JP2534069B2 - Variable output amplitude type binary transversal filter - Google Patents

Variable output amplitude type binary transversal filter

Info

Publication number
JP2534069B2
JP2534069B2 JP62183208A JP18320887A JP2534069B2 JP 2534069 B2 JP2534069 B2 JP 2534069B2 JP 62183208 A JP62183208 A JP 62183208A JP 18320887 A JP18320887 A JP 18320887A JP 2534069 B2 JP2534069 B2 JP 2534069B2
Authority
JP
Japan
Prior art keywords
circuit
output
amplitude
amplitude control
transversal filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62183208A
Other languages
Japanese (ja)
Other versions
JPS6425612A (en
Inventor
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP62183208A priority Critical patent/JP2534069B2/en
Publication of JPS6425612A publication Critical patent/JPS6425612A/en
Application granted granted Critical
Publication of JP2534069B2 publication Critical patent/JP2534069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,ディジタル無線通信装置の帯域制限を,ベ
ースバンド信号に直接施すフィルタ回路に関するもので
あり,又その無線通信装置の送信出力を制御する方式に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a filter circuit that directly limits a band of a digital wireless communication device to a baseband signal, and controls a transmission output of the wireless communication device. It is related to the method.

(従来の技術) 従来,第3図に示す様なバイナリトランスバーサル型
フィルタは,その出力振幅をフィルタ内部の回路で制御
する事ができず,その出力に縦続接続する形で利得可変
型増幅回路,或は減衰器を追加していた。以下には第3
図に示した利得可変型増幅回路を有する場合について説
明する。
(Prior Art) Conventionally, in a binary transversal type filter as shown in FIG. 3, the output amplitude cannot be controlled by the circuit inside the filter, and the variable gain type amplifier circuit is connected in cascade to the output. Or, an attenuator was added. Below is the third
A case where the variable gain type amplifier circuit shown in the figure is provided will be described.

入力端子1よりバイナリ信号が入力され,時間展開回
路3に加えられる。この時間展開回路3は遅延回路2と
同じ遅延回路群が縦続接続された遅延回路列よりなって
おり,各遅延回路の遅延時間は,時間展開の時間量子化
間隔(以下サンプリング周波数という)であり,バイナ
リトランスバーサル型フィルタの目標とする減衰特性に
依存するものである。通常,入力されるバイナリ信号に
対して充分小さなサンプリング間隔を選択するが,特に
精密なロールオフ型のナイキスト成形を目標としている
様な場合,入力されるバイナリ信号のビットレートの整
数倍のレートでサンプリングを行なう。この様な場合,
遅延回路2は,外部クロック信号で動作するフリップフ
ロップ型遅延素子で構成する事が多い。
A binary signal is input from the input terminal 1 and applied to the time expansion circuit 3. The time expansion circuit 3 is composed of a delay circuit array in which the same delay circuit group as the delay circuit 2 is connected in cascade, and the delay time of each delay circuit is a time quantization interval of time expansion (hereinafter referred to as a sampling frequency). , It depends on the target attenuation characteristics of the binary transversal filter. Normally, a sufficiently small sampling interval is selected for the input binary signal. However, especially when aiming for precise roll-off type Nyquist shaping, at a rate that is an integer multiple of the bit rate of the input binary signal. Perform sampling. In this case,
The delay circuit 2 is often composed of a flip-flop type delay element which operates by an external clock signal.

時間展開回路3の出力は,緩衝回路群5の入力にそれ
ぞれ接続されており,時間展開された入力信号は,本緩
衝回路群5で,次の時間展開係数変換回路7の入力に対
するバイナリ電圧供給源として各緩衝回路4の出力に現
われる。
The output of the time expansion circuit 3 is connected to the input of the buffer circuit group 5, and the time expanded input signal is a binary voltage supply to the input of the next time expansion coefficient conversion circuit 7 in the buffer circuit group 5. It appears at the output of each buffer circuit 4 as a source.

時間展開係数変換回路7に於ては,次の和回路8の低
インピーダンス入力に対して電流制御型係数変換を各入
力ごとに行なっている。
In the time expansion coefficient conversion circuit 7, current control type coefficient conversion is performed for each input with respect to the low impedance input of the following sum circuit 8.

第3図に示した例は,電流制限を行なう為に,各直列抵
抗6の値そのものが変換係数列に比例する様になってい
るという最も簡単な構造のものである。変換された時間
展開係数に相当する各出力からの電流を合成しているの
が和回路8である。上述の様に,本従来例の和回路8は
低インピーダンス電流合成回路であり,オペアンプ等の
反転入力を利用する第3図に示すボルテイジホロワ回路
がよく利用される。
The example shown in FIG. 3 has the simplest structure in which the value itself of each series resistor 6 is proportional to the conversion coefficient string in order to limit the current. The summing circuit 8 synthesizes the currents from the respective outputs corresponding to the converted time expansion coefficient. As described above, the summing circuit 8 of the conventional example is a low impedance current synthesizing circuit, and the voltage follower circuit shown in FIG. 3 that utilizes the inverting input of an operational amplifier or the like is often used.

和回路8の出力は,電流合成値を電圧振幅に置換した
形で出力端子に現われる。この点に於ける振幅波形は,
本フィルタの目標特性に対して,前述のサンプリング間
隔で量子化された近似波形となっている。従って,和回
路8の出力中にはサンプリング周波数の整数倍のスプリ
アスが含まれており,これを直ちに無線系の変調器等に
入力すると,有害なスプリアス輻射を生ずる事になる。
この意味で,本フィルタの出力には第3図の様なスプリ
アス除去フィルタ9が接続されている。
The output of the summing circuit 8 appears at the output terminal in the form of replacing the current combined value with the voltage amplitude. The amplitude waveform at this point is
The target waveform of this filter is an approximate waveform quantized at the sampling interval described above. Therefore, the output of the summing circuit 8 contains spurious waves that are integral multiples of the sampling frequency, and if these spurious waves are immediately input to a wireless modulator or the like, harmful spurious emission will occur.
In this sense, the output of this filter is connected to the spurious eliminating filter 9 as shown in FIG.

以上に説明したものは,一般的なバイナリトランスバ
ーサルフィルタの動作であるが,容易に解る様にバイナ
リトランスバーサルフィルタの内部回路のみで,その出
力振幅を制御する事は極めて難しい。
What has been described above is the operation of a general binary transversal filter, but as can be easily understood, it is extremely difficult to control its output amplitude only by the internal circuit of the binary transversal filter.

そこで,第3図に於ては,出力振幅を制御する為に,
フィルタとは独立した振幅制御用利得可変増幅回路10を
追加してあり,例えば無線機等の変調器に必要な振幅を
供給し得る様になっている。
Therefore, in FIG. 3, in order to control the output amplitude,
An amplitude controlling variable gain amplifying circuit 10 independent of the filter is added so that a required amplitude can be supplied to a modulator such as a radio device.

(発明が解決しようとする問題点) しかしながら,第3図の従来型構成の場合,和回路8
の増幅回路と利得可変増幅回路10が縦続に接続されてい
る為,出力の安定性特に出力信号のオフセット変動につ
いて注意しなければならない。さらには,回路規模も大
きく,調整する場合も,操作が重複するなど煩雑であ
り,信頼性,経済性の面から見直すべき点が多い。
(Problems to be Solved by the Invention) However, in the case of the conventional configuration shown in FIG.
Since the amplifier circuit and the variable gain amplifier circuit 10 are connected in cascade, it is necessary to pay attention to the stability of the output, especially the offset fluctuation of the output signal. In addition, the circuit scale is large, and even when adjustments are made, operations are complicated, and there are many points to be reviewed from the aspects of reliability and economy.

(問題点を解決するための手段) 本発明は、上記の従来例の欠点を解消するために、遅
延回路列を含む時間展開回路と、該時間展開回路の各展
開出力に接続する緩衝回路群と、該緩衝回路群の各出力
に接続する時間展開係数変換回路と、該係数変換回路出
力を合成する和回路と、スプリアス除去フィルタとから
成るバイナリトランスバーサルフィルタに於て、前記緩
衝回路群は相補型ドライバ構造を有するCMOS回路とし、
該各CMOS回路の電源入力に振幅制御として共通の可変電
圧を供給する振幅制御回路を備えたバイナリトランスバ
ーサルフィルタである。以下そのCMOS回路を緩衝回路と
して構成した本発明の実施例について説明する。
(Means for Solving Problems) In order to solve the above-mentioned drawbacks of the conventional example, the present invention provides a time expansion circuit including a delay circuit array and a buffer circuit group connected to each expansion output of the time expansion circuit. In the binary transversal filter including a time expansion coefficient conversion circuit connected to each output of the buffer circuit group, a sum circuit for synthesizing the output of the coefficient conversion circuit, and a spurious removal filter, the buffer circuit group is A CMOS circuit having a complementary driver structure,
It is a binary transversal filter provided with an amplitude control circuit for supplying a common variable voltage to the power supply input of each CMOS circuit as amplitude control. An embodiment of the present invention in which the CMOS circuit is configured as a buffer circuit will be described below.

(実施例) 第1図に実施例を示す。入力第41からバイナリ信号が
入り,遅延回路列によって構成された時間展開回路3の
動作までは第3図の従来例と同じである。その時間展開
回路3の出力を本発明ではCMOS構造を有する緩衝回路群
5に接続し,その緩衝回路群5の電源端子は,他回路の
電源供給線より独立した印加電圧を可変して共通の可変
電圧を供給しうる振幅制御回路10′が接続されている。
ここで電源電圧を制御して振幅制御回路と称しているの
は,以下の様な理由からである。即ち,緩衝回路4′の
様なCMOS構造の素子では,第2図に見る様に,Pチャンネ
ルMOS FETと,NチャンネルMOS FETの各ゲート,ドレイン
をコモン接続,それぞれのソースを正電源と大地に接続
した構造を有し,コモンゲート入力の状態により,一方
のMOS FETがONとなり他方がOFFとなる。ONとなるMOS FE
Tの内部抵抗は,103Ω程度であるが,OFFとなるMOS FET
の内部抵抗は1010Ω程度と考えられる。従って,その出
力振幅は,許容しうる負荷範囲なら素子に印加されてい
る電源電圧にほぼ線型に依存する性質がある。この回路
4の動作を第1表に示す。
(Example) An example is shown in FIG. A binary signal is input from the input No. 41 and the operation of the time expansion circuit 3 constituted by the delay circuit array is the same as that of the conventional example of FIG. In the present invention, the output of the time expansion circuit 3 is connected to a buffer circuit group 5 having a CMOS structure, and the power supply terminal of the buffer circuit group 5 has a common applied voltage which is independent of the power supply lines of other circuits. An amplitude control circuit 10 'capable of supplying a variable voltage is connected.
The reason why the power supply voltage is controlled to be referred to as an amplitude control circuit here is as follows. That is, in a CMOS structure element such as the buffer circuit 4 ′, as shown in FIG. 2, the gates and drains of the P-channel MOS FET and the N-channel MOS FET are connected in common, and the sources of each are connected to the positive power source and ground. One of the MOS FETs turns on and the other turns off depending on the state of the common gate input. ON MOS FE
The internal resistance of T is about 10 3 Ω, but it is a MOS FET that turns OFF.
The internal resistance of is considered to be about 10 10 Ω. Therefore, its output amplitude has a property of being almost linearly dependent on the power supply voltage applied to the element within an allowable load range. The operation of this circuit 4 is shown in Table 1.

実際,市販のCMOSゲートIC等では,単極電源で動作させ
たとき、そのH出力は印加電源電圧と,L出力は大地レベ
ルと等しいと考えても問題はないとされている。この性
質により,第1図中の緩衝回路群5の各出力端子には,
電源電圧に比例したHレベル電圧が現われ,印加電圧に
よる電圧可変型バイナリ電圧供給源として各緩衝回路が
働く。一方,緩衝回路群5以降の時間展開係数変換回路
7を介した和回路8に於ては,従来例で説明した様に,
各緩衝回路4′の出力の線型和演算で行なっているの
で,和回路8の出力振幅そのものが緩衝回路4′の出力
振幅に比例する事になり,結果的に緩衝回路4′の電源
電圧により,トランスバーサルフィルタの出力振幅が制
御できる事になる。次に第1図に於ける振幅制御回路1
0′中の分圧電圧出力が和回路8中の非反転入力に接続
されている点を説明する。
In fact, in a commercially available CMOS gate IC or the like, it is said that there is no problem even if it is considered that the H output is equal to the applied power supply voltage and the L output is equal to the ground level when operated with a single-pole power supply. Due to this property, each output terminal of the buffer circuit group 5 in FIG.
An H-level voltage proportional to the power supply voltage appears, and each buffer circuit functions as a voltage variable binary voltage supply source by the applied voltage. On the other hand, in the sum circuit 8 via the time expansion coefficient conversion circuit 7 after the buffer circuit group 5, as described in the conventional example,
Since the output of each buffer circuit 4'is linearly summed, the output amplitude of the sum circuit 8 is proportional to the output amplitude of the buffer circuit 4 '. The output amplitude of the transversal filter can be controlled. Next, the amplitude control circuit 1 in FIG.
It will be described that the divided voltage output in 0'is connected to the non-inverting input in the summing circuit 8.

第1図に於て,CMOS構造を有する緩衝回路4′は,通常
のCMOSゲートICを単極電源で利用した場合を想定してい
る。つまり,緩衝回路4′のバイナリ出力電圧はゼロ又
はHレベルとなっている。この為,和回路8中の非反転
入力を第3図の様に大地に落していると,その出力信号
がマイナス側にオフセットを生ずる事になる。これを通
常の電源系からリファレンス電圧を作り,和回路8中の
非反転入力を利用してキャンセルしたとしても,前述の
様な緩衝回路出力のHレベルのみを操作する振幅制御法
では,振幅を可変する毎にオフセットが変動してしまう
結果となる。そこで,振幅変化に対して,比例関係を有
する緩衝回路電源電圧によりリファレンス電圧を作る形
とした。即ち,出力振幅∝出力信号オフセット∝緩衝回
路電源電圧という相関関係を利用したのである。これに
より,出力のオフセット変動なしに,振幅制御が容易に
実現する事になる。
In FIG. 1, the buffer circuit 4'having a CMOS structure is assumed to use a normal CMOS gate IC with a single-pole power supply. That is, the binary output voltage of the buffer circuit 4'is zero or H level. Therefore, if the non-inverted input in the summing circuit 8 is dropped to the ground as shown in FIG. 3, the output signal thereof causes an offset on the minus side. Even if this is canceled by using a non-inverting input in the summing circuit 8 by making a reference voltage from a normal power supply system, the amplitude control method that operates only the H level of the buffer circuit output as described above will reduce the amplitude. As a result, the offset changes every time it is changed. Therefore, the reference voltage is created by the buffer circuit power supply voltage that is proportional to the amplitude change. That is, the correlation of output amplitude ∝ output signal offset ∝ buffer circuit power supply voltage was used. As a result, amplitude control can be easily realized without fluctuations in output offset.

(発明の効果) 以上説明した様に,本発明によれば出力振幅を制御す
る為にフィルタに継続接続される振幅可変回路が不要と
なり,従来ならば広域帯に動作するATTや利得可変増幅
器といった比較的繊細な回路を必要としたところが大幅
に合理化され,ごく簡単な電圧可変操作のみで出力振幅
を可変できる様になる。また,その電圧可変操作で実現
するという性質から,外部の制御回路との接続も容易と
なる。例えば位相振幅変調型の無線機等で,その送信出
力に対してALCをかけるといった回路がそれである。さ
らに,位相振幅変調型の変調方式の内,直交搬送波を利
用するベースバンド2系列入力,或は16QAMの様な多値
化された2系列入力に対しても,2系列の回路それぞれの
フィルタ内の緩衝回路出力振幅を同じ電圧で制御したと
するならば,2系列同時の振幅制御が実現できるものであ
り,応用範囲も広い。
(Effects of the Invention) As described above, according to the present invention, the amplitude variable circuit continuously connected to the filter for controlling the output amplitude is not required, and conventionally, the ATT or the gain variable amplifier that operates in a wide band is used. Where a relatively delicate circuit is required, it has been greatly rationalized, and the output amplitude can be changed by a very simple voltage change operation. Also, because of the property of being realized by the variable voltage operation, connection with an external control circuit becomes easy. For example, this is a circuit that applies ALC to the transmission output of a phase-amplitude modulation type wireless device. In addition, in the phase-amplitude modulation type modulation method, even for baseband 2-series input that uses quadrature carrier or multi-valued 2-series input such as 16QAM, the filters of the 2-series circuits are included. If the output amplitude of the buffer circuit is controlled with the same voltage, amplitude control of two series can be realized simultaneously, and the application range is wide.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成図,第2図は本発明に
使用するCMOS型緩衝回路の説明図,第3図は従来例を示
す。 3……時間展開回路,4′……相補型緩衝回路,5……緩衝
回路群,7……時間展開係数変換回路,8……和回路,10′
……振幅制御回路。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a CMOS type buffer circuit used in the present invention, and FIG. 3 is a conventional example. 3 ... Time expansion circuit, 4 '... Complementary buffer circuit, 5 ... Buffer circuit group, 7 ... Time expansion coefficient conversion circuit, 8 ... Sum circuit, 10'
...... Amplitude control circuit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遅延回路列を含む時間展開回路と、該時間
展開回路の各展開出力に接続する緩衝回路群と、該緩衝
回路群の各出力に接続する時間展開係数変換回路と、該
係数変換回路出力を合成する和回路と、スプリアス除去
フィルタとから成るバイナリトランスバーサルフィルタ
に於て、前記緩衝回路群は相補型ドライバ構造を有する
CMOS回路とし、該各CMOS回路の電源入力に振幅制御とし
て共通の可変電圧を供給する振幅制御回路を備えたこと
を特徴とする出力振幅可変型バイナリトランスバーサル
フィルタ。
1. A time expansion circuit including a delay circuit array, a buffer circuit group connected to each expanded output of the time expansion circuit, a time expansion coefficient conversion circuit connected to each output of the buffer circuit group, and the coefficient. In a binary transversal filter including a sum circuit for synthesizing conversion circuit outputs and a spurious elimination filter, the buffer circuit group has a complementary driver structure.
An output amplitude variable type binary transversal filter comprising a CMOS circuit and an amplitude control circuit for supplying a common variable voltage to the power supply input of each CMOS circuit as amplitude control.
【請求項2】前記振幅制御回路の出力を抵抗分圧し前記
振幅制御回路の出力に比例したリファレンス電圧を得て
前記和回路に差入力として供給する手段を備えて、前記
CMOS回路を単極電源で動作させたとき前記和回路の出力
信号に生ずるオフセットを前記緩衝回路群の振幅制御に
連動しながら相殺することを特徴とする特許請求の範囲
第1項記載の出力振幅可変型バイナリトランスバーサル
フィルタ。
2. A means for dividing the output of the amplitude control circuit by resistance to obtain a reference voltage proportional to the output of the amplitude control circuit and supplying the reference voltage to the summing circuit as a differential input.
2. The output amplitude according to claim 1, wherein the offset generated in the output signal of the summing circuit when the CMOS circuit is operated by a single-pole power source is offset while interlocking with the amplitude control of the buffer circuit group. Variable binary transversal filter.
JP62183208A 1987-07-22 1987-07-22 Variable output amplitude type binary transversal filter Expired - Fee Related JP2534069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62183208A JP2534069B2 (en) 1987-07-22 1987-07-22 Variable output amplitude type binary transversal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62183208A JP2534069B2 (en) 1987-07-22 1987-07-22 Variable output amplitude type binary transversal filter

Publications (2)

Publication Number Publication Date
JPS6425612A JPS6425612A (en) 1989-01-27
JP2534069B2 true JP2534069B2 (en) 1996-09-11

Family

ID=16131669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62183208A Expired - Fee Related JP2534069B2 (en) 1987-07-22 1987-07-22 Variable output amplitude type binary transversal filter

Country Status (1)

Country Link
JP (1) JP2534069B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845154A (en) * 1971-05-27 1973-06-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888430U (en) * 1982-09-16 1983-06-15 日本電気株式会社 automatic waveform equalizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845154A (en) * 1971-05-27 1973-06-28

Also Published As

Publication number Publication date
JPS6425612A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
US6606359B1 (en) Area-optimum rapid acquisition cellular multi-protocol digital DC offset correction scheme
US6615027B1 (en) Method and circuit for providing interface signals between integrated circuits
US5672998A (en) Class D amplifier and method
WO2000074241A1 (en) Dc offset correction and hold capability
CN101601185A (en) The apparatus and method that comprise frequency selective network
JP3425344B2 (en) D / A converter
CN101006711B (en) Circuit for reconstructing an analog signal from a digital signal and transmission system, particularly for wcdma cellular telephony, including such circuit
US20040037364A1 (en) Device for producing a phase and amplitude modulated radio frequency signal
US6891432B2 (en) Apparatus, methods and articles of manufacture for electromagnetic processing
US20040213356A1 (en) Combined digital-to-analog converter and signal filter
US5122718A (en) Gain/phase compensation circuit for use in servo control system of optical disk device
EP2403136B1 (en) Power amplifier chain implementing a sigma-delta modulator with digital predistortion feedback
JPH09233592A (en) Digital microphone instrument and audio signal transmitter
US7227408B2 (en) Low distortion class-D amplifier using sampling of a servo-loop amplifier output
JP2534069B2 (en) Variable output amplitude type binary transversal filter
US6744314B2 (en) Wideband power amplifier linearization technique
JPH07202961A (en) Transmitter
WO2004034603A2 (en) Transmitter and methods of transmission using separate phase and amplitude modulators
US4100373A (en) Adaptive linearizing acoustic coupling system
US7245183B2 (en) Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US2890294A (en) Phase-amplitude characteristic correction circuit arrangements
US4178555A (en) Method of reducing distortion in electronic networks
US20050015419A1 (en) Techniques to provide programmable finite impulse response filtering
US6597241B1 (en) High performance audio transmission channel
JPH0712145B2 (en) Digitally controlled oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees