JP2532707B2 - Blood circuit, blood measuring apparatus and blood measuring method using the same - Google Patents

Blood circuit, blood measuring apparatus and blood measuring method using the same

Info

Publication number
JP2532707B2
JP2532707B2 JP2055037A JP5503790A JP2532707B2 JP 2532707 B2 JP2532707 B2 JP 2532707B2 JP 2055037 A JP2055037 A JP 2055037A JP 5503790 A JP5503790 A JP 5503790A JP 2532707 B2 JP2532707 B2 JP 2532707B2
Authority
JP
Japan
Prior art keywords
blood
groove
blood cells
measuring
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2055037A
Other languages
Japanese (ja)
Other versions
JPH03257366A (en
Inventor
佑二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12987463&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2532707(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to JP2055037A priority Critical patent/JP2532707B2/en
Publication of JPH03257366A publication Critical patent/JPH03257366A/en
Application granted granted Critical
Publication of JP2532707B2 publication Critical patent/JP2532707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は血液回路、並びにこれを用いた血液測定装置
および測定方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a blood circuit, and a blood measuring device and a measuring method using the blood circuit.

(従来の技術) 血液中の有形成分である赤血球、白血球、血小板の機
能を測定、評価することは、健康管理、疾患の診断と治
療に極めて重要である。そこで、従来、赤血球変形能を
測定する目的でニュークリポア[Nuclepore]フィルタ
ー、ニッケルメッシュフィルター等の微小な孔を持った
膜に対する血液の通過能が調べられてきた。また、血小
板凝集能の測定には凝集に伴う血小板浮遊液の濁度の変
化を測定する方法が行なわれてきた。また、白血球活性
度の測定には、白血球活性のいくつかの側面に対応し
て、ボイデン[Boyden]チャンバー法、粒子貧食試験、
化学発光測定法等が行なわれてきた。この白血球活性度
は感染症、免疫療法、免疫抑制療法等において特に重要
である。
(Prior Art) Measuring and evaluating the functions of erythrocytes, leukocytes, and platelets, which are formed components in blood, is extremely important for health care, diagnosis and treatment of diseases. Therefore, conventionally, the ability of blood to pass through a membrane having micropores such as Nuclepore filter or nickel mesh filter has been investigated for the purpose of measuring erythrocyte deformability. In addition, a method of measuring the change in the turbidity of the platelet suspension due to the aggregation has been used to measure the platelet aggregation ability. In addition, the measurement of leukocyte activity corresponds to several aspects of leukocyte activity by the Boyden chamber method, particle phagocytosis test,
Chemiluminescence measurement methods have been used. This leukocyte activity is particularly important in infectious diseases, immunotherapy, immunosuppressive therapy and the like.

(発明が解決しようとする課題) しかしながら、上記測定法はいずれも効率の悪さ、再
現性の低さ、定量性の低さ等の問題を持っており、重要
度に相応しい有効な測定法とは成り得ていない。また、
従来の血小板凝集能測定法は試料調整に手間がかかり、
感度も十分なものでない。更に、赤血球変形能測定の上
記従来技術は、孔あるいは溝が計測中に血液試料中の有
形成分により閉塞されてしまうことで、信頼性を欠くも
のであった。
(Problems to be solved by the invention) However, all of the above-mentioned measuring methods have problems such as inefficiency, low reproducibility, and low quantifying ability, and are not effective measuring methods suitable for importance. It can't happen. Also,
The conventional method for measuring platelet aggregability requires time and effort for sample preparation,
The sensitivity is not enough. Further, the above-mentioned conventional technique for measuring red blood cell deformability is unreliable because the hole or groove is clogged by the formed material in the blood sample during the measurement.

一方、本発明者らは、先にシリコン基板上に加工した
微細な溝から構成される新型血液フィルターを開発し、
かつ、それを用いた赤血球変形能測定装置を開発するこ
とにより、孔の径、形状が不均一である、孔に入る際の
赤血球の向きが一様でない、変形過程を観察できない、
指標の意味が明瞭でない等の従来の赤血球変形能測定法
の諸問題を大幅に解決した(特願昭63−283687号)。
On the other hand, the present inventors previously developed a new blood filter composed of fine grooves processed on a silicon substrate,
And by developing a red blood cell deformability measuring device using it, the diameter and shape of the pores are non-uniform, the direction of red blood cells when entering the pores is not uniform, and the deformation process cannot be observed.
The problems of conventional erythrocyte deformability measurement methods, such as the meaning of the index is not clear, have been largely solved (Japanese Patent Application No. 63-283687).

更に、本発明者らが発明したこの血液フィルターを用
いた装置では、個々の赤血球の溝通過速度を直接計測
し、指標としているため、結果自身が目詰まりの影響を
受けることはない。しかしながら、依然として目詰まり
そのものを防ぐことはできていない。そのため、フィル
ターの使用回数が制限され、装置実用化の上で大きな障
害となっている。
Further, in the device using the blood filter invented by the present inventors, since the groove passage velocity of each red blood cell is directly measured and used as an index, the result itself is not affected by clogging. However, the clogging itself cannot be prevented yet. Therefore, the number of times the filter can be used is limited, which is a major obstacle to putting the device into practical use.

また、従来、他種の血球の干渉を防ぐ目的で、血液試
料から単一種類の血球分画だけを分離して測定すること
が行なわれてきたが、斯様な方法は多大な手間を要する
だけでなく、その間の血球の変性あるいは分離処置によ
る変性を防ぐことができず、そのため、結果の生理学的
あるいは診断学的価値を低下せしめるものであった。
Further, conventionally, in order to prevent interference of blood cells of other types, it has been performed to separate and measure only a single type of blood cell fraction from a blood sample, but such a method requires a great deal of labor. Not only that, however, the degeneration of blood cells or the degeneration due to the separation treatment cannot be prevented during that time, which reduces the physiological or diagnostic value of the result.

また、静水圧差による血球の受動的な運動と生理活性
物質刺激による血球の能動的運動を完全に分離して測定
すること、更に、血球に対する機械的ストレスの影響は
研究及び診断上重要であると考えられるが、現在この種
の問題を定量的に研究し得る方法はない。上記の本発明
者らが発明した装置では、フィルターを多段にすること
により、このような研究を可能にしているが、個々の血
球細胞に対する機械的ストレスの影響を追跡測定すると
ころまではできていない。
In addition, it is important to completely separate and measure the passive movement of blood cells due to the difference in hydrostatic pressure and the active movement of blood cells due to stimulation of physiologically active substances, and the effect of mechanical stress on blood cells is important for research and diagnosis. However, there is currently no way to quantitatively study this type of problem. The above-mentioned device invented by the inventors of the present invention enables such a study by providing multiple filters, but it has not been possible to follow up the measurement of the effect of mechanical stress on individual blood cells. Absent.

また、これまで、流路がネットワークを構成した際の
各血球の流れの状況を測定、研究する有効な手段がなか
った。
In addition, until now, there has been no effective means for measuring and studying the flow condition of each blood cell when the flow path constitutes a network.

したがって、本発明は次に列拳する課題を解決する新
規な血液回路、並びにこれを用いた血液測定装置および
測定方法を提供することを目的とするものである。
Therefore, it is an object of the present invention to provide a novel blood circuit that solves the problem of next-to-row, and a blood measuring apparatus and a measuring method using the same.

1)白血球活性度を有効に定量化し測定すること。1) To effectively quantify and measure leukocyte activity.

2)血小板凝集能の測定を従来技術に比べてより簡便か
つ高感度に行なうこと。
2) The platelet aggregation ability should be measured more simply and with higher sensitivity than in the prior art.

3)赤血球変形能の測定に際しては、血液試料中の有形
成分による孔あるいは溝の閉塞を防ぎ、それにより測定
の信頼性を高めること。
3) When measuring the erythrocyte deformability, prevent pores or grooves from being clogged by formed components in the blood sample, thereby increasing the reliability of the measurement.

4)血液試料から各血球分画を分離しない状態でも、赤
血球変形能、白血球活性度、血小板凝集能の計測を可能
ならしめること。
4) To be able to measure erythrocyte deformability, leukocyte activity, and platelet agglutination ability without separating each blood cell fraction from a blood sample.

5)上記4の測定にあたり他種の血球の干渉を最小にす
ること。
5) Minimize the interference of blood cells of other species in the above measurement 4.

6)生理活性物質のみの作用による特定の血球細胞の遊
走も測定し得ること。
6) The migration of specific blood cells due to the action of only the physiologically active substance can also be measured.

7)機械的ストレスによる各血球細胞の上記機能特性の
変化を追跡測定すること。
7) Follow-up measurement of changes in the above-mentioned functional characteristics of each blood cell due to mechanical stress.

8)流路網において各血球細胞の流れの分布を測定する
こと。
8) Measuring the flow distribution of each blood cell in the flow channel network.

(課題を解決するための手段) かかる目的を達成するため、本発明は血液試料の全て
が微細な溝を通過する従来の方式に代えて、大きな流路
に対し略直交方向に微細な溝を形成することで、血液試
料の一部のみを大きな流路から微細な溝に導く方式を採
用し、併せて半導体微細加工技術を応用することにより
基板上に赤血球、白血球ないし血小板の形状にそれぞれ
適合した種々の形状、大きさの微細な溝を高精度に作成
したものである。血液試料の一部のみでもそこに含まれ
る血球細胞の数は極めて多数であり、十分の個数の血球
について測定することのできるものである。
(Means for Solving the Problems) In order to achieve such an object, the present invention replaces the conventional method in which all of the blood sample passes through the fine groove, and replaces the fine groove in a direction substantially orthogonal to a large flow path. By forming a part of the blood sample from a large flow path to a fine groove, it is adapted to the shape of red blood cells, white blood cells or platelets on the substrate by applying semiconductor microfabrication technology. The fine grooves having various shapes and sizes are formed with high precision. The number of blood cells contained in even a part of a blood sample is extremely large, and a sufficient number of blood cells can be measured.

尚、このように血液試料を大きな流路から微細な溝に
導くには該溝の入口側と出口側、即ち血液試料を流す大
きな流路となる部位と、この流路と平行しかつ前記溝に
よってこの流路と連通される別の流路(この別の流路に
は通常生理食塩水等の生理的に不活性流体が流され
る。)となる部位との間に静水圧差あるいは生理活性物
質の濃度差を生じさせればよい。
In this way, in order to guide the blood sample from the large flow channel to the fine groove, the inlet side and the outlet side of the groove, that is, the portion which becomes the large flow channel for flowing the blood sample, and the groove parallel to this channel and By a hydrostatic pressure difference or a physiological activity with respect to a part which becomes another flow path communicating with this flow path (a physiologically inert fluid such as physiological saline is usually flown into this another flow path). It suffices to cause a difference in concentration of substances.

また、更に本発明においては上記溝内に狭隘部を多段
に設けることも示される。
Further, in the present invention, it is also shown that the narrow portion is provided in multiple stages in the groove.

(作用) 白血球の活性は、遊走、食作用、生理活性物質の分泌
等の諸反応を総合したものであり、しかも、いずれの反
応にも細胞内の収縮蛋白質の収縮、運動が関与してい
る。一方白血球の溝閉塞を含めた能動的あるいは受動的
溝通過能は細胞内の収縮蛋白質の収縮、運動状態によっ
て著しく変化する。従って、白血球の能動的あるいは受
動的溝通過能あるいは溝閉塞は白血球の活性度の適切な
指標となる。血小板の凝集も同様に細胞内の収縮蛋白質
の収縮、運動が大本の反応であり、従って、血小板の溝
通過能あるいは血小板凝集塊による溝閉塞がここでも良
い指標となる。また、白血球、血小板に対しては、一定
量の生理活性物質で刺激した後の溝閉塞を含めた溝通過
能の変化量を指標とすることもできる。
(Activity) The activity of leukocytes is the sum of various reactions such as migration, phagocytosis, secretion of physiologically active substances, and the contraction and movement of intracellular contracting proteins are involved in all the reactions. . On the other hand, the ability of leukocytes to actively or passively pass through the groove, including groove occlusion, remarkably changes depending on the contraction and motility state of the contracting protein in the cell. Therefore, the ability of leukocytes to actively or passively cross the groove or groove occlusion is an appropriate indicator of the activity of leukocytes. Similarly, in platelet aggregation, contraction and movement of intracellular contracting proteins are the main reaction, and therefore, the ability of platelets to pass through the groove or groove occlusion by the platelet aggregate is a good index here. For white blood cells and platelets, the amount of change in groove passage ability including groove occlusion after stimulation with a certain amount of physiologically active substance can be used as an index.

血液試料を大きな流路に対し略直交方向に設けられた
微細な溝流路に流す本方式では、試料の大部分を大きな
流路に沿って流し、該血液試料のごく一部のみを微細な
溝に導くことが可能である。そのため、例えば赤血球の
合せた形状の入口を有する微細な溝の場合、白血球ある
いは赤血球より大きい有形成分例えば血球の凝集塊が入
口近傍にきても該溝内に入ることはできず、血液試料の
主流に押し流されて溝入口から遠ざかって行くことにな
る。このようにして白血球あるいは赤血球より大きい有
形成分が該溝を閉塞することが防がれる。その際、赤血
球に比べて小さい血小板の流入は防ぎ得ないが、血小板
が赤血球の通過を障害することはない。同様に、白血球
に合せた形状の入口を有する溝の場合、赤血球、血小板
は自由に通過するが、白血球の通過に影響を及ぼすこと
はない。また、螢光物質で各血球細胞若しくは液体成分
のいずれかを螢光発色させることにより、種類の異なる
血球間及び血球と周囲の液体間の識別が極めて容易にな
る。このように血液試料の流し方、溝入口の形状、測定
方式を工夫することにより、径のより大きい血球あるい
は有形成分の流入を防ぎながら、測定対象血球細胞によ
る溝閉塞を含めた溝通過能を選択的に測定することが可
能になる。また、赤血球、白血球、血小板にそれぞれ適
合した3種類の溝回路網および測定方式を並列配置し、
それぞれに血液試料を上記の方式で流すことにより、該
血液試料中の赤血球、白血球、血小板に対して同時にか
つ迅速に測定することも可能となる。
In this method, in which a blood sample is caused to flow through a fine groove channel provided in a direction substantially orthogonal to a large flow channel, most of the sample is caused to flow along the large flow channel, and only a small portion of the blood sample is finely divided. It is possible to lead to the groove. Therefore, for example, in the case of a fine groove having an inlet of a combined shape of erythrocytes, a formed component larger than white blood cells or erythrocytes, for example, an aggregate of blood cells cannot enter the groove even if it comes near the inlet, and a blood sample It will be swept away by the main stream of and go away from the ditch entrance. In this way it is prevented that white blood cells or particles larger than red blood cells block the groove. At that time, inflow of platelets smaller than red blood cells cannot be prevented, but platelets do not impede passage of red blood cells. Similarly, in the case of a groove having an inlet shaped to match white blood cells, red blood cells and platelets pass freely, but do not affect the passage of white blood cells. Further, by fluorescently coloring each blood cell or liquid component with a fluorescent substance, it becomes extremely easy to distinguish between different types of blood cells and between blood cells and surrounding liquid. In this way, by devising the method of flowing the blood sample, the shape of the groove inlet, and the measurement method, it is possible to prevent the inflow of blood cells or tangible components with a larger diameter, while at the same time, the ability of the blood cells to be measured to pass through the groove including groove occlusion. Can be selectively measured. In addition, three types of groove circuit networks and measurement methods that are suitable for red blood cells, white blood cells, and platelets are arranged in parallel,
By allowing a blood sample to flow in each of the above methods, it becomes possible to simultaneously and quickly measure red blood cells, white blood cells, and platelets in the blood sample.

上記の血液試料の流し方は、他方で生理活性物質の濃
度差のみによる特定の血球細胞の遊走を測定することを
可能にしている。即ち、溝入口側と出口側の間に静水圧
差に代えて生理活性物質の濃度差を設けることにより、
その生理活性物質の濃度差を認識できる血球細胞のみが
溝内に遊走してくる。その個数、通過時間を測定すれば
上記目的を達成し得ることになる。
On the other hand, the above-described flow of the blood sample makes it possible to measure the migration of specific blood cells due to only the concentration difference of the physiologically active substance. That is, by providing a concentration difference of the physiologically active substance instead of the hydrostatic pressure difference between the groove inlet side and the outlet side,
Only blood cells that can recognize the difference in concentration of the physiologically active substance migrate into the groove. The above object can be achieved by measuring the number and the passage time.

また、狭隘部を同一の溝内に多段に設けることによっ
て、そこを通過して行く血球の追跡が可能になるだけで
なく、その通過過程で生じる変化をも同時に追跡して行
くことができる。
Further, by providing the narrowed portion in multiple stages in the same groove, not only can blood cells passing therethrough be traced, but also changes occurring in the passage process can be traced at the same time.

異なる溝回路網の間の血液各有形成分の配分の仕方、
同一回路網内での血液各有形成分の分布状況は従来なか
った新しい指標となる。
How to distribute each material component of blood between different groove networks,
The distribution status of each formed component of blood in the same circuit network is a new index that has never existed before.

血液回路を流れる血液若しくはその成分は出口端で回
収され、必要に応じて元に戻される、あるいは、別の測
定系に運ばれる。
The blood or its components flowing through the blood circuit are collected at the outlet end and, if necessary, returned to the original state or conveyed to another measuring system.

(実施例) 以下、本発明構成を図面に示す実施例に基づいて詳細
に説明する。第1図に本発明の血液測定装置の構成を概
略的に示す。本装置は、血球を通過せしめる3種類の血
液回路1,2,3と、各回路1,2,3の溝を通過する血球の大き
さと通過速度を測定する測定装置26,27,28及びそれら測
定値を信号処理しその度数分布を表示する装置39,40
と、血液試料を各回路1,2,3に供給する給液路31と、給
液路31へ血液試料を注入する装置4と、送液ポンプ5,6
と、給液路31,32内の液圧を測定する圧力測定装置13,1
4,15,16,17,18と、流路抵抗可変装置19,20,21,22,23,24
と、上述の送液ポンプ5,6や圧力測定装置13,…,18、流
路抵抗可変装置19,…,24を制御する制御部25と、血液回
路通過後の血液を回収する回収タンク33,34,35,36,37,3
8、各流路31の途中にあって螢光物質あるいは生理活性
物質を添加混合する装置7,8,9,10,11,12から主に構成さ
れており、赤血球変形能測定、白血球活性度測定及び血
小板凝集能測定を同時に実施できる。尚、本実施例で
は、赤血球変形能測定用、白血球活性度測定用及び血小
板凝集能測定用の3種類の血液回路1,2,3を別個に形成
しているものを使用しているが、これに特に限定される
ものではなく、場合によっては1つの基板に上述の3種
類あるいはその他の測定用の血液回路を形成したものを
使用することも可能である。この場合、給液路31,32
や、圧力測定装置13,…,18、回収タンク33,…,38などの
付属設備を共用できる。
(Example) Hereinafter, the structure of the present invention will be described in detail based on an example shown in the drawings. FIG. 1 schematically shows the configuration of the blood measuring apparatus of the present invention. This device consists of three types of blood circuits 1, 2 and 3 that allow blood cells to pass, and measuring devices 26, 27 and 28 that measure the size and speed of blood cells that pass through the grooves of each circuit 1, 2 and 3. Devices 39, 40 for signal processing of measured values and displaying their frequency distribution
, A liquid supply path 31 for supplying a blood sample to each of the circuits 1, 2, 3; a device 4 for injecting a blood sample into the liquid supply path 31; and liquid transfer pumps 5, 6
And a pressure measuring device 13,1 for measuring the liquid pressure in the liquid supply passages 31,32.
4,15,16,17,18 and variable resistance device 19,20,21,22,23,24
, 18, the control unit 25 for controlling the liquid delivery pumps 5, 6 and the pressure measuring devices 13, ..., 18 and the flow path resistance varying devices 19, .., 24, and the recovery tank 33 for recovering blood after passing through the blood circuit. , 34,35,36,37,3
8.It is mainly composed of a device 7,8,9,10,11,12 in the middle of each flow path 31 for adding and mixing a fluorescent substance or a physiologically active substance. The measurement and the platelet aggregation measurement can be performed simultaneously. In this example, three types of blood circuits 1, 2 and 3 for measuring erythrocyte deformability, measuring leukocyte activity and measuring platelet aggregation are used separately. The present invention is not particularly limited to this, and in some cases, it is possible to use one substrate on which the above-mentioned three types or other blood circuits for measurement are formed. In this case, the liquid supply channels 31, 32
, And pressure measuring devices 13, ..., 18 and recovery tanks 33 ,.

該装置において、血液試料は注入装置4により給液路
31内に入れられ、送液ポンプ5からの液流に乗って各回
路1,2,3まで送られる。給液路31内の液体の圧力は各回
路1,2,3の直前で圧力測定装置13,15,17によって測定さ
れる。血液試料は各回路1,2,3内の血液流路を溝入口面
に沿って流れた後、流路抵抗可変装置19,21,23を通り回
収される。一方、各回路1,2,3内の別の流路には給液路3
2及び送液ポンプ6を経て生理食塩液が送られ、溝出口
面に沿って流される。この給液路32内の液体の圧力も各
回路1,2,3の入口近傍の圧力測定装置14,16,18によって
測定される。そして、回路入口側と出口側の圧力の測定
値を元に送液ポンプ5,6及び流路抵抗可変装置19,20,…,
24が制御部25において制御され、溝入口面と出口面の間
に所定の静水圧差が設定される。それにより血液試料の
一部は溝65を通過し、測定に供されることになる。各回
路1,2,3に至るまでに血液試料には必要に応じて螢光物
質、生理活性物質が加えられる。各回路1,2,3の溝を通
過する血球細胞は測定装置26,27,28の顕微鏡拡大投影面
上に投影され、その大きさおよび溝通過速度が計測され
る。必要に応じて螢光法で観察が行なわれる。また、生
理活性物質の拡散を溝出口側から入口側へも起こし得る
ように、溝出口側を流れる生理食塩液にも必要に応じて
生理活性物質が加えられる。各添加装置7,8,…,12の下
流の螺旋状の流路47,48,49,50,51,52は添加物質の混合
を確実にするためのものである。各回路1,2,3の入口側
と出口側の圧力測定装置13,14,…,18の出力は制御部25
に送られ、その測定値に基づいて流路抵抗可変装置19,2
0,…,24に制御部25から制御信号が出力される。
In the device, the blood sample is supplied by the injection device 4 to the liquid supply path.
It is put in 31 and is sent to each circuit 1, 2 and 3 by riding on the liquid flow from the liquid feed pump 5. The pressure of the liquid in the liquid supply passage 31 is measured by the pressure measuring device 13, 15, 17 immediately before each circuit 1, 2, 3. The blood sample flows through the blood flow paths in the circuits 1, 2, and 3 along the groove entrance surface, and then is collected through the flow path resistance variable devices 19, 21, and 23. On the other hand, the liquid supply passage 3 is provided in the other passage in each circuit 1, 2, 3.
The physiological saline solution is sent through the 2 and the solution sending pump 6, and is made to flow along the groove outlet surface. The pressure of the liquid in the liquid supply passage 32 is also measured by the pressure measuring device 14, 16, 18 near the inlet of each circuit 1, 2, 3. Then, based on the measured values of the pressures at the circuit inlet side and the outlet side, the liquid feed pumps 5, 6 and the flow path resistance variable devices 19, 20, ...
24 is controlled by the controller 25, and a predetermined hydrostatic pressure difference is set between the groove entrance surface and the exit surface. As a result, a part of the blood sample passes through the groove 65 and is used for measurement. If necessary, a fluorescent substance and a physiologically active substance are added to the blood sample before reaching the circuits 1, 2, and 3. Blood cells that pass through the grooves of the circuits 1, 2, and 3 are projected onto the microscope enlarged projection plane of the measuring devices 26, 27, and 28, and their size and groove passage speed are measured. Fluorescence observations are made as needed. Further, the physiologically active substance is added to the physiological saline solution flowing through the groove outlet side as needed so that the diffusion of the physiologically active substance can occur from the groove outlet side to the inlet side. The spiral flow paths 47, 48, 49, 50, 51, 52 downstream of the respective addition devices 7, 8, ..., 12 are for ensuring mixing of the addition substances. The outputs of the pressure measuring devices 13, 14, ..., 18 on the inlet side and the outlet side of the circuits 1, 2, 3 are controlled by the control unit 25.
To the flow path resistance variable device 19,2 based on the measured value.
A control signal is output from the control unit 25 to 0, ..., 24.

尚、制御部25としては、一般に公知のコンピュータが
採用が好ましい。
As the control unit 25, it is preferable to adopt a generally known computer.

第2図(a)および(b)にそれぞれ本発明の血液回
路の構成の一例を示す。表面に流路や溝を構成する窪み
や溝を有する第1の基板60と、この第1の基板60の表面
に接合される平面を有する第2の基板61とから少なくと
も構成されている。第2図(a)に示される実施例は、
第1の基板60に互いに平行な2つの縦長な窪み62,63を
設け、それら窪み62,63の間を区画する壁部64に各窪み6
2,63とで形成される流路とほぼ直交する方向の溝65を設
けたものである。窪み62,63はその両端に流入口66と流
出口67を夫々設け、流入口66から流体を導入して窪み62
あるいは63を通し流出口67から排出させるように設けら
れている。流入口66及び流出口67は第1の基板60と厚み
方向に貫通しており、第1図の血液測定装置の給液路31
若しくは32に連結される。例えば、第2図(d)に示す
ように、第1の基板60の下にベース板68を接合ないし圧
着し、該ベース板68に給液路31若しくは32を接続する引
き出し流路69,70を形成している。
2 (a) and 2 (b) respectively show an example of the configuration of the blood circuit of the present invention. It is composed at least of a first substrate 60 having dents or grooves forming a flow path or a groove on the surface thereof, and a second substrate 61 having a flat surface bonded to the surface of the first substrate 60. The embodiment shown in FIG. 2 (a) is
The first substrate 60 is provided with two vertically elongated depressions 62, 63 which are parallel to each other, and each depression 6 is formed in a wall portion 64 which partitions the depressions 62, 63.
A groove 65 is provided in a direction substantially orthogonal to the flow path formed by 2, 63. The recesses 62, 63 are provided with an inlet 66 and an outlet 67 at both ends thereof, and a fluid is introduced from the inlet 66 to form the recesses 62.
Alternatively, it is provided so that 63 is discharged from the outflow port 67. The inflow port 66 and the outflow port 67 penetrate the first substrate 60 in the thickness direction, and the liquid supply path 31 of the blood measuring apparatus of FIG.
Or connected to 32. For example, as shown in FIG. 2 (d), a base plate 68 is joined or pressure-bonded under the first substrate 60, and drawing channels 69, 70 for connecting the liquid supply path 31 or 32 to the base plate 68. Is formed.

また、第2図(b)に示される実施例は第1の基板60
に血液試料を含む液体を流す1本の窪み62と血液試料を
含まない流体を流す2本の窪み63を互いに平行に設けた
ものである。この各窪み62,63を相互に区画する壁部64
には第2図(c)に拡大して示すように、微細な溝65が
窪み62,63における流路と略直交方向に多数設けられて
いる。尚、第2図(a)及び(b)において符号50はこ
れらの血液回路における血液試料の流れを、また符号51
は生理食塩水の流れを示す。
In addition, the embodiment shown in FIG.
One recess 62 for flowing a liquid containing a blood sample and two recesses 63 for flowing a fluid not containing a blood sample are provided in parallel with each other. A wall 64 that divides each of the depressions 62, 63 from each other.
As shown in the enlarged view of FIG. 2C, a large number of fine grooves 65 are provided in the recesses 62, 63 in a direction substantially orthogonal to the flow paths. In FIGS. 2A and 2B, reference numeral 50 indicates the flow of the blood sample in these blood circuits, and reference numeral 51.
Indicates the flow of physiological saline.

このような形状を有する第1の基板60としては、特に
限定されるものではないが、微細加工が容易でかつ血液
に対し比較的不活性なシリコン単結晶により構成される
ものが好ましく用いられる。このシリコン単結晶板に半
導体製造で使用されるエッチングやホトリソグラフィ等
によって上述の窪み62,63や溝65等が形成される。
The first substrate 60 having such a shape is not particularly limited, but a substrate composed of a silicon single crystal that is easy to perform fine processing and is relatively inert to blood is preferably used. On the silicon single crystal plate, the above-mentioned depressions 62, 63, the groove 65, etc. are formed by etching, photolithography or the like used in semiconductor manufacturing.

この第1の基板60上には当接面が平面となされた第2
の基板61が接合ないし圧着され、この第1の基板60と第
2の基板61の接合部ないし圧着部に上記窪み62,63及び
溝65によって生じる空間で流路が形成されている。尚、
この第2の基板61は流路を通過する血液の光学的な観察
が行ない易いように透明なものであることが望ましく、
例えばパイレックスガラス等が用いられる。
On the first substrate 60, a second contact surface is a second surface.
The substrate 61 is bonded or pressure-bonded, and a flow path is formed in the space formed by the depressions 62 and 63 and the groove 65 at the bonding or pressure-bonding portion between the first substrate 60 and the second substrate 61. still,
It is desirable that this second substrate 61 be transparent so that optical observation of blood passing through the flow path can be easily performed.
For example, Pyrex glass or the like is used.

第3図(a)〜(d)に、各血液回路1,2,3の溝65を
通過する血球の大きさと通過速度を顕微鏡拡大投影面上
で計測する方式の一例を示す。この計測方式は、フォト
センサーを用いたもので、顕微鏡拡大投影面上の壁部64
の溝65の入口側及び出口側に相当する部位に貼着ないし
パターンニングされたフォトセルあるいは光電面の開口
部を有するフォトマルティプライヤーなどのフォトセン
サー71,72で検出する光量の変化を利用して血球73の大
きさと通過速度を測定するものである。第3図(a)の
実施例は血球73に取り込まれない螢光物質を加えて液体
成分74を発光させ、血球73を暗部として観測するように
したものである。その時の血球通過に伴うフォトセンサ
ー71,72の出力の変化を第3図(b)に示す。第3図
(c)に示す実施例は血球73に取り込まれる螢光物質を
加えて血球73自体を発光させ、血球を明部として観測す
るようにしたものである。その時の血球通過に伴うフォ
トセンサー71,72の出力の変化を第3図(d)に示す。
いずれの場合もフォトセンサー71,72に流れる電流のピ
ークの高さVが血球の大きさを示し、ピークの間隔Tが
通過時間を示す。フォトセンサー71,72の間隔(距離)
は一定であるため、ピークからピークまでの時間Tから
血球の通過速度を求めることができる。また、溝65の入
口で血球73は変形する。その時間のため溝入口側75では
出口側76と比べてピークの幅が広がることになる。従っ
て、ピークの幅の差D−D′が変形に要する時間を表す
ことになる。このようにして通過時間から血球73の変形
時間を分離して求めることも可能になる。
FIGS. 3 (a) to 3 (d) show an example of a method of measuring the size and passage speed of blood cells passing through the groove 65 of each blood circuit 1, 2, 3 on the microscope projection plane. This measurement method uses a photo sensor, and the wall part 64 on the microscope projection plane is used.
The change in the amount of light detected by photosensors 71, 72 such as a photocell or a photomultiplier having an opening of the photocathode that is attached or patterned at the portions corresponding to the inlet side and the outlet side of the groove 65 is used. It measures the size and passage speed of blood cells 73. In the embodiment of FIG. 3 (a), a fluorescent substance that is not incorporated into blood cells 73 is added to cause the liquid component 74 to emit light, and the blood cells 73 are observed as dark areas. Changes in the outputs of the photosensors 71 and 72 due to the passage of blood cells at that time are shown in FIG. In the embodiment shown in FIG. 3 (c), a fluorescent substance taken into the blood cells 73 is added to cause the blood cells 73 themselves to emit light, and the blood cells are observed as bright areas. Changes in the outputs of the photosensors 71 and 72 accompanying the passage of blood cells at that time are shown in FIG. 3 (d).
In either case, the height V of the peak of the current flowing through the photosensors 71 and 72 indicates the size of the blood cell, and the interval T between the peaks indicates the passage time. Distance between photo sensors 71 and 72 (distance)
Is constant, the blood cell passage speed can be obtained from the time T from peak to peak. Further, the blood cells 73 are deformed at the entrance of the groove 65. Because of that time, the peak width on the groove entrance side 75 becomes wider than that on the exit side 76. Therefore, the peak width difference DD ′ represents the time required for deformation. In this way, it becomes possible to separately obtain the deformation time of the blood cells 73 from the passage time.

第4図(a)〜(c)に血液回路の溝の一例を示す。
以下に、これらの特性が如何に分離されて測定されるか
について述べる。血液試料中の赤血球、白血球、血小板
は一様に各溝の入口面に到達するが、溝入口の所で溝に
入れるものと入れないものが分けられる。第4図(a)
に赤血球変形能測定用の溝65の一例を示す。この溝65
は、狭隘なV字型の溝77Aの前後に深さ4μm、幅10μ
mの矩形状の溝から成る入口側溝75A,出口側溝76Aが設
けられている。そのため、直径が8μm、厚さが2μm
の円盤状の赤血球73Aはこの入口側溝75Aに入れるが、直
径が6〜10μmの球状の白血球73Bはこの溝75Aに入るこ
とができない。したがって、白血球73Bは溝と直交する
血液試料の主流に流されて溝75Aから遠ざかり詰ること
がない。矩形状の入口側溝75Aに入ることにより配向し
た赤血球73Aは次に変形してV字型の溝77Aを通過する。
その通過速度は赤血球73Aの変形能に比例すると考えて
良く、前者は後者の適切な指標となる。また、赤血球の
大きさは矩形状の入口側溝75A、出口側溝76Aを通過中の
配向した赤血球の円盤面の投影像から正確に求められ
る。個々の赤血球73Aについて得られるこれらの測定値
から、赤血球73Aの大きさ、通過速度をそれぞれX,Y軸に
取り、それらに対する頻度をZ軸に取ることによって、
赤血球の機能特性およびその分布が3次元的に表示され
る。第7図はこのような血球細胞の大きさと、溝通過時
間のヒストグラムの3次元表示例である。このように血
球細胞の大きさと速度のヒストグラムが3次元化される
ことによって、従来形態の異常のみを2次元的に検出し
ていた場合と比較して、より高度な判定が可能となる。
通常の照明、顕微鏡観察では赤血球73Aと周囲の液体74
との区別が明瞭にならない場合、螢光法での観察が行な
われる。その際、赤血球73Aを螢光物質で標識するのは
手間がかかり、赤血球変形能にも悪影響が及ぶので、第
3図(a)に示すように、液体成分74を螢光発色させ、
赤血球73Aは影あるいは暗部として観察する方法を用い
る。
An example of a groove of the blood circuit is shown in FIGS.
The following describes how these properties are separated and measured. Red blood cells, white blood cells, and platelets in the blood sample uniformly reach the entrance surface of each groove, but those that enter the groove and those that do not enter are divided at the groove entrance. Figure 4 (a)
An example of the groove 65 for measuring red blood cell deformability is shown in FIG. This groove 65
Is 4 μm deep and 10 μm wide before and after the narrow V-shaped groove 77A.
An inlet side groove 75A and an outlet side groove 76A, which are rectangular grooves of m, are provided. Therefore, the diameter is 8 μm and the thickness is 2 μm.
The disc-shaped red blood cells 73A are put in the inlet side groove 75A, but the spherical white blood cells 73B having a diameter of 6 to 10 μm cannot enter the groove 75A. Therefore, the white blood cells 73B will not flow away from the groove 75A and be blocked by the main flow of the blood sample orthogonal to the groove. The red blood cells 73A oriented by entering the rectangular inlet side groove 75A are then deformed and pass through the V-shaped groove 77A.
The passage speed may be considered to be proportional to the deformability of red blood cells 73A, and the former is an appropriate index for the latter. The size of the red blood cells can be accurately obtained from the projected image of the disk surface of the oriented red blood cells passing through the rectangular inlet side groove 75A and outlet side groove 76A. From these measurements obtained for individual red blood cells 73A, by taking the size and passage velocity of the red blood cells 73A on the X and Y axes, respectively, and by taking the frequency for them on the Z axis,
The functional characteristics of red blood cells and their distribution are displayed three-dimensionally. FIG. 7 is a three-dimensional display example of such a histogram of blood cell size and groove passage time. By making the size and velocity histograms of blood cells three-dimensional in this way, it is possible to make a more sophisticated determination as compared with the case where only the abnormality of the conventional form is detected two-dimensionally.
Under normal illumination and microscopy, red blood cells 73A and surrounding liquid 74
If the distinction between and is not clear, fluorescence observation is performed. At this time, labeling red blood cells 73A with a fluorescent substance is time-consuming and adversely affects red blood cell deformability. Therefore, as shown in FIG. 3 (a), the liquid component 74 is fluorescently colored,
The method of observing red blood cells 73A as a shadow or a dark area is used.

第4図(b)に、白血球活性度を測定するための溝の
一実施例を示す。この白血球活性度測定用溝ではV字型
の溝77B及びその前後の台形状の入口側溝75B、出口側溝
76Bの寸法が大きく、例えば溝の深さは10μmとなって
いる。白血球73Bは入口側溝75Bに入り、次に変形してV
形溝77Bを通過する。白血球73Bの大きさ、通過速度の測
定表示方法は赤血球73Aの場合と同様である。赤血球73A
はこの溝75B,77B,76Bを自由に通過するが、白血球の通
過を障害することはない。白血球73Bと赤血球73Aの識別
は容易であるが、さらに区別を明瞭にする目的で、螢光
法での観察が行なわれる。白血球73Bはアクリジンオレ
ンジ、アクリジンレッド等の色素で容易に螢光染色さ
れ、第3図(c)のように明部として観察される。白血
球73Bが生理活性物質により刺激を受け、能動的な細胞
運動を開始するようになると、溝通過速度は著しく低下
する。これは外力と細胞内力が拮抗するようになるため
である。第5図(a)及び(b)は、この白血球73Bの
溝通過能の変化を模式的に示す。この溝通過能およびそ
の変化で白血球の活性度が定量化される。溝65の入口側
と出口側の間に静水圧差を設けず、代りに生理活性物質
の濃度差を設けると、白血球73Bは遊走を開始し、溝65
を能動的に通過するようになる。このような条件下での
溝65を通過する白血球の数、通過速度も白血球活性度の
指標となる。
FIG. 4 (b) shows an example of a groove for measuring leukocyte activity. In this leukocyte activity measuring groove, a V-shaped groove 77B and trapezoidal inlet-side grooves 75B and outlet-side grooves before and after the V-shaped groove 77B are provided.
The dimension of 76B is large, for example, the depth of the groove is 10 μm. The white blood cells 73B enter the inlet side groove 75B, and then are deformed to V
Pass through shaped groove 77B. The method of measuring and displaying the size and passage speed of the white blood cells 73B is the same as that of the red blood cells 73A. Red blood cell 73A
Can freely pass through these grooves 75B, 77B, 76B, but does not impede the passage of white blood cells. The white blood cells 73B and the red blood cells 73A can be easily discriminated from each other, but for the purpose of further clarifying the distinction, observation by a fluorescence method is performed. White blood cells 73B are easily fluorescent-stained with dyes such as acridine orange and acridine red, and are observed as bright areas as shown in FIG. 3 (c). When leukocytes 73B are stimulated by physiologically active substances to start active cell motility, the groove passage speed is significantly reduced. This is because the external force and the intracellular force come to compete with each other. FIGS. 5 (a) and 5 (b) schematically show changes in the groove passage ability of the white blood cells 73B. The activity of white blood cells is quantified by this groove-passing ability and its change. If a hydrostatic pressure difference is not provided between the inlet side and the outlet side of the groove 65, and instead a concentration difference of the physiologically active substance is provided, the white blood cells 73B start migration and the groove 65B
Will actively pass through. The number of white blood cells passing through the groove 65 and the speed of passage under these conditions are also indicators of the white blood cell activity.

第4図(c)に血小板凝集能測定用の溝の一実施例を
示す。この溝では血小板の直径約3μmに合った寸法の
入口側溝75C、V形溝77C、出口側溝76Cが設けられてい
る。入口側溝75C内に赤血球73A、白血球73Bは入ること
ができず、血小板73Cのみが通過していく[第5図
(c)]。生理活性物質により血小板73Cの凝集が引き
起こされると、第5図(d)に示されるように溝通過が
困難になる。血小板凝集塊の大きさと溝通過速度が血小
板凝集能の良い指標となる。
FIG. 4 (c) shows an example of a groove for measuring platelet aggregation ability. In this groove, an inlet-side groove 75C, a V-shaped groove 77C, and an outlet-side groove 76C, which are sized to match the platelet diameter of about 3 μm, are provided. Red blood cells 73A and white blood cells 73B cannot enter the inlet side groove 75C, and only platelets 73C pass through [Fig. 5 (c)]. When platelets 73C are aggregated by the physiologically active substance, it becomes difficult to pass through the groove as shown in FIG. 5 (d). The size of the platelet aggregate and the groove passage speed are good indicators of the platelet aggregation ability.

第6図は同一溝内にV字型の溝77D,77Eを多段に設け
た構造を示す。溝65を通過していく個々の血球に対して
各段のV字型の溝77D,75Eの通過速度が計測される。入
口側溝75Dと中間溝78Dとに夫々配置されたフォトセンサ
ー(図示省略)によって求められる1段目の溝77Dの通
過速度を基準に取ることにより、中間溝78Dと出口側溝7
6Dのフォトセンサー(図示省略)によって求められる次
段のV形溝77Eの通過速度との関係から各段の通過速度
の変化が求まる。この変化はそれまでの溝通過即ち変形
が血球の機能特性に及ぼす影響を反映する。
FIG. 6 shows a structure in which V-shaped grooves 77D and 77E are provided in multiple stages in the same groove. For each blood cell passing through the groove 65, the passing speed of the V-shaped grooves 77D and 75E at each stage is measured. The intermediate groove 78D and the outlet side groove 7D are obtained by taking as a reference the passing speed of the groove 77D of the first stage, which is obtained by the photosensors (not shown) arranged in the inlet side groove 75D and the intermediate groove 78D.
The change in the passing speed of each step can be obtained from the relationship with the passing speed of the V-shaped groove 77E of the next step obtained by the 6D photo sensor (not shown). This change reflects the effect of previous groove passage or deformation on the functional properties of blood cells.

尚、上記各実施例においては、赤血球、白血球および
血小板に対する溝の形状、深さ、大きさに関してそれぞ
れ1つずつ具体例を提示したにすぎないが、これらの溝
の形状は各血球細胞の形状、測定目的等に応じて種々変
更可能である。また、複数種の血液回路をそれぞれ別々
の基板に構成することも、1つの基板の中に構成するこ
とも可能である。
In addition, in each of the above-mentioned examples, only one specific example is provided for each of the shapes, depths, and sizes of the grooves for red blood cells, white blood cells, and platelets, but the shape of these grooves is the shape of each blood cell. Various modifications are possible depending on the purpose of measurement. In addition, it is possible to form a plurality of types of blood circuits on separate substrates or in a single substrate.

(発明の効果) 本発明は、以上説明したように構成されるために、 (1)血液試料から各血球分画を分離することなく、迅
速に赤血球の大きさと変形能の度数分布、白血球の大き
さと活性度あるいは刺激に対する応答の度合の度数分
布、血小板の大きさと凝集能あるいは凝集塊の度数分布
を測定することができ、 (2)また、従来の血液像は、血液中の各血球の数とそ
の大きさの分布の計測値に基づく、形態学的な血液像で
あるのに対し、本発明の装置は、各血球の機能即ち血液
の機能像を与えるものであり、各種の疾患で血液の形態
学的な像が変化するのは症状がかなり進行した後である
のに対して、血液の機能的変化は早期に出現する可能性
が高い。また、血液の機能的変化は病態の差を強く反映
するものと予想される。
(Effects of the invention) Since the present invention is configured as described above, (1) the size distribution of red blood cells and the frequency distribution of deformability, the number distribution of white blood cells can be rapidly increased without separating each blood cell fraction from a blood sample. The size and activity or the frequency distribution of the degree of response to stimuli, the size of platelets and the agglutination ability or the frequency distribution of agglutinates can be measured. (2) In addition, the conventional blood image shows each blood cell in blood. In contrast to the morphological blood image based on the measured value of the number and the distribution of its size, the device of the present invention provides the function of each blood cell, that is, the functional image of blood, and can be used for various diseases. The morphological picture of the blood changes only after the symptoms have progressed considerably, whereas the functional changes of the blood are likely to appear early. In addition, functional changes in blood are expected to strongly reflect differences in pathological conditions.

従って、本発明の装置は各種疾患の早期診断、精密診
断に貢献する。
Therefore, the device of the present invention contributes to early diagnosis and precise diagnosis of various diseases.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の装置の構成を示す図である。 第2図(a),(b)は本発明の血液回路を構成する第
1の基板の構成の一例を示す図、第2図(c)は第2図
(a),(b)のA部を拡大した図、第2図(d)は血
液回路として組立てた実施例を示す縦断面図である。 第3図(a)〜(d)は溝を通過する血球の大きさと通
過時間を求める方式を示す図、第3図(a)は血液回路
内の溝を通過していく血球を周囲の液体を螢光発光させ
て観測した図、第3図(b)はその時のフォトセンサー
の出力の変化を示す図、第3図(c)は血液回路内の溝
を通過していく血球を血球を螢光発光させて観測した
図、第3図(d)はその時のフォトセンサーの出力の変
化を示す図である。 第4図(a)は赤血球変形能測定用溝の形状の一例を示
す図、第4図(b)は白血球活性度測定用溝の形状の一
例を示す図、第4図(c)は血小板凝集能測定用溝を示
す図である。 第5図(a)及び(b)は白血球の活性と溝通過能の関
係を模式的に示す図、第5図(c)及び(d)は血小板
の凝集と溝通過能の関係を模式的に示す図である。 第6図は同一溝内に多段に狭隘部を設けた溝を示す図で
ある。 第7図は各血球の大きさと溝通過時間のヒストグラムの
表示例を示す図である。 1……赤血球変形能測定用血液回路、 2……白血球活性度測定用血液回路、 3……血小板凝集能測定用血液回路、 60……第1の基板、 61……第2の基板、 62,63……窪み、 64……壁部、 65……溝、 75A,75B,75C,75D……入口側溝、 76A,76B,76C,76D……出口側溝、 77A,77B,77C,77D,77E……V字型溝、 78E……中間溝、 73……血球、 73A……赤血球、 73B……白血球、 73C……血小板、 74……液体成分。
FIG. 1 is a diagram showing the configuration of the apparatus of the present invention. FIGS. 2 (a) and 2 (b) are views showing an example of the configuration of the first substrate constituting the blood circuit of the present invention, and FIG. 2 (c) is an A in FIGS. 2 (a) and 2 (b). FIG. 2 (d) is an enlarged view of a portion, and is a vertical sectional view showing an embodiment assembled as a blood circuit. FIGS. 3 (a) to 3 (d) are diagrams showing a method for obtaining the size and passage time of blood cells passing through the groove, and FIG. 3 (a) is a diagram showing blood cells passing through the groove in the blood circuit as the surrounding liquid. Fig. 3 (b) shows the change in the output of the photosensor at that time, and Fig. 3 (c) shows the blood cells passing through the groove in the blood circuit. FIG. 3 (d) is a diagram showing the change in the output of the photosensor at that time, which is observed by fluorescent emission. FIG. 4 (a) is a diagram showing an example of the shape of the red blood cell deformability measuring groove, FIG. 4 (b) is a diagram showing an example of the shape of the white blood cell activity measuring groove, and FIG. 4 (c) is a platelet. It is a figure which shows the groove | channel for aggregating ability measurement. 5 (a) and 5 (b) are diagrams schematically showing the relationship between leukocyte activity and groove passage ability, and FIGS. 5 (c) and 5 (d) are schematic diagrams showing the relationship between platelet aggregation and groove passage ability. FIG. FIG. 6 is a view showing a groove in which a plurality of narrow portions are provided in the same groove. FIG. 7 is a diagram showing a display example of a histogram of the size of each blood cell and groove passage time. 1 ... Blood circuit for measuring red blood cell deformability, 2 ... Blood circuit for measuring leukocyte activity, 3 ... Blood circuit for measuring platelet aggregation ability, 60 ... First substrate, 61 ... Second substrate, 62 , 63 …… Dimple, 64 …… Wall, 65 …… Groove, 75A, 75B, 75C, 75D …… Inlet side groove, 76A, 76B, 76C, 76D …… Outlet side groove, 77A, 77B, 77C, 77D, 77E …… V-shaped groove, 78E …… intermediate groove, 73 …… blood cells, 73A …… red blood cells, 73B …… white blood cells, 73C …… platelets, 74 …… liquid components.

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一端部に流入口を有し、他端部に流出口を
有する窪みを複数個並列配置し、且つこの窪み相互を区
画する壁部に、前記流入口と流出口とを結ぶ直線に対し
ほぼ直交する方向において、窪み相互を連通する微小な
溝を有してなる第1の基板と上記第1の基板の表面に接
合ないし圧着される平面を有する第2の基板とからな
り、上記第1の基板と第2の基板の接合部ないし圧着部
に上記窪みおよび溝によって形成される空間を流路とし
て有することを特徴とする血液回路。
1. A plurality of dents each having an inflow port at one end and an outflow port at the other end are arranged in parallel, and the inflow port and the outflow port are connected to a wall portion that defines the cavities. In a direction substantially orthogonal to a straight line, a first substrate having minute grooves communicating with each other and a second substrate having a flat surface bonded or pressure-bonded to the surface of the first substrate are formed. A blood circuit having a space formed by the recess and the groove as a flow path in a joint portion or a crimping portion of the first substrate and the second substrate.
【請求項2】前記溝の幅、深さあるいは形状のいずれか
あるいは全てを赤血球、白血球あるいは血小板のいずれ
かの大きさと形状に合わせることにより、この溝により
形成される流路の各血球に対する通過抵抗を異ならしめ
る、もしくはこの溝により形成される流路を通過できる
血球を限定することを特徴とする請求項1記載の血液回
路。
2. A passage for each blood cell in a channel formed by this groove by adjusting any or all of the width, depth or shape of the groove to the size and shape of any of red blood cells, white blood cells or platelets. 2. The blood circuit according to claim 1, wherein blood cells that have different resistances or that can pass through a flow path formed by the groove are limited.
【請求項3】赤血球、白血球および血小板にそれぞれ適
合した3種類の溝のうち複数種が配置されているもので
ある請求項1記載の血液回路。
3. The blood circuit according to claim 1, wherein a plurality of kinds of grooves are arranged among three kinds of grooves adapted to red blood cells, white blood cells and platelets.
【請求項4】溝内には狭隘部が多段に設けられているこ
とを特徴とする請求項1ないし3のいずれかに記載の血
液回路。
4. The blood circuit according to claim 1, wherein the groove has a plurality of narrow portions provided in multiple stages.
【請求項5】上記第2の基板が透明であることを特徴と
する請求項1ないし4のいずれかに記載の血液回路。
5. The blood circuit according to claim 1, wherein the second substrate is transparent.
【請求項6】上記第1の基板がシリコン単結晶からなる
ことを特徴とする請求項1ないし5のいずれかに記載の
血液回路。
6. The blood circuit according to claim 1, wherein the first substrate is made of silicon single crystal.
【請求項7】請求項1ないし6のいずれかに記載の血液
回路の1つの窪みの流入口に血液試料注入装置を接続
し、この窪みと並列配置された窪みの流入口に生理食塩
水注入装置を接続し、さらに各窪みの流入口近傍、流出
口近傍あるいはその両方に制御装置を有する圧力発生源
を設けたことを特徴とする血液測定装置。
7. A blood sample injection device is connected to the inlet of one depression of the blood circuit according to claim 1, and physiological saline is injected into the inlet of the depression arranged in parallel with this depression. A blood measuring apparatus, wherein the apparatus is connected, and a pressure generating source having a control device is further provided in the vicinity of the inflow port and / or the outflow port of each depression.
【請求項8】並列配置された窪み間を連通する溝により
形成される流路部に光を照射する光学系と、該流路部か
ら反射される光ないし該流路部から発射される光の変量
を測定する計測系とを有するものである請求項7記載の
血液測定装置。
8. An optical system for irradiating light to a flow path portion formed by a groove communicating between dents arranged in parallel, and light reflected from the flow path portion or light emitted from the flow path portion. The blood measuring apparatus according to claim 7, further comprising a measuring system for measuring the variable of.
【請求項9】請求項1ないし8のいずれかに記載の血液
回路あるいは血液測定装置において、血液回路の並列す
る窪みの間に静水圧差を設けることにより、上記並列す
る窪みの間を繋ぐ溝により形成される流路に血液の流れ
を起こらしめ、その後の各窪みでの血液の各有形成分の
数の増減あるいは血液の各有形成分による溝流路の閉塞
状況を測定し、それにより血液の各有形成分の流れ特性
あるいは活性度を求めることを特徴とする血液測定装
置。
9. The blood circuit or the blood measuring apparatus according to claim 1, wherein a hydrostatic pressure difference is provided between the parallel depressions of the blood circuit to connect the parallel depressions. The flow of blood is caused in the flow channel formed by, and the increase or decrease in the number of each formed component of blood in each depression thereafter or the clogging condition of the groove flow passage due to each formed component of blood is measured, and A blood measuring apparatus, characterized in that the flow characteristic or activity of each formed element of blood is obtained.
【請求項10】請求項1ないし8のいずれかに記載の血
液回路あるいは血液測定装置において、血液回路の並列
する窪みの間に生理活性物質の濃度差を設けることによ
り、上記並列する窪みの間を繋ぐ溝により形成される流
路を介して白血球の移動を起こらしめ、その後の各窪み
での白血球各分画の数の増減あるいは白血球による溝流
路の閉塞状況を測定し、それにより白血球各分画の遊走
能、粘着能を求めることを特徴とする血液測定装置。
10. The blood circuit or the blood measuring apparatus according to claim 1, wherein a difference in concentration of the physiologically active substance is provided between the parallel depressions of the blood circuit so that the gap between the parallel depressions is increased. The movement of white blood cells is caused through the flow path formed by the groove connecting the two, and the increase or decrease in the number of each leukocyte fraction in each depression after that or the occlusion state of the groove flow path due to the white blood cell is measured. A blood measuring device characterized by determining the migration ability and the adhesion ability of a fraction.
【請求項11】請求項1ないし8のいずれかに記載の血
液回路あるいは血液測定装置において、請求項9または
10に記載の血液測定を、生理活性物質に暴露後の血液試
料に対して行なうことを特徴とする血液測定方法。
11. The blood circuit or blood measuring device according to claim 1, wherein
11. A blood measurement method, which comprises performing the blood measurement according to 10 on a blood sample after being exposed to a physiologically active substance.
【請求項12】請求項9または10に記載の血液測定を、
螢光物質で各血球細胞もしくは液体成分のいずれかを螢
光発色させて行なうことを特徴とする血液測定方法。
12. The blood measurement according to claim 9 or 10,
A method for measuring blood, characterized in that either a blood cell or a liquid component is fluorescently colored with a fluorescent substance.
JP2055037A 1990-03-08 1990-03-08 Blood circuit, blood measuring apparatus and blood measuring method using the same Expired - Lifetime JP2532707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055037A JP2532707B2 (en) 1990-03-08 1990-03-08 Blood circuit, blood measuring apparatus and blood measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055037A JP2532707B2 (en) 1990-03-08 1990-03-08 Blood circuit, blood measuring apparatus and blood measuring method using the same

Publications (2)

Publication Number Publication Date
JPH03257366A JPH03257366A (en) 1991-11-15
JP2532707B2 true JP2532707B2 (en) 1996-09-11

Family

ID=12987463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055037A Expired - Lifetime JP2532707B2 (en) 1990-03-08 1990-03-08 Blood circuit, blood measuring apparatus and blood measuring method using the same

Country Status (1)

Country Link
JP (1) JP2532707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032467A1 (en) * 2005-09-16 2007-03-22 National Agriculture And Food Research Organization Method for fabricating resin microchannel array and blood measuring method employing same
WO2009069417A1 (en) 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement system and blood fluidity measurement method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258985B2 (en) * 1999-08-09 2002-02-18 独立行政法人 食品総合研究所 Method for measuring leukocyte active oxygen production and oxidative stress
TWI241343B (en) * 2000-12-07 2005-10-11 Effector Cell Inst Inc Well unit for detecting cell chemotaxis and separating chemotactic cells
JP3738899B2 (en) 2000-12-07 2006-01-25 株式会社 エフェクター細胞研究所 Trace sample processing equipment
TW200506364A (en) 2003-04-09 2005-02-16 Effector Cell Inst Inc Apparatus for detecting cell chemo-taxis
JP2007124904A (en) * 2005-11-01 2007-05-24 Mc Laboratory Inc Disposable chip for observation/measurement of cell microrheology
US20070248943A1 (en) * 2006-04-21 2007-10-25 Beckman Coulter, Inc. Displaying cellular analysis result data using a template
WO2011027832A1 (en) * 2009-09-04 2011-03-10 国立大学法人北陸先端科学技術大学院大学 Nucleated red blood cell concentrating/collecting chip and nucleated red blood cell concentrating/collecting method
HUE047507T2 (en) 2011-10-17 2020-04-28 Massachusetts Inst Technology Intracellular delivery
AU2014306423B2 (en) 2013-08-16 2019-04-18 Massachusetts Institute Of Technology Selective delivery of material to cells
JP2017533702A (en) 2014-10-31 2017-11-16 マサチューセッツ インスティテュート オブ テクノロジー Delivery of biomolecules to immune cells
EP3218492A4 (en) 2014-11-14 2018-10-10 Massachusetts Institute Of Technology Disruption and field enabled delivery of compounds and compositions into cells
CA2971626A1 (en) 2015-01-12 2016-07-21 Massachusetts Institute Of Technology Gene editing through microfluidic delivery
CN107922911A (en) 2015-07-09 2018-04-17 麻省理工学院 Material is delivered to cytode
EP3344575B1 (en) 2015-09-04 2020-04-15 SQZ Biotechnologies Company Intracellular delivery of biomolecules to cells comprising a cell wall
CR20210493A (en) 2019-02-28 2022-01-17 Sqz Biotechnologies Co Delivery of biomolecules to pbmcs to modify an immune response
AU2020271040A1 (en) 2019-04-08 2021-11-18 Sqz Biotechnologies Company Cartridge for use in a system for delivery of a payload into a cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032467A1 (en) * 2005-09-16 2007-03-22 National Agriculture And Food Research Organization Method for fabricating resin microchannel array and blood measuring method employing same
WO2009069417A1 (en) 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement system and blood fluidity measurement method

Also Published As

Publication number Publication date
JPH03257366A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
JP2532707B2 (en) Blood circuit, blood measuring apparatus and blood measuring method using the same
JP2685544B2 (en) Blood filter, blood test method, and blood test apparatus
US9535059B2 (en) Microfluidic device
CN103403547B (en) Using electric difference counter to grain count
US9378557B2 (en) Microfluidic device for assessing object/test material interactions
JP4362532B2 (en) Disposable chamber for analyzing biological fluids
US6251615B1 (en) Cell analysis methods
KR101802289B1 (en) Apparatus and method for multiple measurement of blood biophysical property based on microfluidic device
CN106290279B (en) A kind of single cell protein detection system and its application
Sutton et al. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries
WO1991013338A2 (en) Biorheological measurement
Kang et al. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models
Tracey et al. A silicon micromachined device for use in blood cell deformability studies
WO2008098179A1 (en) In vitro microfluidic model of microcirculatory diseases, and methods of use thereof
JP2021518910A (en) Porous membrane sensor element
JP3232145B2 (en) Reticulocyte measurement method
JP2005164296A (en) Biocomponent diagnostic system
US20210394182A1 (en) Microfluidic antibody microarray with an electronic sensor array
US20050202566A1 (en) Device and method for determining parameters
CN112547143B (en) Micro-fluidic chip and blood cell detection device
KR101769451B1 (en) Apparatus and method for measuring deformability of red blood cells
KR101783668B1 (en) Handheld apparatus and method for measuring deformability of red blood cells
KR101635510B1 (en) In-line lab-on-a-chip system for measuring a difference in speed according to slip of red blood cell membrane and there of optical detection system
KR20100091879A (en) Open type groove channel chip
KR20230035389A (en) Method for Evaluating Metabolic Activity of Non-Cancer Cells

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14