JP2534502B2 - Circulation rate control method for high temperature powder - Google Patents

Circulation rate control method for high temperature powder

Info

Publication number
JP2534502B2
JP2534502B2 JP62159837A JP15983787A JP2534502B2 JP 2534502 B2 JP2534502 B2 JP 2534502B2 JP 62159837 A JP62159837 A JP 62159837A JP 15983787 A JP15983787 A JP 15983787A JP 2534502 B2 JP2534502 B2 JP 2534502B2
Authority
JP
Japan
Prior art keywords
fluidized bed
gas
amount
circulation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159837A
Other languages
Japanese (ja)
Other versions
JPS648124A (en
Inventor
伸好 高橋
敏昭 栗原
典貞 清水
輝彦 平林
和也 国友
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU KAKOKI KK
Nippon Steel Corp
Original Assignee
NITSUTETSU KAKOKI KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU KAKOKI KK, Nippon Steel Corp filed Critical NITSUTETSU KAKOKI KK
Priority to JP62159837A priority Critical patent/JP2534502B2/en
Publication of JPS648124A publication Critical patent/JPS648124A/en
Application granted granted Critical
Publication of JP2534502B2 publication Critical patent/JP2534502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粒子の循環を伴う流動層において、高温の粒
子の循環速度を制御する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling the circulation rate of hot particles in a fluidized bed involving circulation of particles.

〔従来の技術〕[Conventional technology]

循環流動層の粒子循環速度を制御する方法としては、
直接ボールバルブ等のバルブを取り付け、バルブの開度
によい制御する方法、またニューマチックバルブと呼ば
れる流動層タイプのオーバーフロー方式、また揚送用気
流(流動化ガス)を噴出するノズル口と揚送管の下端の
開口との距離Δhを変え得る構成で、Δhの距離を変え
ることにより循環速度を変化させる方法(特公昭58−33
450)などがある。
As a method of controlling the particle circulation speed of the circulating fluidized bed,
A valve such as a ball valve is directly installed to control the opening of the valve well, a fluidized bed type overflow method called a pneumatic valve, and a nozzle port and a pumping outlet for pumping air (fluidizing gas) A method in which the distance Δh to the opening at the lower end of the pipe can be changed, and the circulation speed is changed by changing the distance Δh (Japanese Patent Publication No. 58-33).
450) etc.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の従来技術のうち、バルブの開度で制御する方法
は常温あるいは比較的低温の粒子の場合に適用すること
が容易であるが、高温、例えば500℃以上のような場合
は物理的に極めて困難となる。またニューマチックバル
ブやノズルの距離の変化により制御する方法は構造が複
雑であったり、可動部分があったりするので、特に小型
の装置には不向きである。
Among the above-mentioned conventional techniques, the method of controlling by the valve opening degree is easy to apply in the case of particles at room temperature or relatively low temperature, but at a high temperature, for example 500 ° C It will be difficult. Further, the method of controlling by changing the distance of the pneumatic valve or the nozzle has a complicated structure or has a movable part, and is therefore not suitable for a small device in particular.

本発明は循環式流動層の高温粒子の循環速度を制御す
る方法において、単純な構造で可動部分もなく、小型の
装置にも、大型の装置にも使用可能な方法を提供するも
のである。
The present invention provides a method for controlling the circulation rate of hot particles in a circulating fluidized bed, which has a simple structure and has no moving parts, and can be used for both small and large equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は主流動化ガスを、流動層と傾斜管との合流部
分、すなわち流動層本体への開口部の上端を含む水平面
と同一面、もしくは水平面よりも上部の位置より供給
し、流動層最下部より流動層本体内と傾斜管へ流す補助
ガス量を変化させることで粒子循環速度を制御すること
を特徴とし、従来の方法に比べ、構造が非常に簡単で可
動部分もなく、耐久性も問題はない。
The present invention supplies the main fluidizing gas from the position where the fluidized bed and the inclined pipe meet, that is, the same plane as the horizontal plane including the upper end of the opening to the fluidized bed main body or a position above the horizontal plane. It is characterized by controlling the particle circulation speed by changing the amount of auxiliary gas flowing from the lower part to the inside of the fluidized bed and to the inclined tube. Compared with the conventional method, the structure is very simple, there are no moving parts, and durability is also No problem.

かつ本発明は主流動化ガスを流動層本体への開口部の
上端を含む水平面と同一面、もしくは水平面よりも上部
の位置より流すため、流動化ガスのガス量の変化に対し
て、独立に粒子循環速度を制御することができるし、流
動化ガスが傾斜管、従ってそれに続く直立管へほとんど
流れ込まないため、主流動化ガスとして反応ガスを流
し、循環速度制御用としてイナートガスを傾斜管等に流
せば、傾斜管及び直立管で循環粒子が熔融したり、シン
ターするなどの問題はない。そして、流動層本体側で合
流部最下部へ吹込むガスと合流部分の近傍において傾斜
管に吹込むガスの両方もしくは片方のガス量を変化させ
ることで循環速度を制御することが可能であるが、好ま
しいのは、合流部分の最下部本体側層内へ流すガス量を
一定として、合流部分近傍において傾斜管に流すガス量
を変化させる方法である。この方法は、少ないガス量で
広範囲に粒子循環速度を制御する事ができる。
And since the present invention causes the main fluidized gas to flow from the same plane as the horizontal plane including the upper end of the opening to the fluidized bed main body or from a position above the horizontal plane, it is independent of changes in the gas amount of the fluidized gas. Since the particle circulation speed can be controlled and the fluidizing gas hardly flows into the inclined pipe, and hence the upright pipe that follows it, the reaction gas is made to flow as the main fluidizing gas, and the inert gas is supplied to the inclined pipe for controlling the circulation speed. If it is made to flow, there is no problem that the circulating particles are melted or sinter in the inclined pipe and the upright pipe. Then, it is possible to control the circulation speed by changing the gas amount of both or one of the gas blown to the bottom of the merging portion and the gas blown to the inclined pipe near the merging portion on the fluidized bed body side. It is preferable that the amount of gas flowing into the lowermost body side layer of the merging portion is kept constant and the amount of gas flowing into the inclined pipe near the merging portion is changed. This method can control the particle circulation rate over a wide range with a small amount of gas.

そして、その場合に、直接的に粒子循環速度を制御す
るために利用するのは、傾斜管の開口部近傍の補助ガス
吹出口へ流すガス量であるが、流動層本体へ流動層最下
部より、上向きのガス空塔速度が最小流動化速度(以下
Umfという)の3倍以下、好ましくは2倍以下の一定量
の補助ガスを流すことも重要である。Umfの3倍を超え
ると、この部分での流動化が盛んとなるため、循環量は
増加するが、傾斜管へ送入するガス量で一義的に循環量
を制御することが困難となる。またUmfの1倍以下では
脈動が起こりやすくなる。従ってこの部分でのUf/Umfは
0.8以上とすることが好ましい。このガス量により合流
部分での粒子の動きを滑らかにし、安定した粒子循環を
行うことができるのである。そして傾斜管と流動層本体
との合流部近傍の内部に送入するガス量を傾斜管の断面
積を基準として空塔線速としてゼロからUmfの3倍以下
の範囲で変化させることにより、第2図に示すように粒
子循環速度を直線的に制御できる。この場合Umfの3倍
を超えるガス量を送入しても循環量の増加は頭打ちとな
ってくる。このガスは一部は傾斜管内を上方へ、残部は
流動層との開口部へと流れる。このガスの吹込口(第1
図8)の位置は比較的任意であるが、傾斜管開口部から
見て軸方向に管径の約2倍程度の距離の所が好ましい位
置といえる。
In that case, what is used to directly control the particle circulation velocity is the amount of gas flowing to the auxiliary gas outlet in the vicinity of the opening of the inclined tube. , The upward gas superficial velocity is the minimum fluidization velocity (below
It is also important to flow a fixed amount of auxiliary gas that is 3 times or less, preferably 2 times or less than Umf). If it exceeds 3 times Umf, the fluidization in this part becomes vigorous, so that the circulation amount increases, but it becomes difficult to uniquely control the circulation amount by the gas amount fed into the inclined pipe. If it is less than 1 time of Umf, pulsation is likely to occur. Therefore Uf / Umf in this part is
It is preferably 0.8 or more. This amount of gas makes it possible to smooth the movement of particles at the confluent portion and to perform stable particle circulation. Then, by changing the amount of gas fed into the vicinity of the confluence of the inclined tube and the fluidized bed body in the range of zero to three times Umf or less as the superficial linear velocity with reference to the cross-sectional area of the inclined tube, The particle circulation velocity can be linearly controlled as shown in FIG. In this case, the increase in the circulation amount will reach the ceiling even if the gas amount that exceeds three times Umf is fed. A part of this gas flows upward in the inclined pipe, and the rest flows into the opening with the fluidized bed. This gas inlet (1st
The position of FIG. 8) is relatively arbitrary, but it can be said that a position at a distance of about twice the pipe diameter in the axial direction when viewed from the inclined pipe opening is a preferable position.

一方、傾斜管への吹出しガス量をUp=Uf/Umfで規定し
て0.3〜3の範囲で固定した場合、流動層本体下部へ吹
き込むガス量を増減することによっても循環量を制御出
来ることが判明した。第4図は傾斜管へ吹込むガス量を
パラメーターした場合の流動層本体下部へ吹き込むガス
量と粒子循環速度との関係を示す図である。結局粒子循
環量は高温ガスの吹込量が一定の場合、2つの補助ガス
量を変動させることにより制御出来るし、その選択は一
定限度内で自由である。
On the other hand, when the amount of gas blown into the inclined pipe is specified as Up = Uf / Umf and fixed within the range of 0.3 to 3, the circulation amount can be controlled by increasing or decreasing the amount of gas blown into the lower part of the fluidized bed body. found. FIG. 4 is a diagram showing the relationship between the amount of gas blown into the lower part of the fluidized bed body and the particle circulation speed when the amount of gas blown into the inclined tube is parameterized. After all, the particle circulation amount can be controlled by changing the two auxiliary gas amounts when the blowing amount of the high temperature gas is constant, and the selection can be freely made within a certain limit.

このように本発明は可動部分もなく構造も非常に単純
であるが、循環式流動層において高温粒子の安定した循
環を行い、しかも容易に粒子循環速度を制御することの
できる方法を提供するものである。
As described above, the present invention provides a method capable of performing stable circulation of high-temperature particles in a circulating fluidized bed and easily controlling the particle circulation speed, though it has no moving parts and has a very simple structure. Is.

本発明をさらに図面により説明する。 The invention will be further explained with reference to the drawings.

第1図に高温の循環流動層における高温粒子の循環速
度の制御方法を示す。
FIG. 1 shows a method of controlling the circulation speed of high temperature particles in a high temperature circulating fluidized bed.

第1図において流動層(ライザー)1に高温の反応ガ
スを主流動化ガス吹出口6より入れ、流動層は乱流流動
層を形成させる。フィード口9より供給された高温粒子
は流動層からガスにより沈降室2に送られ、ガスと分離
された後、直立管(ダウンカマー)3及び傾斜管5を通
り流動層1の下部にもどる。また沈降室2で分離しきれ
なかった粒子は、さらにサイクロン4で分離された後、
直立管3にもどされ、反応物抜出口10から排出される。
In FIG. 1, a high temperature reaction gas is introduced into a fluidized bed (riser) 1 through a main fluidizing gas outlet 6 to form a turbulent fluidized bed. The high-temperature particles supplied from the feed port 9 are sent from the fluidized bed to the sedimentation chamber 2 by gas, separated from the gas, and then return to the lower part of the fluidized bed 1 through the upright pipe (downcomer) 3 and the inclined pipe 5. Particles that could not be completely separated in the sedimentation chamber 2 are further separated by the cyclone 4,
It is returned to the upright pipe 3 and discharged from the reaction product outlet 10.

なお流動層最下部のガス吹出口7から一定量の補助ガ
ス及び傾斜管の合流部近傍のガス吹出口8から可変流量
の補助ガスを入れ粒子循環速度を制御するものである。
A certain amount of auxiliary gas is introduced from the gas outlet 7 at the bottom of the fluidized bed and a variable flow rate of auxiliary gas is introduced from the gas outlet 8 near the confluence of the inclined tube to control the particle circulation speed.

〔実施例〕〔Example〕

実施例1 流動層を40A(内径38.4mm)、高さ3mのライザー部、
ダウンカマーと傾斜管を65A(内径70.3mm)、傾斜管の
傾斜角度60°の第1図のような循環式流動層を使い、鉄
鉱石粉末としてオーストラリア産のハーマスレイ鉱(
p=0.2mm、ρs=4300Kg/m3:Umf=0.022m/s、Ut=2.04
m/s)を17Kg用いて温度900℃で流動層の空塔ガス線速6.
9m/s(Utの3.4倍)の場合に、本発明を使い流動層最下
部からのガス量を84Nl/H(Umfの1.2倍)と一定にし、開
口部下端から約15cmの位置に配設した内径16.7mmのガス
吹出口からの傾斜菅のガス量を35、58、85、120Nl/H
(それぞれUmfの0.5、0.83、1.2、1.7倍)と変化させ
た。その結果、流動層断面積基準の粉鉱石の循環速度は
65、125、195、295Kg/m2/sとなった。
Example 1 A fluidized bed of 40 A (inner diameter 38.4 mm), a height of 3 m,
The downcomer and inclined pipe are 65A (inner diameter 70.3mm), and the circulating fluidized bed as shown in Fig. 1 with the inclination angle of 60 ° is used.
p = 0.2mm, ρs = 4300Kg / m 3 : Umf = 0.022m / s, Ut = 2.04
m / s) at a temperature of 900 ° C and a superficial gas linear velocity of the fluidized bed of 6.
In the case of 9 m / s (3.4 times Ut), the amount of gas from the bottom of the fluidized bed was set to 84 Nl / H (1.2 times Umf) using the present invention, and it was placed at a position about 15 cm from the lower end of the opening. The amount of gas in the inclined tube from the gas outlet with an inner diameter of 16.7 mm is 35, 58, 85, 120 Nl / H.
(0.5, 0.83, 1.2, 1.7 times of Umf, respectively). As a result, the circulation speed of the fine ore based on the fluidized bed cross section is
It became 65, 125, 195, 295 Kg / m 2 / s.

なおここでUt:終末速度、p:平均粒子径、ρs:粒子
の真密度をあらわす。
Here, Ut: terminal velocity, p: average particle size, ρs: true density of particles.

実施例2 実施例1と同一の装置を用い、α−アルミナ粒子(
p=0.21mm、ρs=3970Kg/m3;Umf=0.02m/s、Ut=2.05
m/s)を17Kg使って温度900℃で流動層の空塔ガス線速6.
9m/s(Utの3.4倍)の場合に本発明を用い、流動層最下
部からのガス量を71Nl/H(Umfの1倍)と一定にし、傾
斜管へのガス量を30、52、72、107、145Nl/H(それぞれ
Umfの0.42、0.72、1.0、1.5、2.0倍)と変化させた。そ
の結果流動層断面積基準のα−アルミナ粒子の循環速度
は40、62、95、135、200Kg/m2・sとなった。
Example 2 Using the same apparatus as in Example 1, α-alumina particles (
p = 0.21 mm, ρs = 3970 Kg / m 3 ; Umf = 0.02 m / s, Ut = 2.05
m / s) at a temperature of 900 ° C and a superficial gas velocity in the fluidized bed of 6.
In the case of 9 m / s (3.4 times Ut), the present invention was used, the gas amount from the bottom of the fluidized bed was kept constant at 71 Nl / H (1 time Umf), and the gas amount to the inclined tube was 30, 52, 72, 107, 145 Nl / H (each
Umf 0.42, 0.72, 1.0, 1.5, 2.0 times). As a result, the circulation speed of α-alumina particles based on the fluidized bed cross-sectional area was 40, 62, 95, 135, 200 Kg / m 2 · s.

〔発明の効果〕〔The invention's effect〕

本発明は循環式流動層で高温の粉粒体の循環速度を制
御する方法において、機械的な要素もないので耐久性も
問題なく、また簡単な構造にも拘らず、高温粉粒体を安
定して循環させ、そして確実に直ちに循環速度を制御で
きるから、実用上極めて大きな効果を有するものであ
る。
INDUSTRIAL APPLICABILITY The present invention is a method for controlling the circulation speed of high-temperature powder or granules in a circulating fluidized bed, because there is no mechanical element, durability is not a problem, and high-temperature powder or granules are stable despite the simple structure. Since it can be circulated and the circulation speed can be surely controlled immediately, it is extremely effective in practice.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を示す概略図であり、その要
部の拡大詳細を第2図に示す。第3図は傾斜管の流動層
本体への開口部下端部の位置における本体側のUf/Umf=
Urをパラメーターとする傾斜管へ送入するガス量と粒子
循環量との関係を示すグラフである(矢印は第2図12面
での大体内のUf/Umf=Urをパラメーターとすることを示
す)。第4図は傾斜管側のUf/Umf=Upをパラメーターと
する本体側補助ガス量と粒子循環量との関係を示すグラ
フである(矢印は第3図8から吹出すガス量の傾斜管軸
方向でのUf/Umf=Upをパラメーターとすることを示
す)。 1……流動層(ライザー)、2……沈降室 3……直立管(ダウンカマー) 4……サイクロン、5……傾斜管 6……主流動化ガス吹出口 7……流動層最下部補助ガス吹出口 8……傾斜管補助ガス吹出口 9……フィード口、10……反応物抜出口 11……傾斜管開口部上端 12……傾斜管開口部下端
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 shows an enlarged detail of a main part thereof. Figure 3 shows Uf / Umf on the main body side at the position of the lower end of the opening of the inclined tube to the main body of the fluidized bed.
Fig. 12 is a graph showing the relationship between the amount of gas fed into the inclined tube with Ur as a parameter and the circulation amount of particles (the arrow shows that Uf / Umf = Ur in the body in Fig. 2 surface is a parameter). ). FIG. 4 is a graph showing the relationship between the main body side auxiliary gas amount and the particle circulation amount with Uf / Umf = Up on the inclined pipe side as a parameter (the arrow indicates the inclined pipe axis of the gas amount blown out from FIG. 3). Uf / Umf = Up in the direction is shown as a parameter). 1 ... Fluidized bed (riser), 2 ... Settling chamber 3 ... Upright pipe (downcomer) 4 ... Cyclone, 5 ... Inclined pipe 6 ... Main fluidized gas outlet 7 ... Fluidized bed bottom auxiliary Gas outlet 8 …… Inclined tube auxiliary gas outlet 9 …… Feed port, 10 …… Reactant outlet 11 …… Upper end of inclined tube 12 …… Lower end of inclined tube

フロントページの続き (72)発明者 平林 輝彦 東京都世田谷区粕谷1−17−25 (72)発明者 国友 和也 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社第1技術研究所内 (72)発明者 林 洋一 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社第3技術研究所内 (56)参考文献 特開 昭52−129683(JP,A) 実開 昭60−189330(JP,U)Front Page Continuation (72) Inventor Teruhiko Hirabayashi 1-17-25 Kasuya, Setagaya-ku, Tokyo (72) Kazuya Kunitomo 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin-Nippon Steel Research Laboratories No. 1 ( 72) Inventor Yoichi Hayashi 1-1-1 Emitsu, Hachimanto-ku, Kitakyushu City, Fukuoka Prefecture (3) Technical Research Laboratory, Nippon Steel Corporation (56) Reference JP-A-52-129683 (JP, A) -189330 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温粒子が流動層から沈降室、サイクロン
等の粒子分離器、直立管、傾斜管等を通り流動層の下部
にもどる循環流動層において、流動層下部に、水平に対
し45°以上の傾斜で傾斜管を合流開口せしめ、主流動化
ガスを、流動層本体に傾斜管が開口する上端と同一水平
面か、または同一水平面よりも上部から供給し、さらに
傾斜管の該開口部最下部において空塔線速が最小流動化
速度の3倍以下であるように流動層最下部から補助ガス
を供給し、一方、該開口部近傍において傾斜管に軸方向
の空塔線速の計算量が最小流動化速度の3倍以下となる
量の補助ガスを供給し、これら二つの補助ガスの量の少
くとも一方を変化させることにより高温粒子の循環速度
を制御する方法。
1. A circulating fluidized bed in which high-temperature particles return from the fluidized bed to a lower part of the fluidized bed through a sedimentation chamber, a particle separator such as a cyclone, an upright pipe, an inclined pipe, etc. The inclined pipes are merged and opened with the above inclination, and the main fluidizing gas is supplied to the fluidized-bed body from the same horizontal plane as the upper end where the inclined pipes open, or from above the same horizontal plane. Auxiliary gas is supplied from the lowermost part of the fluidized bed so that the superficial linear velocity is 3 times or less than the minimum fluidization velocity in the lower part, while the amount of calculation of the axial superficial linear velocity in the inclined tube is near the opening. Is supplied at a rate of 3 times or less than the minimum fluidization rate, and the circulation rate of hot particles is controlled by changing at least one of the amounts of these two auxiliary gases.
JP62159837A 1987-06-29 1987-06-29 Circulation rate control method for high temperature powder Expired - Lifetime JP2534502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62159837A JP2534502B2 (en) 1987-06-29 1987-06-29 Circulation rate control method for high temperature powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159837A JP2534502B2 (en) 1987-06-29 1987-06-29 Circulation rate control method for high temperature powder

Publications (2)

Publication Number Publication Date
JPS648124A JPS648124A (en) 1989-01-12
JP2534502B2 true JP2534502B2 (en) 1996-09-18

Family

ID=15702325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159837A Expired - Lifetime JP2534502B2 (en) 1987-06-29 1987-06-29 Circulation rate control method for high temperature powder

Country Status (1)

Country Link
JP (1) JP2534502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021739B1 (en) * 2018-10-01 2020-05-07 Milena Olga Joint Innovation Assets B V Reactor for producing a synthesis gas from a fuel

Also Published As

Publication number Publication date
JPS648124A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
Takeuchi et al. A quantitative definition and flow regime diagram for fast fluidization
Zheng et al. The axial hydrodynamic behavior in a liquid‐solid circulating fluidized bed
EP0574173B1 (en) Fluid bed particle coating apparatus
JP3245456B2 (en) Apparatus and method for metering solids present in a gas / solids stream from a fluidized bed
US5330556A (en) Method for treating gas and particulate solids in a fluid bed
CN1028741C (en) Apparatus for separating material in fluidized bed form and detection of clogging
AU2003268612B2 (en) Method and plant for the conveyance of fine-grained solids
JP2534502B2 (en) Circulation rate control method for high temperature powder
US20090304465A1 (en) L-Valve Construction for Controlling Solids Flow in a Liquid Medium Using Standard Pipe Fittings
Olazar et al. Spouted bed reactors
JP2675753B2 (en) Method and apparatus for treating high temperature gas
KR101984542B1 (en) Fluidized Bed Solid Circulation System using Pressure and Density Difference
Naz et al. PTV profiling of particles motion from the top and side of a swirling fluidized bed
CN1219205A (en) Process for treatment of particulat matter by fuidisation, and vessel with apparatus to carry out the treatment
US4546552A (en) Fluid induced transverse flow magnetically stabilized fluidized bed
US2975919A (en) Control of coarse solids flow
Natarajan et al. Effect of various parameters on the solid circulation rate in a liquid–solid circulating fluidized bed
CN107008211A (en) A kind of fluidized-bed reactor with Independent adjustable inner-outer circulation flow rate
CN114251954B (en) Powder heating equipment and heating method thereof
Nirmala et al. An experimental study of liquid-solid flow in a circulating fluidized bed of varying liquid viscosity
JPH0472154B2 (en)
Natarajan et al. Holdup and solids circulation rate in liquid-solids circulating fluidised bed
JP2662657B2 (en) Two-dimensional spouted bed granulator
US4622424A (en) Preparation of acrylic acid and methacrylic acid in a combination fixed-fluid bed reactor
Tsuo Computation of flow regimes in circulating fluidized beds.