JP2529849B2 - Seismic bearing structure - Google Patents

Seismic bearing structure

Info

Publication number
JP2529849B2
JP2529849B2 JP10635887A JP10635887A JP2529849B2 JP 2529849 B2 JP2529849 B2 JP 2529849B2 JP 10635887 A JP10635887 A JP 10635887A JP 10635887 A JP10635887 A JP 10635887A JP 2529849 B2 JP2529849 B2 JP 2529849B2
Authority
JP
Japan
Prior art keywords
bearing member
voltage
fixed
power supply
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10635887A
Other languages
Japanese (ja)
Other versions
JPS63272806A (en
Inventor
真一 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP10635887A priority Critical patent/JP2529849B2/en
Publication of JPS63272806A publication Critical patent/JPS63272806A/en
Application granted granted Critical
Publication of JP2529849B2 publication Critical patent/JP2529849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐震支承構造物に係わり、更に詳しくは
橋梁または高速道路等の上部構築物を橋脚上に支承する
構造物において、上部構築物が温度変化、経時変化等に
より緩慢な動きを生じた際には、滑らかに動いてあまり
抵抗を与えずにこの移動を許容し、また地震等のように
急激な震動や揺れ等に対しては、上部構築物が橋脚上に
固定されたと同様な作用をして上部構築物や橋脚が落下
したり、破壊したりするのを有効に防止した耐震支承構
造物に関するものである。
Description: TECHNICAL FIELD The present invention relates to a seismic support structure, and more particularly to a structure in which an upper structure such as a bridge or a highway is supported on a pier, and the upper structure is When a slow movement occurs due to changes or changes over time, the movement is smooth and allows this movement without giving too much resistance, and in the case of a sudden vibration or shaking such as an earthquake, the upper part The present invention relates to a seismic support structure that effectively prevents the upper structure and the pier from falling or breaking by the same action as when the structure is fixed on the pier.

〔従来技術〕[Prior art]

従来、橋梁等の構造物は、第3図に示すように所定の
間隔で立設された橋脚1上に、所定の長さの橋桁2が複
数本載置されている。
Conventionally, in a structure such as a bridge, a plurality of bridge girders 2 having a predetermined length are placed on bridge piers 1 which are erected at predetermined intervals as shown in FIG.

そして、橋脚1と橋桁2との支承構造として、橋桁2
が温度変化、経時変化等により伸縮したり、揺動するの
を許容するために可動支承3と固定支承4とが設けられ
ている。
Then, as a support structure of the bridge pier 1 and the bridge girder 2, the bridge girder 2
A movable bearing 3 and a fixed bearing 4 are provided in order to permit expansion and contraction or rocking due to changes in temperature, changes with time, and the like.

ところで、従来の可動支承3には、ローラ支承,支承
板支承,ゴム支承等が用いられているが、これらは温度
変化、経時変化等に対応させるために、橋軸水平方向の
荷重Fを拘束する構造にはなっていない。従って、地震
等の震動が発生した場合には、水平荷重Fは全て固定支
承4に加わる構造になっている。
By the way, the conventional movable bearing 3 uses a roller bearing, a bearing plate bearing, a rubber bearing and the like, but these are used to restrain the load F in the horizontal direction of the bridge axis in order to cope with temperature changes, changes with time and the like. It is not structured to do. Therefore, when a vibration such as an earthquake occurs, the horizontal load F is entirely applied to the fixed bearing 4.

従って、固定支承4に有する橋脚1及びその基礎は、
強固にする必要があるが、全ての橋脚1に水平荷重を均
等分担させる場合に比べて建設費が高価になると言う問
題があった。
Therefore, the pier 1 and its foundation of the fixed bearing 4 are
Although it is necessary to make it rigid, there was a problem that the construction cost would be higher than when the horizontal load is evenly shared by all the piers 1.

また、過去の地震(新潟地震等)により橋桁2が可動
支承3から外れて落ちることも現実に起こっている。
In addition, it is actually happening that the bridge girder 2 comes off the movable support 3 and falls due to a past earthquake (Niigata earthquake, etc.).

〔発明の目的〕[Object of the Invention]

この発明は、かかる従来の問題点に着目して案出され
たもので、その目的とするところは通常の発生する上部
構造物の揺動や伸縮は、従来の可動支承部材と同等に行
うことが出来る一方、地震等が発生した場合には、固定
支承部材と同等に地震等の横荷重を支持することが出
来、橋脚及びその基礎等は、固定支承部及び可動支承部
を問わず同等に横荷重を分担することが出来、これによ
り上部構造物が可動支承部材から外れて落ちると言う事
故も未然に防止することが出来ると共に、経済的に有利
な構造物を構造することが出来る耐震支承構造物を提供
するものである。
The present invention was devised by focusing on such conventional problems, and the purpose thereof is to perform normal swinging and expanding / contracting of an upper structure in the same manner as a conventional movable bearing member. On the other hand, in the event of an earthquake, etc., it is possible to support lateral loads such as an earthquake, etc., in the same way as the fixed bearing members, and the pier and its foundation, etc., are the same regardless of whether they are fixed bearing parts or movable bearing parts. Lateral load can be shared, which prevents accidents that the upper structure falls off from the movable bearing member and can be prevented. At the same time, an economically advantageous structure can be constructed. It provides a structure.

〔発明の構成〕[Structure of Invention]

この発明は上記目的を達成するため、可動支承部材
と、固定構造物に固定された下部支承部材と、上部構築
物に取付けられた上部支承部材とを中間支承部材を介し
て揺動可能に支持させて構成し、前記中間支承部材は、
前記上部支承部材と下部支承部材との嵌合接続部に、上
部支承部材を移動可能に支持する係合室を形成し、前記
係合室の内部に、電圧をかけると流動性が変化する電圧
感応性流体を封入し、前記電圧感応性流体に電圧を印可
する電極を設け、この各電極に電圧を印可する電源接続
装置を接続すると共に、この電源装置に一定以上の震動
を感知した際、該電源接続装置を作動させる震動感知セ
ンサーを接続したことにより、通常の発生する上部構造
物の震動や伸縮は、可動支承部材の移動に追従させて行
うことが出来ると共に、一定以上の地震等が発生した場
合には、震動感知センサーが作動して電源装置を介して
シリンダ内に封入された電圧感応性流体に電圧を印可さ
せることにより、電圧感応性流体に流動抵抗を生じさせ
ることにより固定支承部材と同等に地震の横荷重を支持
することが出来るようにして、固定部及び可動部を問わ
ず同等に横荷重を分担することが出来るようにしたこと
を要旨とするものである。
In order to achieve the above object, the present invention supports a movable bearing member, a lower bearing member fixed to a fixed structure, and an upper bearing member attached to an upper structure so as to be swingable through an intermediate bearing member. And the intermediate support member is
An engagement chamber for movably supporting the upper bearing member is formed at a fitting connection portion between the upper bearing member and the lower bearing member, and a voltage whose fluidity changes when a voltage is applied inside the engagement chamber. A sensitive fluid is enclosed, electrodes for applying a voltage to the voltage-sensitive fluid are provided, and a power supply connection device for applying a voltage is connected to each of these electrodes, and when a vibration above a certain level is sensed in this power supply device, By connecting the vibration detection sensor that operates the power supply connection device, the normal vibration or expansion / contraction of the upper structure can be performed by following the movement of the movable support member, and at the same time, a certain magnitude of earthquake or the like will occur. When it occurs, the vibration detection sensor is activated to apply a voltage to the voltage-sensitive fluid enclosed in the cylinder via the power supply device, and the voltage-sensitive fluid is fixed by causing flow resistance. Seung equally as can support the lateral load of the earthquake and the member, it is an Abstract that will be shared equally lateral load regardless of the fixed portion and the movable portion was set to be.

〔発明の実施例〕Example of Invention

以下添付図面に基いて、この発明の実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図及び第2図は、この発明を橋梁等の構造物等に
実施した耐震支承構造物における可動支承部の断面図を
示し、11は所定の間隔で立設された橋脚等の固定構造
物、12は所定の長さの橋桁等の上部構築物であって、前
記上部構築物12は、図示しない固定構造物11に設けられ
た固定支承部材と、固定構造物11に設けられた可動支承
部材13とで支持されている。
1 and 2 are cross-sectional views of a movable bearing part in an earthquake-resistant bearing structure in which the present invention is applied to a structure such as a bridge, and 11 is a fixed structure such as bridge piers erected at predetermined intervals. 1 is an upper structure such as a bridge girder having a predetermined length, and the upper structure 12 includes a fixed support member provided on a fixed structure 11 (not shown) and a movable support member provided on the fixed structure 11. It is supported by 13 and.

前記可動支承部材13は、固定構造物11に固定された断
面凹状の下部支承部材14と、上部構築物12に固定された
上部固定部材15にピン16を介して揺動可能に支持された
上部支承部材17とを中間支承部材18を介して支持した状
態で構成されている。
The movable bearing member 13 includes a lower bearing member 14 having a concave cross section fixed to a fixed structure 11 and an upper bearing member 15 fixed to an upper structure 12 and swingably supported via a pin 16. The member 17 and the member 17 are supported via an intermediate support member 18.

前記中間支承部材18は、前記上部支承部材17の凸部17
aと下部支承部材14の凹部14aとの嵌合接続部19に、上部
支承部材17の凸部17aに装着された摺動部材17bを介して
移動可能に支持する係合室20が形成されている。
The intermediate bearing member 18 is a convex portion 17 of the upper bearing member 17.
In the fitting connection portion 19 between the a and the concave portion 14a of the lower support member 14, an engagement chamber 20 that movably supports via the sliding member 17b attached to the convex portion 17a of the upper support member 17 is formed. There is.

前記係合室20は、シール材20a(Oリング等)を介し
て密閉され、また係合室20内は、上部支承部材17の凸部
17aにより区画された室21a,21bが形成されている。
The engagement chamber 20 is hermetically sealed via a sealing material 20a (O-ring or the like), and the inside of the engagement chamber 20 is a convex portion of the upper bearing member 17.
Chambers 21a and 21b partitioned by 17a are formed.

この両室21a,21bは、前記摺動部材17bに形成された複
数の連通路22を介して連通し、室21a,21b内に封入され
た電圧感応性流体23が流動出来るようになっている。
The two chambers 21a and 21b are communicated with each other through a plurality of communication passages 22 formed in the sliding member 17b so that the voltage sensitive fluid 23 enclosed in the chambers 21a and 21b can flow. .

また、前記室21a,21bに封入された電圧感応性流体23
は、電圧をかけると流動性が変化するもので、前記下部
支承部材14と上部支承部材17とには、前記電圧感応性流
体23に電圧を印可する電極24a,24bが夫々設けられてい
る。
In addition, the voltage sensitive fluid 23 enclosed in the chambers 21a and 21b
The fluidity changes when a voltage is applied. The lower bearing member 14 and the upper bearing member 17 are provided with electrodes 24a and 24b for applying a voltage to the voltage-sensitive fluid 23, respectively.

また、前記摺動部材17bとしては、例えばフッ素系樹
脂等の低摩擦係数の材料により構成される。なお、上記
の摺動部材17bに設ける連通路22は、区画された室21a,2
1bを大きくして電圧感応性流体23が移動できるものであ
れば必ずしも設ける必要はない。
The sliding member 17b is made of a material having a low coefficient of friction such as fluorine resin. In addition, the communication passage 22 provided in the sliding member 17b is formed by the divided chambers 21a, 2
If the voltage sensitive fluid 23 can be moved by increasing 1b, it is not always necessary to provide it.

前記各電極24a,24bには、電圧感応性流体23に電圧を
印可する電源接続装置25(この実施例の場合には、バッ
テリー及びスイッチである)が接続され、この電源接続
装置25に一定以上の震動を感知した際、該電源接続装置
25のスイッチを作動させる震動感知センサー26が接続さ
れている。
A power supply connection device 25 (in this embodiment, a battery and a switch) that applies a voltage to the voltage-sensitive fluid 23 is connected to each of the electrodes 24a, 24b, and the power supply connection device 25 has a certain level or more. When the vibration of the
A seismic sensor 26 that operates 25 switches is connected.

前記、係合室20内に封入された電圧感応性流体23とし
ては、例えばシリコンオイル等の連続相と、分散相とか
ら成るエレクトロレオロジカル流体(electrorheologic
al fluid)を使用し、このエレクトロレオロジカル流体
の分散相は、実質的に疏水性であり、導電体である。好
ましくは、特に有機の半導体(例えば、フタロシアニン
金属錆塩またはポリ・アセン−キノン)である。
The voltage-sensitive fluid 23 sealed in the engagement chamber 20 is, for example, an electrorheological fluid composed of a continuous phase such as silicone oil and a dispersed phase.
al fluid), the dispersed phase of this electrorheological fluid is substantially hydrophobic and is a conductor. Preferred are especially organic semiconductors such as phthalocyanine metal rust salts or polyacene-quinone.

このエレクトロレオロジカル流体の性質としては、≦
3MV/mの電場を掛けた時、≧0.5K・Paの静的降伏応力(S
tatic yield stress)を発生させることが出来、また≦
1MV/mの電場で≦500A/m2のc.dを通すことが出来るもの
である。
As the properties of this electrorheological fluid, ≦
When an electric field of 3MV / m is applied, a static yield stress of ≧ 0.5K ・ Pa (S
tatic yield stress) can be generated, and ≤
It can pass a cd of ≤500 A / m 2 with an electric field of 1 MV / m.

この発明は、上記のように構成され、通常の温度変化
や、小地震等が発生した場合の上部構造物12の伸縮や揺
動作用は、可動支承部材13の移動に追従させて行うこと
が出来、また一定以上の大地震等が発生した場合には、
この震動を震動感知センサー26が感知して、信号を電源
接続装置25に送り、そしてスイッチが入ると係合室20内
に封入された電圧感応性流体23に電圧が印可される。こ
れにより、電圧感応性流体23の性質により流動抵抗(静
的降伏応力)が瞬時に起こり、上部支承部材17をロック
状態にする。
The present invention is configured as described above, and the expansion and contraction and the swinging action of the upper structure 12 when a normal temperature change or a small earthquake occurs can be performed by following the movement of the movable support member 13. If it is possible, and if a large earthquake such as a certain amount occurs,
This vibration is detected by the vibration detecting sensor 26, which sends a signal to the power supply connection device 25, and when the switch is turned on, a voltage is applied to the voltage sensitive fluid 23 enclosed in the engagement chamber 20. As a result, flow resistance (static yield stress) occurs instantaneously due to the property of the voltage-sensitive fluid 23, and the upper bearing member 17 is locked.

このように、可動支承部材13の中間支承部材18が固定
されると、固定支承部材と同様になり、従って地震等の
横荷重を支持することになって、固定支承部及び可動支
承部を問わず同等に横荷重を分担することが出来るので
ある。
In this way, when the intermediate bearing member 18 of the movable bearing member 13 is fixed, it becomes the same as the fixed bearing member, and therefore supports the lateral load such as an earthquake. Therefore, the lateral load can be equally shared.

このような構成を、上記実施例のように橋梁の橋桁と
橋脚との可動支承部に実施すれば、地震等の時には、橋
桁が可動支承部から外れ落ちる危険がなく、安全性を高
めることが出来る。
If such a structure is applied to the movable bearings of the bridge girders and piers of the bridge as in the above embodiment, there is no risk of the bridge girders falling off from the movable bearings in the event of an earthquake, etc., and safety can be improved. I can.

〔発明の効果〕〔The invention's effect〕

この発明は、上記のように可動支承部材を、固定構造
物に固定された下部支承部材と、上部構築物に取付けら
れた上部支承部材とを中間支承部材を介して揺動可能に
支持させて構成し、前記中間支承部材は、前記上部支承
部材と下部支承部材との嵌合接続部に、上部支承部材を
移動可能に支持する係合室を形成し、前記係合室の内部
に、電圧をかけると流動性が変化する電圧感応性流体を
封入し、前記電圧感応性流体に電圧を印可する電極を設
け、この各電極に電圧を印可する電源接続装置を接続す
ると共に、この電源装置に一定以上の震動を感知した
際、該電源接続装置を作動させる震動感知センサーを接
続したので、通常の発生する上部構造物の震動や伸縮
は、可動支承部材の移動に追従させて行うことが出来る
と共に、一定以上の大地震等が発生した場合には、電圧
感応性流体に流動抵抗を生じさせることにより可動支承
部材を固定支承部材と同等の構造にして、地震等の横荷
重を均等に分担し、上部構造物が外れて落下したり、固
定構造物が破壊するのを未然に防止出来る。更に、地震
の時に起こる横荷重を全ての固定構造物が均等に支持出
来るので、特に強度を有する固定構造物を建造する必要
がなく、従って経済的な橋梁等の構築物を建造すること
が出来る。
According to the present invention, as described above, the movable bearing member is configured such that the lower bearing member fixed to the fixed structure and the upper bearing member attached to the upper structure are swingably supported via the intermediate bearing member. However, the intermediate bearing member forms an engagement chamber for movably supporting the upper bearing member at a fitting connection portion between the upper bearing member and the lower bearing member, and a voltage is applied to the inside of the engagement chamber. A voltage-sensitive fluid whose fluidity changes when applied is enclosed, electrodes for applying a voltage are provided to the voltage-sensitive fluid, and a power supply connection device for applying a voltage is connected to each of these electrodes, and a constant voltage is applied to this power supply device. When the above-mentioned vibration is detected, the vibration detection sensor that operates the power supply connection device is connected, so that the normal vibration and expansion of the upper structure can be performed by following the movement of the movable support member. , Above a certain level In the event of occurrence of such as a pressure-sensitive fluid, a flow resistance is created in the voltage-sensitive fluid so that the movable bearing member has a structure equivalent to that of a fixed bearing member, the lateral load such as an earthquake is evenly shared, and the upper structure comes off. It is possible to prevent it from falling down and breaking the fixed structure. Further, since all the fixed structures can evenly support the lateral load generated at the time of an earthquake, it is not necessary to construct a fixed structure having a particularly high strength, and therefore an economical structure such as a bridge can be constructed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明を実施した可動支承部材の断面図、
第2図は第1図のII−II矢視断面図、第3図は従来の橋
梁の支持構造を示す説明図である。 11……固定構造物、12……上部構築物、 13……可動支承部材、14……下部支承部材、 17……上部支承部材、18……中間支承部材、 19……嵌合接続部、20……係合室、 23……電圧感応性流体、24a,24b……電極、 25……電源接続装置、26……震動感知センサー。
FIG. 1 is a sectional view of a movable support member embodying the present invention,
FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is an explanatory view showing a conventional bridge support structure. 11 …… Fixed structure, 12 …… Upper structure, 13 …… Movable support member, 14 …… Lower support member, 17 …… Upper support member, 18 …… Intermediate support member, 19 …… Mating connection part, 20 ...... Engagement chamber, 23 ...... Voltage sensitive fluid, 24a, 24b ...... Electrodes, 25 ...... Power supply connection device, 26 ...... Vibration detection sensor.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定構造物に設けられた固定支承部材と、
固定構造物に設けられた可動支承部材とで、上部構築物
を支持させて成る耐震支承構造物において、前記可動支
承部材は、固定構造物に固定された下部支承部材と、上
部構築物に取付けられた上部支承部材とを中間支承部材
を介して揺動可能に支持させて構成し、前記中間支承部
材は、前記上部支承部材と下部支承部材との嵌合接続部
に、上部支承部材を移動可能に支持する係合室を形成
し、前記係合室の内部に、電圧をかけると流動性が変化
する電圧感応性流体を封入し、前記電圧感応性流体に電
圧を印可する電極を設け、この各電極に電圧を印可する
電源接続装置を接続すると共に、この電源装置に一定以
上の震動を感知した際、該電源接続装置を作動させる震
動感知センサーを接続したことを特徴とする耐震支承構
造物。
1. A fixed bearing member provided on a fixed structure,
In an earthquake-resistant bearing structure in which an upper structure is supported by a movable bearing member provided in a fixed structure, the movable bearing member is attached to a lower bearing member fixed to the fixed structure and an upper structure. The upper bearing member and the upper bearing member are swingably supported via the intermediate bearing member, and the intermediate bearing member allows the upper bearing member to move to a fitting connection portion between the upper bearing member and the lower bearing member. An engaging chamber for supporting is formed, a voltage-sensitive fluid whose fluidity changes when a voltage is applied is enclosed inside the engagement chamber, and an electrode is provided for applying a voltage to the voltage-sensitive fluid. A seismic-resistant bearing structure, characterized in that a power supply connection device for applying a voltage is connected to the electrodes, and a vibration detection sensor for activating the power supply connection device is connected to the power supply device when a certain level of vibration is detected.
JP10635887A 1987-05-01 1987-05-01 Seismic bearing structure Expired - Lifetime JP2529849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10635887A JP2529849B2 (en) 1987-05-01 1987-05-01 Seismic bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10635887A JP2529849B2 (en) 1987-05-01 1987-05-01 Seismic bearing structure

Publications (2)

Publication Number Publication Date
JPS63272806A JPS63272806A (en) 1988-11-10
JP2529849B2 true JP2529849B2 (en) 1996-09-04

Family

ID=14431529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10635887A Expired - Lifetime JP2529849B2 (en) 1987-05-01 1987-05-01 Seismic bearing structure

Country Status (1)

Country Link
JP (1) JP2529849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6377912B2 (en) * 2014-02-06 2018-08-22 株式会社竹中工務店 Building

Also Published As

Publication number Publication date
JPS63272806A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
US3782486A (en) Measuring transient loads
CN104343083B (en) A kind of bearing and pressure monitoring structure thereof
US2901235A (en) Platform supporting structure for weighing scales
JP3634288B2 (en) Function separation type bridge support device
Desideri et al. Some remarks on the stability of towers
JP2529849B2 (en) Seismic bearing structure
US4166344A (en) Earthquake guarding system
US4269011A (en) Earthquake guarding system
CA1126767A (en) Sealed load cell construction
Miskiewicz et al. Structural health monitoring system for suspension footbridge
JP6567207B1 (en) Sliding seismic isolation device and bridge
Kelly et al. Earthquake simulator testing of a combined sliding bearing and rubber bearing isolation system
JPS5941217Y2 (en) Seismic support structure
Guerrini et al. An innovative seismic isolation device based on multiple articulated quadrilateral mechanisms: analytical study and shake-table test
WO2001042593A2 (en) Seismic isolation bearing
JP2603426B2 (en) Seismic isolation structure
Burdet et al. Deflection monitoring of pre-stressed concrete bridges retrofitted by external post-tensioning
JP2585584Y2 (en) Bearing for bridge between buildings
Blakeley et al. Section 6 Mechanical energy dissipating devices
Jofin et al. Analysis framework for seismic assessment of single-span masonry arch bridges
Douglas Quick release pullback testing and analytical seismic analysis of a six span composite girder bridge
Robson et al. Effectiveness of seismic isolation of highly skewed P/C I-girder bridge
Burdet et al. Long-term deflection monitoring of prestressed concrete bridges retrofitted by external post-tensioning-examples from Switzerland
SU1275180A1 (en) Arrangement for mounting bed on foundation
JPH09177027A (en) Support for laminate of sliding plates for bridge