JP2531186B2 - Recovery method of superconducting powder - Google Patents

Recovery method of superconducting powder

Info

Publication number
JP2531186B2
JP2531186B2 JP62178111A JP17811187A JP2531186B2 JP 2531186 B2 JP2531186 B2 JP 2531186B2 JP 62178111 A JP62178111 A JP 62178111A JP 17811187 A JP17811187 A JP 17811187A JP 2531186 B2 JP2531186 B2 JP 2531186B2
Authority
JP
Japan
Prior art keywords
superconducting
powder
filter medium
substance
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62178111A
Other languages
Japanese (ja)
Other versions
JPS6422360A (en
Inventor
晋 内山
純一 矢野
章彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62178111A priority Critical patent/JP2531186B2/en
Publication of JPS6422360A publication Critical patent/JPS6422360A/en
Application granted granted Critical
Publication of JP2531186B2 publication Critical patent/JP2531186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導物質を含む焼結体からの超電導粉末
の回収方法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering superconducting powder from a sintered body containing a superconducting substance.

[従来の技術] 超電導材料とは、臨界温度以下で電気抵抗が0となる
材料であり、この電気抵抗が0となる性質の他に、完全
反磁性(マイスナー効果)、ジョセフソン効果を有す
る。
[Prior Art] A superconducting material is a material that has an electric resistance of 0 at a critical temperature or lower. In addition to the property that the electric resistance becomes 0, it has complete diamagnetism (Meissner effect) and Josephson effect.

そして、超電導材料の電気抵抗が0であることを送
電、配電、発電に利用すれば低損失で大電流が得られ
る。エネルギー関連だけでなく、高磁界の発生を必要と
する磁気浮上列車や加速器など用途も広い。
If the fact that the electric resistance of the superconducting material is 0 is used for power transmission, power distribution, and power generation, a large current can be obtained with low loss. Not only energy-related but also widely used in magnetic levitation trains and accelerators that require the generation of high magnetic fields.

また、超電導材料の完全反磁性を利用すれば磁気シー
ルドに使える。また、磁気に対して常に反発力を示すこ
とからアクチュエータやベアリングなどメカニカルな応
用も考えられる。
Moreover, it can be used as a magnetic shield by utilizing the complete diamagnetism of superconducting materials. In addition, mechanical applications such as actuators and bearings are also conceivable because they always show repulsive force against magnetism.

さらに、超電導材料のジョセフソン効果が持つ高速性
・高感度性に着目して、高速コンピュータ素子や微量磁
気を検出する超電導電子干渉計(いわゆるSQUID)など
各種素子への応用が考えられる。
Furthermore, focusing on the high speed and high sensitivity of the Josephson effect of superconducting materials, it can be applied to various devices such as high-speed computer devices and superconducting interferometers (so-called SQUIDs) that detect trace magnetism.

超電導材料は上記の如く極めて有用な材料であるが、
従来より知られているNb−Ti合金等の超電導材料は、超
電導性を示す臨界温度が極めて低くく、液体ヘリウム
(4K)で冷却する必要があり、実用化が進まなかった。
Superconducting materials are extremely useful materials as described above,
Conventionally known superconducting materials such as Nb-Ti alloys have a very low critical temperature at which they exhibit superconducting properties and need to be cooled with liquid helium (4K), so they have not been put into practical use.

ところが、近年、液体窒素温度(77K)より高温で超
電導を示す材料として、例えば、Ba−Y−Cu−O系、あ
るいはBa−La−Cu−O系等の金属酸化物焼結体が発見さ
れ、超電導材料の実用化が期待されるようになった。
However, in recent years, as a material exhibiting superconductivity at a temperature higher than liquid nitrogen temperature (77 K), for example, Ba—Y—Cu—O-based or Ba—La—Cu—O-based metal oxide sintered bodies have been discovered. The practical application of superconducting materials has come to be expected.

[発明が解決しようとする問題点] しかし、上記の金属酸化物焼結体中には超電導性を示
さない部分が多く含まれるため(通常全体の2/3〜3/4以
上)、上記のごとき超電導材料の性質を十分に利用する
ことができない。
[Problems to be Solved by the Invention] However, since the above-mentioned metal oxide sintered body contains many parts that do not exhibit superconductivity (usually 2/3 to 3/4 or more of the whole), As such, the properties of superconducting materials cannot be fully utilized.

すなわち、臨界電流密度が低かったり、完全反磁性と
ならない等のため実用化が妨げられているのである。
That is, the practical use is hindered because the critical current density is low, the diamagnetic property is not perfect, and the like.

[問題点を解決するための手段] 本発明は、上記問題点を解決することを目的とし、次
のような構成を採用した。
[Means for Solving Problems] The present invention has the following structure for the purpose of solving the above problems.

即ち、本発明の要旨とするところは、 超電導物質を含む焼結体を粉砕して粉末とする粉砕工
程と、 該粉砕工程で得られた粉末を、上記超電導物質の臨界
温度以下で、磁化した強磁性材料のフィルターメディア
を有する通路中を通過させることによって超電導物質を
磁気分離する分離工程と、 を備えたことを特徴とする超電導粉末の回収方法にあ
る。
That is, the gist of the present invention is that a pulverizing step of pulverizing a sintered body containing a superconducting substance into powder and magnetizing the powder obtained in the pulverizing step at a temperature not higher than the critical temperature of the superconducting substance. A method of recovering superconducting powder, comprising: a separation step of magnetically separating a superconducting substance by passing through a passage having a filter medium of a ferromagnetic material.

ここで、上記超電導電動物質を含む焼結体としては、
Ba−Y−Cu−O系、Ba−Y−Cu−O−F系、あるいはBa
−La−Cu−O系の金属酸化物焼結体の他に、La−Sr−Cu
−O系、Ln−Ba−Cu−O系(ここでLnはLu,Yb,Tm,Er,H
o,Dy,Tb,Gd,Eu,Smの希土類)等の金属酸化物焼結体が知
られており、これらは何れも本発明に使用することがで
きる。
Here, as the sintered body containing the superconducting conductive material,
Ba-Y-Cu-O system, Ba-Y-Cu-O-F system, or Ba
-La-Cu-O-based metal oxide sintered body, La-Sr-Cu
-O system, Ln-Ba-Cu-O system (where Ln is Lu, Yb, Tm, Er, H
Metal oxide sintered bodies such as o, Dy, Tb, Gd, Eu and Sm) are known, and any of them can be used in the present invention.

また、この焼結体の粉砕工程は、通常のボールミル、
ジェットミル等によって行うことができる。
In addition, the crushing process of this sintered body, the usual ball mill,
It can be performed by a jet mill or the like.

尚、この粉砕工程で、上記焼結体を余り微細に粉砕す
ると超電導物質の結晶構造が壊れてしまうために粉砕さ
れた粉末の粒度を0.01μm以上とするのが好ましく、ま
た逆に粉砕が粗いと超電導物質のみを回収することが難
しいため粉砕された粉末の粒度を100μm以下とするの
が好ましい。
In this crushing step, if the above-mentioned sintered body is crushed too finely, the crystal structure of the superconducting substance will be broken, so the grain size of the crushed powder is preferably 0.01 μm or more, and conversely the crushing is rough. Since it is difficult to recover only the superconducting substance, it is preferable that the crushed powder has a particle size of 100 μm or less.

また、上記磁気分離工程で使用する強磁性材料からな
るフィルターメディアは、強磁性の細線を網状に形成し
たものを多数積層したものや、同じく強磁性の細線を流
れと平行に多数配列したもの等を使用できる。
The filter media made of a ferromagnetic material used in the above magnetic separation step include a stack of a large number of ferromagnetic fine wires formed in a net, a plurality of similar thin ferromagnetic wires arranged in parallel with the flow, etc. Can be used.

また、この強磁性材料からなるフィルターメディアは
電磁石等により外部から直流磁場を印加することにより
容易に磁化できる。この磁化の方向を通路の流れに対し
て垂直とすると、フィルターメディアに補足される超電
導物質がフィルターメディアの目を詰まらせないのでよ
り好ましい。
Further, the filter medium made of this ferromagnetic material can be easily magnetized by applying a DC magnetic field from the outside with an electromagnet or the like. It is more preferable to make the direction of this magnetization perpendicular to the flow of the passage because the superconducting substance trapped in the filter medium does not clog the filter medium.

上記粉末は、上記粉末を液体窒素等の溶媒に分散させ
た状態や、あるいは上記粉末を流動させた状態で上記フ
ィルターメディアを通過させることができる。特に、粉
末を液体窒素に分散させてフィルターメディアを通過さ
せると、上記粉末を超電導物質の臨界温度以下に保ち易
く好ましい。
The powder can be passed through the filter medium in a state in which the powder is dispersed in a solvent such as liquid nitrogen or in a state in which the powder is fluidized. In particular, it is preferable to disperse the powder in liquid nitrogen and pass through the filter medium, because the powder can be easily maintained below the critical temperature of the superconducting substance.

尚、上記手段によって回収された超電導物質粉末は、
プレス等によって成形して超電導薄膜形成用のスパッタ
リングのターゲットとしたり、銅合金等の延性の高い金
属パイプ中に詰めて引き伸ばすことにより超電導粉末同
志を密着させ超電導の線材としたり、あるいはバインダ
ーによってこの超電導物質粉末を固めて超電導の素材と
したり、さらには成形して再度焼結することによって超
電導の素材とすることができる。
The superconducting substance powder recovered by the above means is
A superconducting thin film is formed by pressing and used as a sputtering target for forming a superconducting thin film, or a superconducting powder is packed in a highly ductile metal pipe and stretched to make the superconducting powder adhere to each other to form a superconducting wire. The material powder can be solidified into a superconducting material, or can be further molded and re-sintered to form a superconducting material.

[作用] 超電導物質を含む焼結体は、上記粉砕工程で粉砕され
ることによって、超電導物質のみあるいは超電導物質が
多い粒子(以下超電導粒子という)と、超電導物質が含
まれないあるいは超電導物質が少ない粒子とからなる粉
末となる。
[Operation] A sintered body containing a superconducting substance is pulverized in the above-mentioned pulverizing step, so that the superconducting substance alone or a large amount of superconducting substance (hereinafter referred to as superconducting particle) and the superconducting substance is not contained or the superconducting substance is small. It becomes a powder consisting of particles.

そして、この粉末を、上記分離工程にて、上記超電導
物質の臨界温度以下で、磁化した強磁性材料のフィルタ
ーメディアを有する通路中を通過させることにより、上
記フィルターメディアに超電導粒子のみを捕捉して、超
電導粒子とそうでない粒子とに分離できる。
Then, in the separation step, at a temperature below the critical temperature of the superconducting substance, this powder is passed through a passage having a filter medium of a magnetized ferromagnetic material to capture only superconducting particles in the filter medium. , Can be separated into superconducting particles and particles that are not.

上記フィルターメディアにおける超電導粒子の分離に
ついて、第1図のフィルターメディアを構成する強磁性
材料の細線W及びその近傍の拡大図を用い説明する。
Separation of superconducting particles in the above filter medium will be described with reference to FIG. 1 which is an enlarged view of the thin line W of the ferromagnetic material forming the filter medium and its vicinity.

磁化された細線W近傍の粒子に作用する磁気力Fmは2
次元的にみると、次式(1),(2)で表される。
The magnetic force Fm acting on the particles in the vicinity of the magnetized thin wire W is 2
Dimensionally, it is expressed by the following equations (1) and (2).

Fmr=−V×HO2a2(a2/2r5+cos2θ/r3) …(1) Fmθ=−V×HO2a2sin2θ/r3 …(2) ここで、r,θは細線Wの中心の円柱座標で、外部磁場
HOの向きをx軸にとり、これを基準軸としている。ま
た、aは細線Wの半径、Xは粒子の磁化率、Vは粒子の
体積、HOは外部磁場を各々表している。
Fmr = −V × HO 2 a 2 (a 2 / 2r 5 + cos 2θ / r 3 ) (1) Fmθ = −V × HO 2 a 2 sin2θ / r 3 (2) where r and θ are thin wires W In the cylindrical coordinates of the center of the external magnetic field
The orientation of HO is on the x-axis and this is the reference axis. Further, a is the radius of the thin wire W, X is the magnetic susceptibility of the particles, V is the volume of the particles, and HO is the external magnetic field.

臨界温度以下で強い反磁性(X≒−1)を示す超電導
粒子のうける磁気力Fmを上記(1),(2)式より求
め、第1図に矢印で示す。第1図から明らかなように超
電導粒子は、細線Wの外部磁場に垂直な表面部分に捕捉
される。
The magnetic force Fm to be applied to the superconducting particles exhibiting strong diamagnetism (X≈-1) at the critical temperature or less is obtained from the above equations (1) and (2) and is shown by an arrow in FIG. As is clear from FIG. 1, the superconducting particles are trapped on the surface portion of the thin wire W perpendicular to the external magnetic field.

すなわち、上記のような超電導粒子は、臨界温度以下
で強い反磁性を示す。そのため、フィルターメディアを
構成する細線Wが磁化されていると、この細線Wの近傍
で第1図のような力を受け、この細線Wに捕捉される。
That is, the above superconducting particles exhibit strong diamagnetism at the critical temperature or lower. Therefore, when the thin wire W constituting the filter medium is magnetized, the thin wire W receives a force as shown in FIG. 1 in the vicinity of the thin wire W and is captured by the thin wire W.

一方、超電導物質を含まない粒子は磁化率X≒0であ
るため、細線Wからほとんど影響を受けないのでフィル
ターメディアに捕捉されることなく、フィルターメディ
アを通過する。
On the other hand, since the particles having no superconducting substance have the magnetic susceptibility X≈0, they are hardly affected by the thin wire W and therefore pass through the filter medium without being captured by the filter medium.

したがって、上記粉末を、臨界温度より低い状態で、
磁化されたフィルターメディアの設けられた通路を通過
させることによって超電導粒子のみフィルターメディア
に捕捉することができる。
Therefore, the above powder, in a state below the critical temperature,
Only the superconducting particles can be trapped in the filter medium by passing through the passage provided with the magnetized filter medium.

尚、この捕捉された超電導粒子の合フィルターメディ
アからの回収は、上記細線を磁化するために印加されて
いる磁場を取り除いたり、フィルターメディアを臨界温
度より高温として超電導粒子の超電導性を失わせること
により容易に行える。
Incidentally, the collection of the trapped superconducting particles from the combined filter medium may be carried out by removing the magnetic field applied to magnetize the thin wires, or by making the filter medium higher than the critical temperature to lose the superconducting property of the superconducting particles. Can be done easily.

[実施例] 本発明の効果を確認するために、以下の実験を行っ
た。
[Example] In order to confirm the effect of the present invention, the following experiment was conducted.

先ず、超電導物質を含む焼結体試料を以下のように
製造した。
First, a sintered body sample containing a superconducting material was manufactured as follows.

Y2O3粉末(純度99.99%、平均粒径1.5μm、日本イッ
トリア製)、BaCO3粉末(純度99.9%、平均粒径1μ
m、フルウチ化学製)およびCuO粉末(純度99.9%、平
均粒径1μm、フルウチ化学製)を、 Y2O3:BaO:CuO=1.129:3.947:2.386(g) の割合で秤量し、乳鉢にて混合、撹拌した。最終的な平
均粒径は1.5μmであった。
Y 2 O 3 powder (purity 99.99%, average particle size 1.5 μm, made in Japan Yttria), BaCO 3 powder (purity 99.9%, average particle size 1 μ
m, manufactured by Furuuchi Chemical Co., Ltd.) and CuO powder (purity 99.9%, average particle size 1 μm, manufactured by Furuuchi Chemical Co., Ltd.) at a ratio of Y 2 O 3 : BaO: CuO = 1.129: 3.947: 2.386 (g) and placed in a mortar. Mixed and stirred. The final average particle size was 1.5 μm.

その後、上記混合物をアルミナ製の坩堝(内径2.0m
m、深さ3.3mm)中にて、400℃まで1時間で昇温した
後、さらに950℃まで600℃/hrで昇温し、2時間保持
後、200℃まで冷却する仮焼処理を大気中で行った。
Then, the above mixture was put into an alumina crucible (inner diameter 2.0 m
m, depth 3.3 mm), the temperature is raised to 400 ° C in 1 hour, further raised to 950 ° C at 600 ° C / hr, held for 2 hours, and then cooled to 200 ° C. Went inside.

そして、得られた仮焼物を再度乳鉢にて粉砕し、バイ
ンダーであるポリビニルブチラール樹脂(PVB、重合度7
00、和光純薬製)を仮焼粉末1gに対して1.1mlの割合で
添加した。その後、この仮焼粉末を、室温で成形圧力1t
/cm2のプレスにより、厚さ7mm×幅9mm×長さ50mmの直方
体状に成形した。
Then, the obtained calcined product is pulverized again in a mortar, and polyvinyl butyral resin (PVB, polymerization degree 7
00, manufactured by Wako Pure Chemical Industries, Ltd.) was added at a ratio of 1.1 ml to 1 g of the calcined powder. After that, the calcined powder was molded at room temperature with a forming pressure of 1 t.
It was molded into a rectangular parallelepiped having a thickness of 7 mm, a width of 9 mm and a length of 50 mm by a press of / cm 2 .

次に、上記直方体状成形体を大気中、950℃で6時間
の焼成を行った。尚、昇温速度は100℃/hr、冷却は950
℃から250℃まで8時間の炉中冷却とした。
Next, the above rectangular parallelepiped shaped body was fired in the air at 950 ° C. for 6 hours. The heating rate is 100 ° C / hr and cooling is 950.
The furnace was cooled from ℃ to 250 ℃ for 8 hours.

得られた焼結体試料の色は黒色であった。 The color of the obtained sintered body sample was black.

この焼結体試料の臨界温度は92Kであり100Oe(エルス
テッド)の磁界で、かつ80Kでの磁化は4πl=18G(ガ
ウス)であった。また、この焼結体中に含まれる超電導
物質の含有率は、完全に超電導であれば4πl=−100G
であることから、18/100=18%と算出された。
The critical temperature of this sintered sample was 92 K, the magnetic field was 100 Oe (Oersted), and the magnetization at 80 K was 4πl = 18 G (Gauss). The content of the superconducting substance contained in this sintered body is 4πl = -100G if it is completely superconducting.
Therefore, 18/100 = 18% was calculated.

ついで、上記焼結体試料に本発明の超電導粉末の回
収方法を適用した。
Then, the method for recovering superconducting powder of the present invention was applied to the above-mentioned sintered body sample.

先ず、ボールミルで上記焼結体粉末を粉砕して、平均
粒径が1μmの試料粉末と平均粒径が5μmの試料粉末
とを得た。
First, the above-mentioned sintered body powder was pulverized by a ball mill to obtain a sample powder having an average particle size of 1 μm and a sample powder having an average particle size of 5 μm.

次いで、この試料粉末を液温80Kの液体窒素5に対
し0.5g懸濁させ、第2図に示す磁気分離装置を通過させ
て超電導粉末を回収した。
Next, 0.5 g of this sample powder was suspended in liquid nitrogen 5 having a liquid temperature of 80 K and passed through the magnetic separator shown in FIG. 2 to recover superconducting powder.

この磁気分離装置は、内径50mmφの通路10と、該通路
10中に設けられた強磁性材料からなるフィルターメディ
ア20と、該フィルターメディア20を磁化する1対の電磁
石30,40とからなる。このフィルターメディア20は、線
径1mmφのSUS430製の強磁性材料の細線からなるステン
レス金網を70枚積層したものである。
This magnetic separation device includes a passage 10 having an inner diameter of 50 mmφ and the passage 10.
The filter medium 20 is made of a ferromagnetic material, and a pair of electromagnets 30 and 40 that magnetize the filter medium 20 are provided in the unit 10. The filter medium 20 is formed by stacking 70 stainless wire nets made of fine wires made of a SUS430 ferromagnetic material having a wire diameter of 1 mmφ.

また、電磁石30,40は、各々磁芯30h,40hと、磁芯30h,
40hに巻かれたコイル30c,40cとを備え、図示されない電
源がコイル30c,40cの図示されない端子に接続されるこ
とにより、磁芯30cと磁芯40cとの間に直流磁界が発生す
るように構成されている。
Further, the electromagnets 30 and 40 are composed of magnetic cores 30h and 40h, magnetic cores 30h and 40h,
A coil 30c, 40c wound around 40h is provided, and a power source (not shown) is connected to a terminal (not shown) of the coils 30c, 40c, so that a DC magnetic field is generated between the magnetic core 30c and the magnetic core 40c. It is configured.

そして、この電磁石30,40によって第1表に示す直流
磁界を発生させ、通路10の一端から上記試料粉末を懸濁
させた液体窒素(液温80K)を5/5minの割合で通過さ
せることにより。上記フィルターメディア20を構成する
磁化された細線に、液体窒素中の超電導粒子を捕捉し
た。
Then, by generating a DC magnetic field shown in Table 1 by the electromagnets 30 and 40, liquid nitrogen (liquid temperature 80K) in which the sample powder is suspended is passed from one end of the passage 10 at a rate of 5/5 min. . The superconducting particles in the liquid nitrogen were captured by the magnetized thin wires constituting the filter medium 20.

次いで、電磁石30,40への通電を停止して、洗浄用溶
媒を上記通路10中流通させ、上記フィルターメディア20
の細線に捕捉された超電導粒子を回収した。
Then, the energization of the electromagnets 30, 40 is stopped, the cleaning solvent is circulated in the passage 10, and the filter media 20
The superconducting particles trapped in the thin wire of No. 3 were collected.

第1表に、使用試料粉末の平均粒径、使用した外部磁
界、回収した超電導粉末の捕捉量、100Oe(エルステッ
ド)の磁界でかつ80Kにおける磁化量、該磁化量から算
出した超電導物質の含有率、および試料粉末中の超電導
物質の捕捉率を第1表に記す。尚、試料粉末中の超電導
物質の捕捉率は、次式によって算出した。
Table 1 shows the average particle size of the sample powder used, the external magnetic field used, the amount of collected superconducting powder, the amount of magnetization at 80K in a magnetic field of 100 Oe (Oersted), and the content of the superconducting substance calculated from the amount of magnetization. , And the capture rate of the superconducting substance in the sample powder are shown in Table 1. The capture rate of the superconducting substance in the sample powder was calculated by the following formula.

超電導物質の捕捉率= (超電導粉末の捕捉量×その超電導物質の分有率)/
(試料粉末量(0.5g)×その超電導物質の含有率) 第1表から、以下のことが分かった。
Capture rate of superconducting substance = (capture amount of superconducting powder x share of the superconducting substance) /
(Sample powder amount (0.5g) x content of the superconducting substance) From Table 1, the following was found.

どちらの場合でも超電導物質の含有率が増加するこ
とが確認された。
It was confirmed that the content rate of the superconducting substance was increased in both cases.

粉末の平均粒径が小さい方が超電導物質の含有率が
より増加する。
The smaller the average particle size of the powder, the higher the content of the superconducting substance.

超電導物質の捕捉率は、超電導物質の含有率とは逆
に粉末の平均粒径が大きいほど増加する。
Contrary to the content of the superconducting substance, the capture rate of the superconducting substance increases as the average particle size of the powder increases.

したがって、粉末の平均粒径等を適当に選ぶことによ
って、用途に応じた超電導粉末を得ることができる。
Therefore, by appropriately selecting the average particle size of the powder, it is possible to obtain a superconducting powder suitable for the intended use.

[発明の効果] 本発明は、上述の如き構成を採用することによって、
容易に超電導物質の含有率の高い超電導粉末を得ること
ができる。
[Effects of the Invention] The present invention adopts the configuration as described above,
A superconducting powder having a high content of the superconducting substance can be easily obtained.

このように超電導物質の含有率の高い超電導粉末を使
用することによって、超電導金属酸化物焼結体の実用化
がより容易になる。
By using the superconducting powder having a high content of the superconducting substance, it becomes easier to put the superconducting metal oxide sintered body into practical use.

【図面の簡単な説明】 第1図は本発明の分離工程の説明図、第2図は本発明の
一実施例に使用する磁気分離装置の説明図である。 W……磁性細線 10……通路 20……フィルターメディア 30,40……電磁石
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a separation process of the present invention, and FIG. 2 is an explanatory diagram of a magnetic separation device used in an embodiment of the present invention. W: Magnetic fine wire 10: Passage 20: Filter media 30,40: Electromagnet

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導物質を含む焼結体を粉砕して粉末と
する粉砕工程と、 該粉砕工程で得られた粉末を、上記超電導物質の臨界温
度以下で、磁化した強磁性材料のフィルターメディアを
有する通路中を通過させることによって超電導物質を磁
気分離する分離工程と、 を備えたことを特徴とする超電導粉末の回収方法。
1. A crushing step of crushing a sintered body containing a superconducting substance into powder, and a powder obtained by the crushing step, which is magnetized at a temperature below the critical temperature of the superconducting substance, of a ferromagnetic material filter medium. And a separation step of magnetically separating the superconducting substance by passing it through a passage having the.
JP62178111A 1987-07-16 1987-07-16 Recovery method of superconducting powder Expired - Lifetime JP2531186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62178111A JP2531186B2 (en) 1987-07-16 1987-07-16 Recovery method of superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62178111A JP2531186B2 (en) 1987-07-16 1987-07-16 Recovery method of superconducting powder

Publications (2)

Publication Number Publication Date
JPS6422360A JPS6422360A (en) 1989-01-25
JP2531186B2 true JP2531186B2 (en) 1996-09-04

Family

ID=16042847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62178111A Expired - Lifetime JP2531186B2 (en) 1987-07-16 1987-07-16 Recovery method of superconducting powder

Country Status (1)

Country Link
JP (1) JP2531186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801665B2 (en) 2008-04-10 2014-08-12 Henry Ford Health System Apparatus and method for controlled depth of injection into myocardial tissue

Also Published As

Publication number Publication date
JPS6422360A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
Adams et al. A new permanent magnet from powdered manganese bismuthide
US2762778A (en) Method of making magneticallyanisotropic permanent magnets
Becker Reversal mechanism in copper-modified cobalt-rare-earths
Taguchi et al. High energy ferrite magnets
Matsumoto et al. Preparation of bismuth‐substituted yttrium iron garnet powders by the citrate gel process
Yamamoto et al. Magnetic properties of anisotropic Sr-La system ferrite magnets
Wong et al. Structural and magnetic studies of SrFe12O19 by sol-gel method
Sugawara et al. Removal of ammonia nitrogen from water by magnetic zeolite and high-gradient magnetic separation
Taguchi Recent improvements of ferrite magnets
JP2531186B2 (en) Recovery method of superconducting powder
Tanaka et al. Synthesis of new amorphous oxides with ferromagnetic character in iron oxide‐based systems
Montgomery et al. Magnetic forces for medical applications
JPH03141512A (en) Oxide superconductor
Watson The design for a high-Tc superconducting magnetic separator
Kopp Superconducting magnetic separators
Yamamoto et al. Magnetic properties of Sr-Zn system W-type hexagonal ferrite magnets prepared by new manufacturing method
Jin et al. Developing a HTS magnet for high gradient magnetic separation techniques
Friedlaender et al. Status of magnetic separation
CIEŚLA Theoretical consideration for oxygen enrichment from air using high-TC superconducting membrane
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
Jin et al. A high gradient magnetic separator fabricated using Bi-2223/Ag HTS tapes
EP3401018A1 (en) Method, device and arrangement for filtration of magnetic particles
JPH01258753A (en) Method and device for selecting superconducting particles
Obradors et al. Magnetic properties of Ba2SmCu3O9− x high Tc superconductor
Zijlstra Permanent magnets