to 4 stages of dehydration is observed. In addition, the differential thermal analysis curve shows an endothermic peak corresponding to these weight loss, and 8
A sharp exothermic peak around 30 ° C is observed. Step 1
The reduction of water content is carried out by dehydration of adsorbed water and boiling water, steps 2 and 3
Corresponds to the dehydration of 結合 of the bound water, and the reduction of Step 4 corresponds to the dehydration of the structural water. In addition,
The exothermic peak at around 830 ° C. is due to the transition to pyroxene. The dehydration behavior of each step is again shown by a composition formula as follows.

【化1】 Embedded image

【0007】セピオライトを乾燥状態の400℃程度以
上で加熱すると、フォ−ルディングと呼ばれる現象が起
き、2:1型層が回転して折れ曲がった構造に変化す
る。なお、フォ−ルディングが起きる温度は、セピオラ
イトの産地等により異なり、200℃でも起きる場合が
ある。
When sepiolite is heated at a temperature of about 400 ° C. or more in a dry state, a phenomenon called “folding” occurs, and the 2: 1 type layer turns into a bent structure. The temperature at which the folding occurs depends on the place of production of sepiolite and the like, and may occur even at 200 ° C.

【0008】セピオライトの表面は、図1に示したよう
に3種類の表面が存在する。一つは通常のフィロシリケ
−トの表面と同じシリカ四面体シ−トの酸素面である。
これはほとんど活性がなく、物理吸着表面としてのみ働
く。次は、結合が切れた外表面にのみある‐Si‐OH
であり、これはシリカゲルの表面に似ている。あと一つ
は、チャンネル面にあるMg、あるいはそれに結合した
水分子の存在する表面である。これは、フィロシリケ−
トの結晶端に存在するであろう表面と同じ状態の表面で
あるが、セピオライトではこれがチャンネルに沿って無
数にある。この活性点が無数にある点が、他の鉱物には
ないセピオライトの特徴である(福嶋喜章、北山淑江、
ト部和夫、粘土科学、第32巻、第3号、pp.177
−183(1992))。
The surface of sepiolite has three kinds of surfaces as shown in FIG. One is an oxygen surface of a silica tetrahedral sheet which is the same as the surface of a normal phyllosilicate.
It has little activity and acts only as a physisorption surface. Next is -Si-OH only on the outer surface where the bond is broken
Which is similar to the surface of silica gel. The other is the surface of the channel surface where Mg or water molecules bound to it exist. This is the philosophy
The surface is in the same state as it would be at the crystal edge of the crystal, but in sepiolite it is innumerable along the channel. The fact that these active sites are innumerable is a feature of sepiolite that is not found in other minerals (Yoshiaki Fukushima, Yoshie Kitayama,
Kazuo Tobe, Clay Science, Vol. 32, No. 3, pp. 177
-183 (1992)).

【0009】次に、本発明の亜鉛イオン交換セピオライ
トの調製法について説明する。0.5M硝酸亜鉛水溶液
20mlにセピオライト5.0gを添加し、よく撹拌し
て室温で24時間静置する。なお、硝酸亜鉛水溶液の濃
度および液量は、セピオライトの交換性陽イオン量の望
ましくは全量がイオン交換する濃度および液量を選ぶ。
イオン交換後、遠心分離あるいはろ別等でセピオライト
を回収し、水洗、乾燥した後800℃以下の温度で2時
間加熱する。水洗および乾燥は省略しても差し支えな
い。また、加熱温度および加熱時間で決められるセピオ
ライトの加熱条件は、セピオライトが頑火輝石に転移し
ない範囲で選べばよい。
Next, a method for preparing the zinc ion-exchanged sepiolite of the present invention will be described. 5.0 g of sepiolite was added to 20 ml of a 0.5 M zinc nitrate aqueous solution, stirred well and allowed to stand at room temperature for 24 hours. The concentration and liquid amount of the zinc nitrate aqueous solution are selected so that the total amount of exchangeable cations of sepiolite is preferably ion-exchanged.
After the ion exchange, the sepiolite is collected by centrifugation or filtration, washed with water, dried, and then heated at a temperature of 800 ° C. or lower for 2 hours. Washing and drying may be omitted. The heating conditions for sepiolite, which are determined by the heating temperature and the heating time, may be selected within the range in which sepiolite does not transfer to pyroxene.

【0010】セラミックスの窒素と二酸化炭素の分離能
評価方法について説明する。セラミックスに窒素あるい
は二酸化炭素を接触させるとそれらはセラミックスの表
面に吸着し、しばらくしてから脱離する。吸着はセラミ
ックスの温度が低いときは物理吸着と化学吸着の両方が
生じるが、温度が高くなると化学吸着のみが生じること
になる。これを換言すれば、物理吸着は弱い吸着であ
り、化学吸着は強い吸着である。ガスがセラミックスの
表面に吸着してから脱離するまでの時間をリテンション
タイムと定義すると、リテンションタイムはガスのセラ
ミックスに対する吸着能および脱離能が強く影響する。
すなわち、リテンションタイムが長い場合はガスがセラ
ミックス表面に強く吸着し、容易に脱離しない状態であ
ることを示唆している。一方、リテンションタイムが短
い場合はガスとセラミックス表面との相互作用は弱く、
ガスは容易にセラミックス表面から脱離することを示唆
している。したがって、セラミックスに対する窒素と二
酸化炭素のそれぞれのリテンションタイムを測定し、そ
れらの差を求め、その差が大きいほど窒素と二酸化炭素
の分離能は優れていることになる。リテンションタイム
の測定は、ガス注入後脱離するまでの時間が測定できる
方法であれば何れの方法でも構わないが、ヘリウムをキ
ャリア−ガスに用いたTCD付ガスクロマトグラフィで
行えば簡単である。
A method for evaluating the ability of ceramics to separate nitrogen from carbon dioxide will be described. When nitrogen or carbon dioxide is brought into contact with ceramics, they are adsorbed on the surface of the ceramics and desorbed after a while. When the temperature of the ceramic is low, both physical adsorption and chemical adsorption occur, but when the temperature rises, only chemical adsorption occurs. In other words, physical adsorption is weak adsorption and chemical adsorption is strong adsorption. When the retention time is defined as the time from when the gas is adsorbed on the surface of the ceramics to when it is desorbed, the retention time is strongly affected by the adsorption and desorption ability of the gas to the ceramics.
That is, it is suggested that when the retention time is long, the gas is strongly adsorbed on the ceramic surface and is not easily desorbed. On the other hand, when the retention time is short, the interaction between the gas and the ceramic surface is weak,
It is suggested that the gas easily desorbs from the ceramic surface. Therefore, the retention times of nitrogen and carbon dioxide with respect to the ceramics are measured, the difference between them is determined, and the larger the difference, the better the separability of nitrogen and carbon dioxide. The retention time may be measured by any method as long as it can measure the time from gas injection to desorption, but it is easy to carry out by gas chromatography with TCD using helium as a carrier gas.

【0011】本発明の亜鉛イオン交換セピオライトの窒
素/二酸化炭素分離能評価に用いた測定装置の概略図を
図2に示す。測定装置は試料充填カラム(1)、加熱炉
(2)、温度制御装置(3)、ガスクロマトグラフィ
(4)、ペンレコ−ダ(5)、窒素/二酸化炭素注入口
(6)から成る。測定法は、最初に内径3mmφ、長さ
1m程度のステンレス製パイプから成る試料充填カラム
に亜鉛イオン交換セピオライト5.0gを充填する。次
にキャリア−ガスとしてヘリウムを20ml/min流
しながら、300℃で1〜2時間仮焼する。その後、試
料を測定温度にして、窒素と二酸化炭素の混合ガス2m
lをマイクロシリンジにて窒素/二酸化炭素注入口から
打ち込み、同時に記録を開始する。窒素と二酸化炭素の
リテンションタイムを測定し、その差が大きいほど窒素
/二酸化炭素分離能が高いものと結論できる。
FIG. 2 shows a schematic view of a measuring device used for evaluating the nitrogen / carbon dioxide separation ability of the zinc ion-exchanged sepiolite of the present invention. The measuring device consists of a sample packed column (1), a heating furnace (2), a temperature controller (3), a gas chromatography (4), a pen recorder (5), and a nitrogen / carbon dioxide inlet (6). In the measurement method, first, 5.0 g of zinc ion-exchange sepiolite is packed in a sample packed column made of a stainless steel pipe having an inner diameter of 3 mmφ and a length of about 1 m. Next, it is calcined at 300 ° C. for 1 to 2 hours while flowing helium as a carrier gas at a flow rate of 20 ml / min. After that, the sample is brought to the measurement temperature and the mixed gas of nitrogen and carbon dioxide is 2 m.
1 is injected from the nitrogen / carbon dioxide inlet with a microsyringe, and recording is started at the same time. The retention times of nitrogen and carbon dioxide were measured, and it can be concluded that the larger the difference, the higher the nitrogen / carbon dioxide separation ability.

【0012】窒素/二酸化炭素分離能を各種の加熱処理
を施した亜鉛イオン交換セピオライトについて調べたと
ころ、窒素と二酸化炭素は高温状態のままで亜鉛イオン
交換セピオライトにより分離できることが判明し、しか
も加熱処理温度が高いほど分離能の向上することが見出
された。以下、実施例および比較例にて詳しく説明す
る。
When the nitrogen / carbon dioxide separation ability of zinc ion-exchanged sepiolite subjected to various heat treatments was examined, it was found that nitrogen and carbon dioxide can be separated by zinc ion-exchanged sepiolite in a high temperature state, and the heat treatment was performed. It was found that the higher the temperature, the better the resolution. Hereinafter, the details will be described in Examples and Comparative Examples.

【0013】[0013]

【実施例】【Example】

【0014】実施例 1 空気雰囲気の電気炉で300℃、2時間加熱した亜鉛イ
オン交換セピオライト5.0gを試料充填カラムに詰
め、ヘリウムを20ml/min流しながら300℃、
2時間仮焼した。仮焼後、試料温度(分離温度)を12
0℃として窒素/二酸化炭素混合ガス2mlを打ち込ん
だ。窒素と二酸化炭素のリテンションタイムは、前者が
26秒、後者が343秒であり、その差は317秒であ
った。
Example 1 5.0 g of zinc ion-exchanged sepiolite heated at 300 ° C. for 2 hours in an electric furnace in an air atmosphere was packed in a sample packed column, and 300 ° C. with helium flowing at 20 ml / min.
It was calcined for 2 hours. After calcination, set the sample temperature (separation temperature) to 12
The temperature was set to 0 ° C., and 2 ml of a nitrogen / carbon dioxide mixed gas was injected. The retention times of nitrogen and carbon dioxide were 26 seconds for the former and 343 seconds for the latter, and the difference was 317 seconds.

【0015】実施例 2 分離温度のみ200℃として、その他の条件は実施例1
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は23秒、後者は
61秒であり、その差は38秒であった。
Example 2 Only separation temperature was set to 200 ° C., and other conditions were set to Example 1.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as above, the former was 23 seconds, the latter was 61 seconds, and the difference was 38 seconds.

【0016】実施例 3 分離温度のみ220℃として、その他の条件は実施例1
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は22秒、後者は
49秒であり、その差は27秒であった。
Example 3 Only the separation temperature was 220 ° C., and other conditions were the same as in Example 1.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as above, the former was 22 seconds, the latter was 49 seconds, and the difference was 27 seconds.

【0017】実施例 4 空気雰囲気の電気炉で500℃、2時間加熱した亜鉛イ
オン交換セピオライト5.0gを試料充填カラムに詰
め、ヘリウムを20ml/min流しながら350℃、
2時間仮焼した。仮焼後、分離温度を240℃として窒
素/二酸化炭素混合ガス2mlを打ち込んだ。窒素と二
酸化炭素のリテンションタイムは、前者が22秒、後者
が208秒であり、その差は186秒であった。
Example 4 A sample packed column was packed with 5.0 g of zinc ion-exchanged sepiolite heated at 500 ° C. for 2 hours in an electric furnace in an air atmosphere, and 350 ° C. while flowing helium at 20 ml / min.
It was calcined for 2 hours. After the calcination, the separation temperature was set to 240 ° C. and 2 ml of nitrogen / carbon dioxide mixed gas was injected. The retention times of nitrogen and carbon dioxide were 22 seconds for the former and 208 seconds for the latter, and the difference was 186 seconds.

【0018】実施例 5 分離温度のみ300℃として、その他の条件は実施例4
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は21秒、後者は
70秒であり、その差は49秒であった。
Example 5 The separation temperature was set to 300 ° C., and other conditions were set to Example 4.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as in the above, the former was 21 seconds, the latter was 70 seconds, and the difference was 49 seconds.

【0019】実施例 6 分離温度のみ320℃として、その他の条件は実施例4
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は20秒、後者は
55秒であり、その差は35秒であった。
Example 6 Only the separation temperature was set to 320 ° C., and the other conditions were set to Example 4.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as above, the former was 20 seconds, the latter was 55 seconds, and the difference was 35 seconds.

【0020】実施例 7 空気雰囲気の電気炉で600℃、2時間加熱した亜鉛イ
オン交換セピオライト5.0gを試料充填カラムに詰
め、ヘリウムを20ml/min流しながら400℃、
2時間仮焼した。仮焼後、分離温度を280℃として窒
素/二酸化炭素混合ガス2mlを打ち込んだ。窒素と二
酸化炭素のリテンションタイムは、前者が20秒、後者
が155秒であり、その差は135秒であった。
Example 7 A sample packed column was packed with 5.0 g of zinc ion-exchanged sepiolite heated at 600 ° C. for 2 hours in an electric furnace in an air atmosphere, and 400 ° C. while flowing helium at 20 ml / min.
It was calcined for 2 hours. After calcination, the separation temperature was set to 280 ° C. and 2 ml of a nitrogen / carbon dioxide mixed gas was injected. The retention times of nitrogen and carbon dioxide were 20 seconds for the former and 155 seconds for the latter, and the difference was 135 seconds.

【0021】実施例 8 分離温度のみ300℃として、その他の条件は実施例7
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は20秒、後者は
109秒であり、その差は89秒であった。
Example 8 The separation temperature was set to 300 ° C., and the other conditions were set to Example 7.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as in the above, the former was 20 seconds, the latter was 109 seconds, and the difference was 89 seconds.

【0022】実施例 9 分離温度のみ360℃として、その他の条件は実施例7
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は20秒、後者は
48秒であり、その差は28秒であった。
Example 9 Only the separation temperature was set to 360 ° C., and other conditions were set in Example 7.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and measurement conditions as above, the former was 20 seconds, the latter was 48 seconds, and the difference was 28 seconds.

【0023】比較例 1 シリカゲル5.0gを試料充填カラムに詰め、ヘリウム
を20ml/min流しながら300℃、2時間仮焼し
た。仮焼後、分離温度を120℃として窒素/二酸化炭
素混合ガス2mlを打ち込んだ。窒素と二酸化炭素のリ
テンションタイムは、前者が32秒、後者が63秒であ
り、その差は31秒であった。
Comparative Example 1 5.0 g of silica gel was packed in a sample packed column and calcined at 300 ° C. for 2 hours while flowing helium at 20 ml / min. After the calcination, the separation temperature was set to 120 ° C., and 2 ml of a nitrogen / carbon dioxide mixed gas was injected. The retention times of nitrogen and carbon dioxide were 32 seconds for the former and 63 seconds for the latter, and the difference was 31 seconds.

【0024】比較例 2 分離温度のみ160℃として、その他の条件は比較例1
と同じ試料および測定条件で窒素と二酸化炭素のリテン
ションタイムを測定したところ、前者は31秒、後者は
47秒であり、その差は16秒であった。
Comparative Example 2 The separation temperature was set to 160 ° C., and other conditions were set to Comparative Example 1.
When the retention times of nitrogen and carbon dioxide were measured under the same sample and under the same measurement conditions, the former was 31 seconds, the latter was 47 seconds, and the difference was 16 seconds.

【0025】[0025]

【発明の効果】本発明は、粘土鉱物の亜鉛イオン交換セ
ピオライトによる窒素と二酸化炭素の分離法を提供する
ものであり、地球的規模の環境保全に大いに貢献するも
のと考えられる。
INDUSTRIAL APPLICABILITY The present invention provides a method for separating nitrogen and carbon dioxide by a zinc ion exchange sepiolite of clay mineral, and is considered to greatly contribute to global-scale environmental protection.

【図面の簡単な説明】[Brief description of drawings]

【図1】セピオライトの結晶構造。FIG. 1 shows the crystal structure of sepiolite.

【図2】窒素/二酸化炭素分離能評価測定装置の概略
図。
FIG. 2 is a schematic diagram of an apparatus for evaluating and measuring nitrogen / carbon dioxide separation ability.

【符号の説明】[Explanation of symbols]

1 試料充填カラム 2 加熱炉 3 温度制御装置 4 ガスクロマトグラフィ 5 ペンレコ−ダ 6 窒素/二酸化炭素注入口 DESCRIPTION OF SYMBOLS 1 Sample packed column 2 Heating furnace 3 Temperature controller 4 Gas chromatography 5 Pen recorder 6 Nitrogen / carbon dioxide inlet

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/16 C04B 35/16 Z (72)発明者 渡村 信治 愛知県名東区平和が丘1丁目70番地 猪 子石住宅3―103 (56)参考文献 特開 平5−138021(JP,A)Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C04B 35/16 C04B 35/16 Z (72) Inventor Shinji Watamura 1-70, Heiwagaoka, Meito-ku, Aichi prefecture Inoishi House 3-103 (56) Reference JP-A-5-138021 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックスを分離材とした窒素と二酸
化炭素の分離方法であって、該セラミックスは亜鉛でイ
オン交換した後800℃以下の温度で加熱処理したセピ
オライトであることを特徴とする窒素と二酸化炭素の分
離方法。
1. A ceramic separating material and nitrogen and carbon dioxide separation methods, and nitrogen, wherein said ceramic is a sepiolite was heated at 800 ° C. below the temperature was ion-exchanged with zinc How to separate carbon dioxide.
JP5305934A 1993-11-10 1993-11-10 Method for separating nitrogen and carbon dioxide using ceramics as a separating material Expired - Lifetime JP2535764B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5305934A JP2535764B2 (en) 1993-11-10 1993-11-10 Method for separating nitrogen and carbon dioxide using ceramics as a separating material
EP94308317A EP0652047B1 (en) 1993-11-10 1994-11-10 Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent
DE69421359T DE69421359T2 (en) 1993-11-10 1994-11-10 Process for the separation of nitrogen and carbon dioxide using ceramic materials
US08/653,999 US5653785A (en) 1993-11-10 1996-05-28 Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5305934A JP2535764B2 (en) 1993-11-10 1993-11-10 Method for separating nitrogen and carbon dioxide using ceramics as a separating material

Publications (2)

Publication Number Publication Date
JPH0819722A JPH0819722A (en) 1996-01-23
JP2535764B2 true JP2535764B2 (en) 1996-09-18

Family

ID=17951060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5305934A Expired - Lifetime JP2535764B2 (en) 1993-11-10 1993-11-10 Method for separating nitrogen and carbon dioxide using ceramics as a separating material

Country Status (1)

Country Link
JP (1) JP2535764B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104472509A (en) * 2012-07-30 2015-04-01 陕西美邦农药有限公司 Pesticide compound containing propylene glycol alginate
CN103563956B (en) * 2012-07-31 2015-07-08 陕西美邦农药有限公司 Insecticidal composition containing propylene glycol alginate and carbamates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138021A (en) * 1991-11-13 1993-06-01 Shimadzu Corp Carbon dioxide adsorbing element

Also Published As

Publication number Publication date
JPH0819722A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
Franchi et al. Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2
Harlick et al. Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance
Helminen et al. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K
US5653785A (en) Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent
JPS60118235A (en) Air purifying agent used in filter
Jaiboon et al. Amine modified silica xerogel for H2S removal at low temperature
CA2284383A1 (en) Adsorbent activity characterization
CN86108824A (en) Adopt the drying means of Chabazite-type adsorbent
CS124292A3 (en) NOVEL ÛSOix/NOixÙ SORBENT AND METHOD OF USE
Zhang et al. Dynamic hygroscopic effect of the composite material used in desiccant rotary wheel
JP2535764B2 (en) Method for separating nitrogen and carbon dioxide using ceramics as a separating material
Rubel et al. Effect of pressure on NO x adsorption by activated carbons
Ozturk et al. Investigation of sorption capacity of pumice for SO2 capture
JP2787196B2 (en) Separation method of nitrogen and carbon dioxide using ceramics as separation material
Tsai et al. Simplified description of adsorption breakthrough curves of 1, 1-dichloro-1-fluoroethane (HCFC-141b) on activated carbon with temperature effect
JP2580524B2 (en) Separation method of nitrogen and carbon dioxide using ceramics as separation material
Martin-Hopkins et al. Studies of the surface heterogeneity of chemically modified porous carbons by gas-solid chromatography
US20050090380A1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP2001521441A (en) Use of airgel as adsorbent
Wang et al. Cooperative and competitive adsorption mechanism of NO2, NO, and H2O on H-type mordenite
Collins et al. Thermal immobilization of poly (methyloctylsiloxane) in the pores of chromatographic silica
Glover et al. Diffusion of condensable vapors in single adsorbent particles measured via concentration-swing frequency response
JP2005013952A (en) Carbon dioxide absorber
RU1818142C (en) Process for producing a desiccant
浅野拓司 et al. Sol-gel preparation of blood-compatible titania as an adsorbent of bilirubin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term