JP2531278B2 - Ozone concentration measuring device - Google Patents

Ozone concentration measuring device

Info

Publication number
JP2531278B2
JP2531278B2 JP1270676A JP27067689A JP2531278B2 JP 2531278 B2 JP2531278 B2 JP 2531278B2 JP 1270676 A JP1270676 A JP 1270676A JP 27067689 A JP27067689 A JP 27067689A JP 2531278 B2 JP2531278 B2 JP 2531278B2
Authority
JP
Japan
Prior art keywords
ultraviolet light
correction
measurement
lamp
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1270676A
Other languages
Japanese (ja)
Other versions
JPH03131741A (en
Inventor
淳 長谷川
隆 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP1270676A priority Critical patent/JP2531278B2/en
Publication of JPH03131741A publication Critical patent/JPH03131741A/en
Application granted granted Critical
Publication of JP2531278B2 publication Critical patent/JP2531278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、構成が簡単で携帯性に富むオゾン濃度測定
装置に関する。
TECHNICAL FIELD The present invention relates to an ozone concentration measuring device having a simple structure and being highly portable.

[従来の技術] 従来、オゾンによる紫外光の吸収を利用したオゾン濃
度測定装置が知られている。
[Prior Art] Conventionally, an ozone concentration measuring device utilizing the absorption of ultraviolet light by ozone is known.

第5図はこの種の装置の代表例を示すもので、オゾン
濃度を測定するべき測定ガスとオゾンを含まないゼロガ
スとをロータリーバルブ50を介して2本の石英ガラス管
51、52に送給している。両管51、52の間には低圧水銀ラ
ンプ53が配置されており、その紫外光は両管51、52を別
々に透過してそれぞれ紫外光センサ54、55に入射する。
紫外光センサ54、55の出力信号はそれぞれ別々のプリア
ンプ(図示せず)を介して演算増幅器56で差動増幅さ
れ、両センサ54、55の出力信号差が指示計57に出力され
る。
FIG. 5 shows a typical example of this type of device. Two quartz glass tubes for measuring the ozone concentration and a zero gas containing no ozone are passed through a rotary valve 50.
It is sent to 51, 52. A low-pressure mercury lamp 53 is arranged between the tubes 51 and 52, and the ultraviolet light thereof passes through the tubes 51 and 52 separately and enters the ultraviolet sensors 54 and 55, respectively.
The output signals of the ultraviolet light sensors 54 and 55 are differentially amplified by the operational amplifier 56 via separate preamplifiers (not shown), and the output signal difference between the sensors 54 and 55 is output to the indicator 57.

この装置では、まず、ロータリーバルブ50を切替えて
両管51、52にゼロガスを流し、この時の指示計出力が0
となるように演算増幅器56又は上記プリアンプを調整
し、その後、石英ガラス管51に測定ガスを、石英ガラス
管52にゼロガスを流してそれらの差を検出し、発光出力
変動や電源電圧変動などの各種変動や経時的な感度変化
を補正している。
In this device, first, the rotary valve 50 is switched to flow zero gas through both tubes 51 and 52, and the indicator output at this time is 0.
The operational amplifier 56 or the above preamplifier is adjusted so that the measurement gas is passed through the quartz glass tube 51, and the zero gas is passed through the quartz glass tube 52 to detect the difference between them. It compensates for various fluctuations and changes in sensitivity over time.

[発明が解決しようとする課題] 上記したオゾン濃度測定装置は各種用途に用いられて
いるが、構成や操作が複雑であり、特にゼロガスを必要
とするので、小型化したり可搬用途に用いたりすること
が容易ではなかった。
[Problems to be Solved by the Invention] Although the above-mentioned ozone concentration measuring device is used for various purposes, it has a complicated configuration and operation and requires zero gas in particular, so that it can be downsized or used for portable purposes. It wasn't easy to do.

しかし、従来より小型で可搬性に富むとともに高い測
定精度をもつオゾン濃度測定装置が、産業用、開発用な
どにおいて要望されている。
However, there is a demand for an ozone concentration measuring device that is smaller in size, more portable, and more highly accurate than conventional ones for industrial use, development use, and the like.

本発明はこのような問題に鑑みなされたものであり、
小型高精度で可搬性に富むオゾン濃度測定装置を提供す
ることをその解決すべき課題としている。
The present invention has been made in view of such problems,
It is a problem to be solved to provide a compact, highly accurate and highly portable ozone concentration measuring device.

[課題を解決するための手段] 本発明のオゾン濃度測定装置は、紫外光放射窓を有す
るとともに前記窓以外の部分に紫外光遮蔽膜を有する密
閉ケースと、該密閉ケースに封入されて前記紫外光放射
窓から測定用の紫外光を放射するランプと、前記紫外光
放射窓と前記ランプとの間の部位以外に位置して前記密
閉ケースに封入されるとともに前記ランプから放射さ
れ、前記ケースで反射されて入射する補正用の紫外光を
光電変換する補正用受光部と、前記紫外光放射窓と前記
ランプとの間の部位以外に位置して前記ランプ及び前記
紫外光放射窓と前記補正用受光部との間に隔設されて前
記ランプから前記補正用受光部へ入射する紫外光及び前
記紫外光放射窓を透過して前記補正用受光部へ入射する
紫外光を阻止する遮蔽板とを有する発光装置と、 オゾンが存在し得る被測定空間を経由して前記ランプか
ら入射する測定用の紫外光を光電変換する測定用受光部
と、 前記被測定空間中にオゾンが存在しない時に前記補正用
受光部及び前記測定用受光部から出力される初期値の比
に基づいて前記被測定空間のオゾン濃度測定時に前記補
正用受光部及び前記測定用受光部から出力される測定値
の比を補正する回路部と、 を有してなるオゾン濃度測定装置。
[Means for Solving the Problems] The ozone concentration measuring apparatus of the present invention includes a closed case having an ultraviolet light emission window and an ultraviolet light shielding film in a portion other than the window, and the ultraviolet light enclosed in the closed case. A lamp that radiates ultraviolet light for measurement from a light radiation window, and is radiated from the lamp while being enclosed in the hermetically sealed case located at a position other than the portion between the ultraviolet light radiation window and the lamp, and in the case A correction light-receiving portion that photoelectrically converts the correction ultraviolet light that is reflected and incident, and the lamp and the ultraviolet light emission window and the correction light that are located outside the portion between the ultraviolet light emission window and the lamp A shielding plate which is separated from the light receiving portion and blocks the ultraviolet light which is incident on the correction light receiving portion from the lamp and the ultraviolet light which is transmitted through the ultraviolet light emission window and is incident on the correction light receiving portion. With the light emitting device A measurement light-receiving unit that photoelectrically converts the measurement ultraviolet light incident from the lamp via a measurement space where ozone can exist; and a correction light-receiving unit when ozone does not exist in the measurement space, A circuit unit that corrects the ratio of the measurement values output from the correction light receiving unit and the measurement light receiving unit when measuring the ozone concentration of the measured space based on the ratio of the initial values output from the measurement light receiving unit. An ozone concentration measuring device comprising:

前記被測定空間は、オゾンガスが流通するパイプに接
続される例えばガラス管内の空間でもよく、又は、オゾ
ン濃度を測定すべき室内としてもよい。なお、上記し
た、「オゾンが存在しない時に」という文言は例えば測
定において無視できる量のオゾンの存在を許容する。
The space to be measured may be, for example, a space inside a glass tube connected to a pipe through which ozone gas flows, or a room where the ozone concentration should be measured. The phrase "when ozone is absent" described above allows the presence of a negligible amount of ozone, for example, in measurement.

[作用] ランプから放射された紫外光の一部は測定用受光部に
入射し、他の一部は補正用受光部に入射する。各受光部
はまず最初にオゾンにより変調されない紫外光を受光し
て光電変換し、各受光部の各出力信号(初期値)M1、C1
又はそれらの比(M1/C1)は初期比記憶部に記憶され
る。次に、ランプから出力された紫外光の一部がオゾン
ガスにより変調されてから測定用受光部に入射し、同時
に他の一部がオゾンガスにより変調されずに補正用受光
部に入射する。各受光部は出力信号(測定値)M2、C2を
測定比補正演算部に伝送する。測定比補正演算部は、測
定値の比(M2/C2)を初期値の比(M1/C1)で割ることに
より、ランプの光量変化を補償する。
[Operation] Part of the ultraviolet light emitted from the lamp is incident on the measuring light receiving portion, and the other part is incident on the correcting light receiving portion. First, each light receiving part receives the ultraviolet light that is not modulated by ozone and photoelectrically converts it, and each output signal (initial value) M1, C1 of each light receiving part
Alternatively, their ratio (M1 / C1) is stored in the initial ratio storage unit. Next, a part of the ultraviolet light output from the lamp is modulated by the ozone gas and then enters the measurement light receiving portion, and at the same time, another part of the ultraviolet light is not modulated by the ozone gas and enters the correction light receiving portion. Each light receiving unit transmits the output signals (measurement values) M2 and C2 to the measurement ratio correction calculation unit. The measurement ratio correction calculation unit compensates for the change in the light amount of the lamp by dividing the ratio of measured values (M2 / C2) by the ratio of initial values (M1 / C1).

なお、ランプ及び補正用受光部は紫外光放射窓を有す
る共通の密閉ケースに収容されていて、補正用受光部は
ランプから出力される紫外光の一定割合だけを直接的に
受光して、発光量の変化をモニターしている。
The lamp and the correction light receiving part are housed in a common closed case having an ultraviolet light emission window, and the correction light receiving part directly receives only a certain proportion of the ultraviolet light output from the lamp and emits light. We monitor changes in quantity.

また本発明では、信号補正用の補正用受光部とランプ
及び紫外光放射窓との間に遮蔽板を介設し、この遮蔽板
が、外部から紫外光放射窓を通じてケース内に入射する
紫外光やランプから放射された強大な紫外光が、直接補
正用受光部に入射するのを阻止するとともに、ランプか
ら放射されてケースで反射した紫外光を補正用受光部に
入射させている。
Further, in the present invention, a shielding plate is provided between the correction light receiving portion for signal correction and the lamp and the ultraviolet light emitting window, and the shielding plate is an ultraviolet light which enters the case from the outside through the ultraviolet light emitting window. The strong ultraviolet light emitted from the lamp and the lamp is prevented from directly entering the light receiving portion for correction, and the ultraviolet light emitted from the lamp and reflected by the case is input to the light receiving portion for correction.

[実施例] 本発明のオゾン濃度測定装置の一実施例を、図面によ
り説明する。
[Example] An example of the ozone concentration measuring apparatus of the present invention will be described with reference to the drawings.

このオゾン濃度測定装置は、第1図に示すように、オ
ゾン含有空気が送給される両端開口の石英ガラス管5を
挟んでその軸心の両側に配設された発光装置1及び測定
用受光部2と、信号処理用のマイコン3と、マイコン3
の出力信号を表示するインディケータ4とからなり、こ
れら石英ガラス管5、発光装置1、測定用受光部2、マ
イコン3、インディケータ4は図示しない絶縁基板上に
固定されている。
As shown in FIG. 1, this ozone concentration measuring device includes a light emitting device 1 and a light receiving device for measurement which are arranged on both sides of an axis of a quartz glass tube 5 having openings at both ends to which ozone-containing air is fed. Part 2, microcomputer 3 for signal processing, and microcomputer 3
Of the quartz glass tube 5, the light emitting device 1, the measurement light receiving portion 2, the microcomputer 3, and the indicator 4 are fixed on an insulating substrate (not shown).

発光装置1は、第2図及び第3図に示すように、一端
が開口している石英ガラス製の円筒壁部(本発明でいう
密閉ケース)11と、円筒壁部11の開口端を封止して内部
に密閉空間を形成するセラミック製のステム(本発明で
いう密閉ケース)12とを有しており、ステム12からはタ
ーミナル13が突出している。円筒壁部11の周壁の一部は
紫外光放射窓となっており、円筒壁11のその他の部分の
外表面には紫外光遮蔽のためにアルミ蒸着膜又は黒色塗
膜(本発明でいう紫外光遮蔽膜)が被着されている。円
筒壁部11により囲包されたステム12の上面には紫外光放
射窓側から順番にランプ14、遮蔽板16、補正用受光部15
が配設されており、ランプ14及び補正用受光部15の電極
部(図示せず)はターミナル13に接続されている。ステ
ム12の上面中央に配設された遮蔽板16は外部から紫外光
放射窓を通じて又はランプ14から補正用受光部15へ紫外
光が直接入射するのを遮蔽している。遮蔽板16の最上端
と円筒壁部11の上端内面との間には第3図に示すように
間隙dが残されており、ランプ14の光の一部は円筒壁部
11の上端内面などで反射し間隙dを経由して補正用受光
部15に入射可能となっている。ランプ14には小型の低圧
水銀ランプが採用されており、補正用受光部15及び測定
用受光部2には半導体式の紫外光センサが採用されてい
る。なお、密閉ケース内には不活性ガスが封入されてい
る。
As shown in FIGS. 2 and 3, the light emitting device 1 includes a cylindrical wall portion (a closed case in the present invention) 11 made of quartz glass having an opening at one end and an opening end of the cylindrical wall portion 11. It has a ceramic stem (a closed case according to the invention) 12 that stops to form a closed space inside, and a terminal 13 projects from the stem 12. A part of the peripheral wall of the cylindrical wall portion 11 serves as an ultraviolet light emission window, and an aluminum vapor-deposited film or a black coating film (the ultraviolet light in the present invention for shielding ultraviolet light is formed on the outer surface of the other part of the cylindrical wall 11). A light shielding film) is applied. On the upper surface of the stem 12 surrounded by the cylindrical wall portion 11, a lamp 14, a shielding plate 16, and a correction light receiving portion 15 are arranged in this order from the ultraviolet light emission window side.
Are arranged, and the electrode portions (not shown) of the lamp 14 and the correction light receiving portion 15 are connected to the terminal 13. A shield plate 16 arranged in the center of the upper surface of the stem 12 shields the ultraviolet light from directly entering from the outside through the ultraviolet light emission window or from the lamp 14 to the correction light receiving portion 15. A gap d is left between the uppermost end of the shield plate 16 and the inner surface of the upper end of the cylindrical wall portion 11 as shown in FIG.
The light is reflected by the inner surface of the upper end of 11 and can enter the correction light receiving portion 15 via the gap d. A small low-pressure mercury lamp is used as the lamp 14, and a semiconductor type ultraviolet light sensor is used as the correction light receiving unit 15 and the measurement light receiving unit 2. An inert gas is enclosed in the closed case.

マイコン3は、図示省略されているが、補正用受光部
15及び測定用受光部2の出力信号をそれぞれ増幅するプ
リアンプをその入力インターフェィスに内蔵しており、
この入力インターフェィスは通常のマイコンと同様にCP
U、RAM、ROM及び出力インタフェイスにバスを介して接
続されている。出力インタフェイスは3桁十進表示のイ
ンディケータ4に接続されている。このマイコン3は、
本発明でいう初期比記憶部及び測定比補正演算部を構成
するとともに、ランプ14、補正用受光部15、測定用受光
部2及びインディケータ4への電源電圧の印加も制御し
ている。
Although not shown, the microcomputer 3 is a light receiving unit for correction.
15 and a preamplifier that amplifies the output signal of the measurement light receiving section 2 are built in the input interface,
This input interface is CP like a normal microcomputer.
It is connected to the U, RAM, ROM and output interface via a bus. The output interface is connected to a three-digit decimal display indicator 4. This microcomputer 3
In addition to constituting the initial ratio storage unit and the measurement ratio correction calculation unit in the present invention, the application of the power supply voltage to the lamp 14, the correction light receiving unit 15, the measurement light receiving unit 2 and the indicator 4 is also controlled.

石英ガラス管5は、内部に本発明でいう被測定空間を
有する両端開口部であって、ゴム管(図示せず)を介し
てオゾン含有空気の通気管10の途中に介設されている。
The quartz glass tube 5 is an opening at both ends having the space to be measured in the present invention inside, and is provided in the middle of the ozone containing air vent tube 10 via a rubber tube (not shown).

次に、このオゾン濃度測定装置の動作を第4図に示す
マイコン3のフローチャートを参照して説明する。
Next, the operation of this ozone concentration measuring apparatus will be described with reference to the flow chart of the microcomputer 3 shown in FIG.

まず、このオゾン濃度測定装置は石英ガラス管5を通
気管10に接続する前に、すなわち、石英ガラス管5中に
オゾンが存在しないと見なせる状態で、補正用受光部15
と測定用受光部2との間の感度比(初期値の比)の測
定、記憶を行う。
First, the ozone concentration measuring apparatus is configured such that before the quartz glass tube 5 is connected to the ventilation tube 10, that is, in a state where ozone is not present in the quartz glass tube 5, the correction light receiving unit 15 is used.
The sensitivity ratio (ratio of initial values) between the measuring light receiving unit 2 and the measuring light receiving unit 2 is measured and stored.

すなわち、石英ガラス管5を通気管10に接続しない状
態でマイコン3を起動すると、マイコン3はランプ14、
補正用受光部15、測定用受光部2及びインディケータ4
に電源電圧を印加してそれらを起動し、同時に内部的に
初期設定され(S10)、ランプ出力などの安定化のため
に所定時間経過した(S12)後、マイコン3に設けられ
た初期比設定ボタン(図示せず)が押圧されたかどうか
を検出する(S14)。この初期比設定ボタンは初期値の
比M1/C1を検出記憶するためのものである。押圧を検出
した場合には、補正用受光部15の出力信号(初期値)C1
及び測定用受光部2の出力信号(初期値)M1を受取り
(S16)、これら初期値の比M1/C1を算出して内蔵する不
揮発メモリ(図示せず)に書込み(S18)、S20に進む。
S14で押圧を検出しない場合には直接にS20に進む。これ
により、オゾンによる紫外光の吸収がなく、測定用受光
部2への入射光が減光しない状態における両受光部15、
2の感度比が記憶される。
That is, when the microcomputer 3 is started without connecting the quartz glass tube 5 to the ventilation tube 10, the microcomputer 3 causes the lamp 14,
Correction light receiving unit 15, measurement light receiving unit 2 and indicator 4
The power supply voltage is applied to these to start them, and at the same time, they are initialized internally (S10), and after a predetermined time has passed for stabilization of the lamp output (S12), the initial ratio setting provided in the microcomputer 3 is set. It is detected whether or not a button (not shown) is pressed (S14). This initial ratio setting button is for detecting and storing the initial ratio M1 / C1. When the pressing is detected, the output signal (initial value) C1 of the light receiving unit for correction C1
Also, the output signal (initial value) M1 of the measurement light receiving unit 2 is received (S16), the ratio M1 / C1 of these initial values is calculated and written in the built-in nonvolatile memory (not shown) (S18), and the process proceeds to S20. .
If the pressure is not detected in S14, the process directly proceeds to S20. As a result, both the light receiving parts 15 in a state where the ultraviolet light is not absorbed by ozone and the incident light on the measurement light receiving part 2 is not dimmed,
A sensitivity ratio of 2 is stored.

この後のルーチンはオゾン濃度測定用のものであるの
で、石英ガラス管5が通気管10に接続され、石英ガラス
管5にオゾン含有空気が流通しているものとして説明す
る。
Since the subsequent routine is for ozone concentration measurement, the quartz glass tube 5 is connected to the ventilation tube 10 and the ozone-containing air flows through the quartz glass tube 5.

S20では補正用受光部15の出力信号(測定値)C2及び
測定用受光部2の出力信号(測定値)M2を受取り、これ
ら測定値の比M2/C2を初期値の比M1/C1で割算して補正信
号Sを算出する(C22)。続いて、算出された補正信号
Sに所定の定数Kを掛けてオゾン濃度Dを算出し、イン
ディケータ4に表示する(S24)。なお、この定数Kは
表として予めROMに記憶されており、補正信号Sの値に
応じてこの表から抽出して用いられる。
In S20, the output signal (measurement value) C2 of the correction light-receiving unit 15 and the output signal (measurement value) M2 of the measurement light-receiving unit 2 are received, and the ratio M2 / C2 of these measurement values is divided by the ratio M1 / C1 of the initial value. Then, the correction signal S is calculated (C22). Then, the calculated correction signal S is multiplied by a predetermined constant K to calculate the ozone concentration D and displayed on the indicator 4 (S24). The constant K is stored in advance in the ROM as a table, and is extracted from the table according to the value of the correction signal S and used.

このようにすれば、初期信号C1、M1の測定時点と、測
定信号C2、M2の測定時点との間における電源電圧変動や
経時変化に伴うランプ出力の変動を補償することができ
る。
In this way, it is possible to compensate for fluctuations in the power supply voltage and fluctuations in the lamp output due to changes over time between the measurement points of the initial signals C1 and M1 and the measurement points of the measurement signals C2 and M2.

次に、所定時間だけ待機して(S26)、S14にリターン
し、ルーチンを繰返す。
Next, the process waits for a predetermined time (S26), returns to S14, and repeats the routine.

以下、この実施例の他の特徴を説明する。 Hereinafter, other features of this embodiment will be described.

この実施例では、石英ガラス管5、発光装置1、測定
用受光部2と、マイコン3と、インディケータ4が同一
の絶縁基板(図示せず)上に固定されているので、それ
らの相対変位を防止しつつ移動するのに便利となってい
る。ステム12上にランプ14と補正用受光部15が設けられ
ているのでコンパクト化が可能となり、電源ターミナル
などの共通化が可能となる。また、補正用受光部15への
紫外光の到達率が各部のガラス面の汚損などにより変動
することがなく、遮蔽板16は外部から雑音となる紫外光
が補正用受光部15へ到達するのを防止する。
In this embodiment, since the quartz glass tube 5, the light emitting device 1, the measurement light receiving portion 2, the microcomputer 3 and the indicator 4 are fixed on the same insulating substrate (not shown), their relative displacements are It is convenient to move while preventing. Since the lamp 14 and the light receiving portion 15 for correction are provided on the stem 12, the size can be reduced and the power supply terminal and the like can be shared. Further, the arrival rate of the ultraviolet light to the correction light receiving portion 15 does not change due to stains on the glass surface of each part, and the shielding plate 16 allows the ultraviolet light that becomes noise from the outside to reach the correction light receiving portion 15. Prevent.

[発明の効果] 以上説明したように本発明のオゾン濃度測定装置は、
紫外光放射ランプと補正用受光部とを密閉ケースに同封
し、かつ、オゾンガス非存在時の補正用受光部及び測定
用受光部の出力比を記憶して補正に利用しているので、
装置を小型で移動可能とすることができ、また、オゾン
ガス濃度の高精度測定を可能とすることができる。
[Effects of the Invention] As described above, the ozone concentration measuring apparatus of the present invention is
Since the ultraviolet light emitting lamp and the correction light receiving part are enclosed in a sealed case, and the output ratio of the correction light receiving part and the measurement light receiving part in the absence of ozone gas is stored and used for correction,
The device can be made compact and movable, and the ozone gas concentration can be measured with high accuracy.

更に本発明によれば、補正用受光部に被測定空間によ
り変調された窓入射紫外光が入射しないので、補正用受
光部に入射する被測定空間により変調されない非変調信
号光と、測定用受光部に入射する被測定空間により変調
された変調信号光との比率を大きくすることができ、回
路部から出力される信号のSN比を向上できる。また、強
大なランプ直接入射紫外光が非常に近接するランプから
補正用受光部に直接入射しないので、補正用受光部の飽
和を阻止できる。これらの効果を遮蔽板の介設という簡
素な構成で実現できるので、全体構成をコンパクトかつ
簡素とすることができる。
Further, according to the present invention, since the window incident ultraviolet light modulated by the measurement space is not incident on the correction light receiving section, the non-modulated signal light that is not modulated by the measurement space entering the correction light receiving section and the measurement light receiving section are received. It is possible to increase the ratio with the modulated signal light that is modulated by the space to be measured and is incident on the section, and it is possible to improve the SN ratio of the signal output from the circuit section. Further, since the strong direct-injection ultraviolet light does not directly enter the correction light-receiving portion from the lamp which is very close to the correction light-receiving portion, saturation of the correction light-receiving portion can be prevented. Since these effects can be realized with a simple structure in which a shielding plate is provided, the overall structure can be made compact and simple.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のオゾン濃度測定装置の一実施例を表す
ブロック図、第2図は発光装置の一実施例を表す模式斜
視図、第3図は第2図の発光装置の断面図、第4図はマ
イコン3のフローチャートである。第5図は従来のオゾ
ン濃度測定装置のブロック図である。 1……発光装置 2……測定用受光部 3……マイコン (回路部) 4……インディケータ 5……石英ガラス管 15……補正用受光部
FIG. 1 is a block diagram showing an embodiment of the ozone concentration measuring device of the present invention, FIG. 2 is a schematic perspective view showing an embodiment of a light emitting device, and FIG. 3 is a sectional view of the light emitting device of FIG. FIG. 4 is a flowchart of the microcomputer 3. FIG. 5 is a block diagram of a conventional ozone concentration measuring device. 1 …… Light emitting device 2 …… Measuring light receiving part 3 …… Microcomputer (circuit part) 4 …… Indicator 5 …… Quartz glass tube 15 …… Correction light receiving part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】紫外光放射窓を有するとともに前記窓以外
の部分に紫外光遮蔽膜を有する密閉ケースと、該密閉ケ
ースに封入されて前記紫外光放射窓から測定用の紫外光
を放射するランプと、前記紫外光放射窓と前記ランプと
の間の部位以外に位置して前記密閉ケースに封入される
とともに前記ランプから放射され、前記ケースで反射さ
れて入射する補正用の紫外光を光電変換する補正用受光
部と、前記紫外光放射窓と前記ランプとの間の部位以外
に位置して前記ランプ及び前記紫外光放射窓と前記補正
用受光部との間に隔設されて前記ランプから前記補正用
受光部へ入射する紫外光及び前記紫外光放射窓を透過し
て前記補正用受光部へ入射する紫外光を阻止する遮蔽板
とを有する発光装置と、 オゾンが存在し得る被測定空間を経由して前記ランプか
ら入射する測定用の紫外光を光電変換する測定用受光部
と、 前記被測定空間中にオゾンが存在しない時に前記補正用
受光部及び前記測定用受光部から出力される初期値の比
に基づいて前記被測定空間のオゾン濃度測定時に前記補
正用受光部及び前記測定用受光部から出力される測定値
の比を補正する回路部と、 を有してなるオゾン濃度測定装置。
1. A closed case having an ultraviolet light emission window and an ultraviolet light shielding film in a portion other than the window, and a lamp which is enclosed in the closed case and emits ultraviolet light for measurement from the ultraviolet light emission window. And photoelectrically converting the ultraviolet light for correction which is located in a portion other than the portion between the ultraviolet light emitting window and the lamp and is enclosed in the hermetically sealed case, is emitted from the lamp, is reflected by the case, and is incident. A correction light-receiving part, which is located other than a portion between the ultraviolet light emission window and the lamp, and is separated from the lamp and the ultraviolet light emission window and the correction light-receiving part. A light emitting device having a shielding plate for blocking the ultraviolet light incident on the correction light receiving portion and the ultraviolet light passing through the ultraviolet light emission window and entering the correction light receiving portion, and a measurement space in which ozone may exist. Via LA Measuring photo-electric part for photoelectrically converting the measuring ultraviolet light incident from the pump, and to the ratio of the initial value output from the correcting photo-receiving part and the measuring photo-receiving part when ozone is not present in the measured space. An ozone concentration measuring device comprising: a correction light receiving unit and a circuit unit that corrects a ratio of measurement values output from the measurement light receiving unit based on the measurement of the ozone concentration in the measured space.
JP1270676A 1989-10-18 1989-10-18 Ozone concentration measuring device Expired - Lifetime JP2531278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270676A JP2531278B2 (en) 1989-10-18 1989-10-18 Ozone concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270676A JP2531278B2 (en) 1989-10-18 1989-10-18 Ozone concentration measuring device

Publications (2)

Publication Number Publication Date
JPH03131741A JPH03131741A (en) 1991-06-05
JP2531278B2 true JP2531278B2 (en) 1996-09-04

Family

ID=17489396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270676A Expired - Lifetime JP2531278B2 (en) 1989-10-18 1989-10-18 Ozone concentration measuring device

Country Status (1)

Country Link
JP (1) JP2531278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610853U (en) * 1992-07-09 1994-02-10 大同マルタ染工株式会社 Transmitted ultraviolet ray amount evaluation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433747Y1 (en) * 1964-12-17 1968-02-16
DE2340747A1 (en) * 1972-10-26 1974-05-09 Bailey Meter Co GAS ANALYZER
SE7513901L (en) * 1974-12-19 1976-06-21 United Technologies Corp VEHICLE EXHAUST SYSTEM ANALYSIS.
JPH0249459B2 (en) * 1982-10-18 1990-10-30 Horiba Ltd KYUKOBUNSEKIKEI

Also Published As

Publication number Publication date
JPH03131741A (en) 1991-06-05

Similar Documents

Publication Publication Date Title
US5261415A (en) CO2 mainstream capnography sensor
US4907166A (en) Multichannel gas analyzer and method of use
US4794255A (en) Absorption analyzer
US6121617A (en) Infrared gas analyzer
JP2762390B2 (en) Light sensor
US20200033257A1 (en) Assembly and Method for Measuring a Substance Concentration in a Gaseous Medium by Means of Absorption Spectroscopy
JP2604754B2 (en) Spectrophotometer
JPH02306140A (en) Infrared-ray spectrometer
GB2200209A (en) Infrared fluid analyzer
JP2531278B2 (en) Ozone concentration measuring device
US4536091A (en) Absorbance monitor
US4522204A (en) Respiratory gas concentration measuring apparatus
US4775237A (en) Electro-optical detection system
JP3246303B2 (en) Illuminance measurement device
JPS58113839A (en) Detector for dew point
JPH0222687Y2 (en)
JP2886027B2 (en) Radiation detector
JPH0410003B2 (en)
JPH08304278A (en) Infrared absorption humidity variation meter
US3383515A (en) Dual beam null method and apparatus for determining the concentration of impurities in a sample
JPH03140739A (en) Air conditioner with gas and dust detector
JPS62261032A (en) Gas detector
JPS63210688A (en) Dosage detector
JPS6396541A (en) Gas concentration measuring instrument
JP2006017566A (en) Measuring cell of absorbance detector