JP2529478B2 - Separation method of mixed solution - Google Patents

Separation method of mixed solution

Info

Publication number
JP2529478B2
JP2529478B2 JP3059863A JP5986391A JP2529478B2 JP 2529478 B2 JP2529478 B2 JP 2529478B2 JP 3059863 A JP3059863 A JP 3059863A JP 5986391 A JP5986391 A JP 5986391A JP 2529478 B2 JP2529478 B2 JP 2529478B2
Authority
JP
Japan
Prior art keywords
permeable membrane
mixed solution
surface tension
liquid
liquid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3059863A
Other languages
Japanese (ja)
Other versions
JPH04293524A (en
Inventor
忠 浦上
喜昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lignyte Co Ltd
Original Assignee
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lignyte Co Ltd filed Critical Lignyte Co Ltd
Priority to JP3059863A priority Critical patent/JP2529478B2/en
Priority to US07/856,797 priority patent/US5271846A/en
Priority to EP19920105130 priority patent/EP0506010B1/en
Priority to BR929201042A priority patent/BR9201042A/en
Priority to DE1992604511 priority patent/DE69204511T2/en
Publication of JPH04293524A publication Critical patent/JPH04293524A/en
Application granted granted Critical
Publication of JP2529478B2 publication Critical patent/JP2529478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気化浸透法とも称すべ
き透過膜を用いた混合溶液の分離方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a mixed solution using a permeable membrane, which is also called vaporization permeation method.

【0002】[0002]

【従来の技術】水とアルコールとの混合溶液など、2以
上の液成分が混合された混合溶液からアルコールなど特
定の液成分を透過膜を用いて分離する工法として、浸透
気化法と称される方法が従来から知られている。この浸
透気化法は、槽内を透過膜で上側の溶液室と下側の減圧
室とに仕切り、上側の溶液室内に混合溶液を導入して透
過膜に溶液を接触させた状態で減圧室内を減圧すること
によって、混合溶液中の特定の液成分を透過膜に優先的
に浸透拡散させると共に透過膜を透過したこの液成分を
透過膜の表面から減圧室に気化させるようにしたもので
あり、このようにして透過膜を浸透透過させた減圧室の
成分を捕集することによって混合溶液から特定の液成分
を分離採取することができるのである。しかし、この浸
透気化法においては混合溶液が透過膜に直接接触する状
態にあり、一般に高分子材料で形成される透過膜は混合
溶液によって膨潤されることが多い。そしてこのように
透過膜が膨潤されると透過膜の膜機能が低下し、透過膜
による混合溶液の分離性能は著しく損なわれることにな
る。
2. Description of the Related Art A method for separating a specific liquid component such as alcohol from a mixed solution in which two or more liquid components such as a mixed solution of water and alcohol are mixed by using a permeable membrane is called a pervaporation method. Methods are conventionally known. In this pervaporation method, the inside of the tank is partitioned by a permeable membrane into an upper solution chamber and a lower decompression chamber, and a mixed solution is introduced into the upper solution chamber, and the decompression chamber is brought into contact with the solution to the permeable membrane. By reducing the pressure, a specific liquid component in the mixed solution is preferentially permeated and diffused into the permeable membrane, and the liquid component that has passed through the permeable membrane is vaporized from the surface of the permeable membrane to the decompression chamber, In this way, by collecting the components in the decompression chamber that have been permeated through the permeable membrane, a specific liquid component can be separated and collected from the mixed solution. However, in this pervaporation method, the mixed solution is in direct contact with the permeable membrane, and generally the permeable membrane formed of a polymer material is often swollen by the mixed solution. When the permeable membrane is swollen in this way, the membrane function of the permeable membrane deteriorates, and the separation performance of the mixed solution by the permeable membrane is significantly impaired.

【0003】このために本発明者等によって気化浸透法
とも称すべき手法が開発されており、この気化浸透法を
用いた混合溶液の分離方法は特開昭63−162003
号公報等で既に提供されている。すなわちこの方法は図
1にその原理を示すように、減圧室1と混合溶液2が導
入される溶液室3とを混合溶液2に接触させないように
透過膜4で仕切り、減圧室1を減圧して溶液室3内で発
生する混合溶液2の蒸気を透過膜4に浸透透過させるよ
うにしたものである。この方法では透過膜4は混合溶液
2に接しないために透過膜4の膨潤による膜機能の低下
という問題がなく、透過膜4による混合溶液2の分離性
能を高く得ることができるのである。
[0003] For this purpose, the present inventors have developed a technique which can also be referred to as a vaporization and infiltration method. A method for separating a mixed solution using the vaporization and infiltration method is disclosed in Japanese Patent Application Laid-Open No. 63-162003.
It is already provided in Japanese Patent Publication No. That is, in this method, as shown in the principle of FIG. 1, the decompression chamber 1 and the solution chamber 3 into which the mixed solution 2 is introduced are partitioned by a permeable membrane 4 so as not to contact the mixed solution 2, and the decompression chamber 1 is decompressed. The vapor of the mixed solution 2 generated in the solution chamber 3 is permeated through the permeable membrane 4. In this method, since the permeable membrane 4 does not come into contact with the mixed solution 2, there is no problem that the membrane function is deteriorated due to the swelling of the permeable membrane 4, and the separation performance of the mixed solution 2 by the permeable membrane 4 can be improved.

【0004】[0004]

【発明が解決しようとする課題】上記のように気化浸透
法においては浸透気化法よりも高い分離性能で混合溶液
2を分離することができるのであるが、この方法は浸透
気化法と同様に液成分を透過膜4内に拡散させて浸透透
過させることによって分離をおこなうようにしているた
めに、液成分が透過膜4を透過する速度が遅く、十分な
透過速度で透過膜4に液を透過させて液分離をおこなう
ことが困難であり、液分離の生産性の上で問題があって
実用が難しいものであった。
As described above, in the vaporization permeation method, the mixed solution 2 can be separated with higher separation performance than the permeation vaporization method. Since the components are separated by diffusing into the permeable membrane 4 and permeating and permeating, the liquid component permeates the permeable membrane 4 at a slow rate, and the liquid permeates into the permeable membrane 4 at a sufficient permeation rate. It was difficult to perform liquid separation by doing so, and there was a problem in productivity of liquid separation, which was difficult to put into practical use.

【0005】本発明は上記の点に鑑みてなされたもので
あり、気化浸透法による工法で分離性能高く液分離をす
ることができると共に、分離液の透過速度を実用レベル
まで高めることができるようにすることを目的とするも
のである。
The present invention has been made in view of the above points, and it is possible to perform liquid separation with a high separation performance by the method of vaporization and permeation and to increase the permeation rate of the separated liquid to a practical level. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明に係る混合溶液の
分離方法は、複数の液成分が混合された混合溶液2が導
入される溶液室3と減圧室1との間に混合溶液2が接触
されない状態で透過膜4を設け、減圧室1を減圧して溶
液室3内で発生する混合溶液2の蒸気を溶液室3側から
減圧室1側へと透過膜4を透過させることによって、混
合溶液2中の特定の液成分を分離するにあたって、透過
膜4として、混合溶液2中の成分のうち他の液成分より
も分離する特定の液成分の表面張力に近い臨界表面張力
を有すると共に、分離する特定の液成分の表面張力より
大きく且つ他の液成分の表面張力より小さい臨界表面張
力を有する多孔質膜を用いることを特徴とするものであ
る。
In the method for separating a mixed solution according to the present invention, a mixed solution 2 is introduced between a decompression chamber 1 and a solution chamber 3 into which a mixed solution 2 in which a plurality of liquid components are mixed is introduced. By providing the permeable membrane 4 in a state where the permeable membrane 4 is not contacted, decompressing the decompression chamber 1 to allow the vapor of the mixed solution 2 generated in the solution chamber 3 to permeate the permeable membrane 4 from the solution chamber 3 side to the decompression chamber 1 side, When separating a specific liquid component in the mixed solution 2, the permeable membrane 4 is used as the permeable membrane 4 from other liquid components among the components in the mixed solution 2.
Critical surface tension close to the surface tension of a specific liquid component that also separates
And has a surface tension of a specific liquid component that separates
Critical surface tension that is large and smaller than the surface tension of other liquid components
It is characterized by using a porous film having strength .

【0007】以下本発明を詳細に説明する。図1は既述
のように気化浸透法による液分離の原理装置の一例を示
すものであって、透過膜4で分離槽5を上側の減圧室1
と下側の溶液室3とに仕切り、溶液室3内に導入される
混合溶液2の液面と透過膜4の下面との間に空間を形成
させて透過膜4には混合溶液2が接触しないようにして
あり、減圧室1には真空ポンプなどを接続して減圧する
ようにしてある。また混合溶液2としては、例えば醗酵
アルコールからアルコールを濃縮分離する場合における
水とアルコールとの混合溶液など、2以上の液成分が混
合されたものが用いられる。
The present invention will be described in detail below. FIG. 1 shows an example of the principle device of liquid separation by the vaporization and permeation method as described above, in which the separation tank 5 is connected to the upper decompression chamber 1 by the permeable membrane 4.
And the lower solution chamber 3, and a space is formed between the liquid surface of the mixed solution 2 introduced into the solution chamber 3 and the lower surface of the permeable membrane 4 so that the mixed solution 2 contacts the permeable membrane 4. A vacuum pump or the like is connected to the decompression chamber 1 to reduce the pressure. Further, as the mixed solution 2, for example, a mixed solution of two or more liquid components such as a mixed solution of water and alcohol in the case of concentrating and separating alcohol from fermentation alcohol is used.

【0008】そして本発明において上記透過膜4として
は多数の連通する細孔を有する多孔質膜が用いられる。
この多孔質膜は細孔の大きさが、その平均直径が1×1
-3μ〜5μの範囲のものを用いるのが好ましい。細孔
の大きさがこれよりも大きいと、透過膜4によって液分
離の作用を受けないで細孔を通過してしまう成分が多く
なって、液の分離性能を高く得ることができなくなるも
のであり、また逆に細孔の大きさがこれよりも小さい
と、液成分は細孔を容易に通過することができなくなっ
て、分離液の透過速度を実用レベルにまで高めることが
できなくなるものである。ここで本出願において細孔の
直径は、細孔の面積と同じ面積の円を想定したときのこ
の円の直径として定義されるものであり、平均直径は各
細孔の直径の平均値として定義されるものである。また
この多孔質膜の表面積に占める細孔の面積の割合、すな
わち空孔率は5%以上のものを用いるのが好ましい。空
孔率がこれより低いと、液成分の透過量が少なくなって
分離液の透過速度を実用レベルにまで高めることが難し
くなる。
In the present invention, the permeable membrane 4 is a porous membrane having a large number of communicating pores.
The size of the pores of this porous membrane is 1 × 1
It is preferable to use one having a range of 0 −3 μ to 5 μ. If the size of the pores is larger than this, a large amount of components pass through the pores without being affected by the liquid separation by the permeable membrane 4, and it becomes impossible to obtain a high liquid separation performance. If the size of the pores is smaller than this, on the contrary, the liquid component cannot easily pass through the pores, and the permeation rate of the separated liquid cannot be increased to a practical level. is there. Here, in the present application, the diameter of the pore is defined as the diameter of this circle assuming a circle having the same area as the area of the pore, and the average diameter is defined as the average value of the diameter of each pore. Is what is done. Further, it is preferable to use a porous membrane having a ratio of pore area to the surface area, that is, a porosity of 5% or more. When the porosity is lower than this, the amount of permeation of the liquid component decreases, and it becomes difficult to increase the permeation rate of the separated liquid to a practical level.

【0009】そしてこの多孔質の透過膜4として本発明
では、その臨界表面張力が混合溶液2中の各液成分のう
ち透過膜4を透過させて分離する液成分の表面張力に近
いものを用いるものである。すなわち、混合溶液がA,
B,C…の各液成分が混合したものである場合、Aの液
成分を透過膜4を透過させて他の液成分B,C…から分
離するときには、液成分B,C…の表面張力よりもAの
液成分の表面張力に近い臨界表面張力を有する透過膜4
を用いるのである。この場合、透過膜4の臨界表面張力
は、透過膜4を透過させて分離する液成分の表面張力よ
りも大きく且つ混合溶液2中の他の液成分の表面張力よ
りも小さいもの、すなわち透過膜4を透過させる液成分
Aの表面張力より大きく、且つ混合溶液2中の他のB,
C…の液成分の表面張力より小さいものが好ましい。例
えば各種液体の表面張力は「表1」に示す通りであり、
水の表面張力よりも「表1」中の他の液体の表面張力に
近い臨界表面張力を有する透過膜4を用いれば、水と
「表1」中の他の液体との混合溶液2から「表1」中の
他の液体を分離することができるものであり、さらに水
の表面張力と「表1」中の他の液体の表面張力との間の
臨界表面張力を有する透過膜4を用いれば、水と「表
1」中の他の液体との混合溶液2から「表1」中の他の
液体を一層効率良く分離することができるのである。こ
こで、固体の臨界表面張力は次のように定義さている。
すなわち、固体面上で液体炭化水素その他の有機液体化
合物の同族列が示す接触角をθ、その液体の表面張力を
γとすると、cosθ〜γは同族体の種類に関せず一定
の直線となることが多く、この際のθ=0に相当するγ
値が固体の臨界表面張力として定義されるものである。
In the present invention, as the porous permeable membrane 4, one having a critical surface tension close to the surface tension of the liquid component of each liquid component in the mixed solution 2 which is separated by permeating the permeable membrane 4 is used. It is a thing. That is, the mixed solution is A,
When the liquid components B, C ... Are mixed and the liquid component A is permeated through the permeable membrane 4 and separated from the other liquid components B, C ..., the surface tension of the liquid components B, C. Permeable membrane 4 having a critical surface tension closer to the surface tension of the liquid component of A than
Is used. In this case, the critical surface tension of the permeable membrane 4 is larger than the surface tension of the liquid component that permeates and separates the permeable membrane 4 and is smaller than the surface tension of other liquid components in the mixed solution 2, that is, the permeable membrane. 4, which is larger than the surface tension of the liquid component A which allows the other component B to pass through,
Those having a surface tension smaller than that of the liquid component of C ... are preferable. For example, the surface tensions of various liquids are as shown in "Table 1",
If the permeable membrane 4 having a critical surface tension closer to the surface tension of other liquids in "Table 1" than the surface tension of water is used, the mixed solution 2 of water and other liquids in "Table 1" will be A permeable membrane 4 is used which is capable of separating the other liquids in Table 1 and which has a critical surface tension between the surface tension of water and the surface tension of the other liquids in Table 1. For example, the other liquid in "Table 1" can be more efficiently separated from the mixed solution 2 of water and the other liquid in "Table 1". Here, the critical surface tension of a solid is defined as follows.
That is, assuming that the contact angle of a homologous series of liquid hydrocarbons and other organic liquid compounds on the solid surface is θ and the surface tension of the liquid is γ, cos θ to γ are constant straight lines regardless of the type of homologue. In many cases, γ corresponding to θ = 0 in this case
The value is defined as the critical surface tension of the solid.

【0010】[0010]

【表1】 [Table 1]

【0011】このような多孔質の透過膜4としては特定
のものに限定されるものではないが、ポリプロピレンの
多孔質膜、ポリテトラフルオロエチレンの多孔質膜、ポ
リカーボネートの多孔質膜などを用いることができる。
ポリプロピレンの多孔質膜としてはヘキスト社製の「セ
ルガード」などが、ポリテトラフルオロエチレンの多孔
質膜としては住友電工社製の「フロロポア」などが、ポ
リカーボネートの多孔質膜としてはニュクリポア社製の
「ニュクリポア」などがそれぞれ入手して使用可能であ
る。
The porous permeable membrane 4 is not limited to a particular one, but a polypropylene porous membrane, a polytetrafluoroethylene porous membrane, a polycarbonate porous membrane, or the like is used. You can
As a porous film of polypropylene, "Celgard" manufactured by Hoechst, etc., as a porous film of polytetrafluoroethylene, "Fluoropore" manufactured by Sumitomo Electric Co., Ltd., etc., as a porous film of polycarbonate manufactured by Nuclepore. Nikuripoi "etc. can be obtained and used respectively.

【0012】しかして図1の装置において、減圧室1内
を減圧すると透過膜4の孔を通して溶液室3内も減圧状
態になり、溶液室3内において混合溶液2から各液成分
の蒸気が発生し、各液成分の蒸気が多孔質の透過膜4に
至る。ここで、混合溶液2の各成分のうち透過膜4の臨
界表面張力に表面張力が近い液成分は透過膜4に対して
濡れ易くて親和性が高く、表面張力が近くない液成分は
逆に透過膜4に対して濡れ難くて親和性がない。さらに
特に透過膜4の臨界表面張力よりも表面張力が小さい液
成分は透過膜4に対して濡れ易くて親和性があり、逆に
透過膜4の臨界表面張力よりも表面張力が大きい液成分
は透過膜4に対して濡れ難くて親和性がない。従って、
多孔質の透過膜4に至った各液成分の蒸気のうち、透過
膜4の臨界表面張力に表面張力が近く、また透過膜4の
臨界表面張力よりも表面張力が小さい液成分は透過膜4
の表面に親和して細孔を容易に通過し、透過膜4を溶液
室3側から減圧室1側へと容易に透過するが、透過膜4
の臨界表面張力に表面張力が近くなく、また透過膜4の
臨界表面張力よりも表面張力が大きい液成分は透過膜4
の表面にはじかれて細孔を通過し難く、透過膜4を溶液
室3側から減圧室1側へと容易に透過することができな
い。このようにして、混合溶液2中の各液成分のうち透
過膜4の臨界表面張力に表面張力が近く、また透過膜4
の臨界表面張力よりも表面張力が小さい液成分を優先的
に透過膜4を透過させて、混合溶液2から所定の液成分
を分離してこの液成分の濃度が高い液を得ることができ
るものである。このとき、必要とする液成分を透過膜4
を透過させて液分離する場合には減圧室1に至った液を
回収すればよく、逆に不要な液成分を透過膜4を透過さ
せて液分離することによって必要とする液を溶液室3内
に残す場合にはこの液を溶液室3内から回収すればよ
い。
In the apparatus of FIG. 1, however, when the pressure inside the decompression chamber 1 is reduced, the inside of the solution chamber 3 is also depressurized through the holes of the permeable membrane 4, and the vapor of each liquid component is generated from the mixed solution 2 in the solution chamber 3. Then, vapor of each liquid component reaches the porous permeable membrane 4. Here, of the components of the mixed solution 2, a liquid component having a surface tension close to the critical surface tension of the permeable membrane 4 easily wets the permeable membrane 4 and has a high affinity. It is difficult to wet the permeable membrane 4 and has no affinity. Further, in particular, a liquid component having a surface tension smaller than the critical surface tension of the permeable membrane 4 is easily wetted and has an affinity for the permeable membrane 4, and conversely, a liquid component having a surface tension larger than the critical surface tension of the permeable membrane 4 is It is difficult to wet the permeable membrane 4 and has no affinity. Therefore,
Of the vapor of each liquid component reaching the porous permeable membrane 4, the liquid component having a surface tension close to the critical surface tension of the permeable membrane 4 and a surface tension smaller than the critical surface tension of the permeable membrane 4 is the permeable membrane 4.
Of the permeable membrane 4 easily passing through the pores and easily passing through the permeable membrane 4 from the solution chamber 3 side to the decompression chamber 1 side.
The liquid component whose surface tension is not close to the critical surface tension of the permeable membrane 4 and whose surface tension is larger than the critical surface tension of the permeable membrane 4 is
It is difficult to pass through the fine pores due to being repelled by the surface of the membrane, and the permeable membrane 4 cannot easily permeate from the solution chamber 3 side to the decompression chamber 1 side. In this way, the surface tension of each liquid component in the mixed solution 2 is close to the critical surface tension of the permeable membrane 4, and the permeable membrane 4
A liquid component having a surface tension lower than the critical surface tension is preferentially permeated through the permeable membrane 4 to separate a predetermined liquid component from the mixed solution 2 to obtain a liquid having a high concentration of this liquid component. Is. At this time, the necessary liquid component is added to the permeable membrane 4
When liquid is separated by permeating the liquid, it is sufficient to collect the liquid that has reached the decompression chamber 1. On the contrary, the liquid that is needed is obtained by permeating the unnecessary liquid component through the permeable membrane 4 and separating the liquid. When the solution is left inside, the solution may be recovered from the solution chamber 3.

【0013】そしてこのように気化浸透法の工法におい
て多孔質の透過膜4を用いて液分離をおこなうにあたっ
て、分離される液成分は透過膜4の細孔を通過して溶液
室3側から減圧室1側に透過される。従って既述の特開
昭63−162003号公報等において気化浸透法で用
いる非多孔質の透過膜のように液成分を透過膜中に拡散
させて浸透させることによって透過させる場合に比べ
て、分離される液成分が透過膜4を透過する速度は極め
て速くなり、実用的なレベルの透過速度を得ることが可
能になるのである。
When liquid separation is performed using the porous permeable membrane 4 in the vaporization and permeation method as described above, the separated liquid component passes through the pores of the permeable membrane 4 and is decompressed from the solution chamber 3 side. It is transmitted to the chamber 1 side. Therefore, as compared with the case of permeating a liquid component by diffusing and permeating into the permeable membrane as in the non-porous permeable membrane used in the vaporization permeation method described in JP-A-63-162003 and the like, separation The speed of the liquid component to be transmitted through the permeable membrane 4 becomes extremely high, and it becomes possible to obtain a practical level of the transmission speed.

【0014】図2は気化浸透法による液分離の原理装置
の改良された一例を示すものであり、このものでは溶液
室3内の混合溶液2を加熱すると共に透過膜4を冷却す
るようにしてある。混合溶液2の加熱は溶液室3を加熱
浴7に浸漬しておこなう他、溶液室3の外周に加熱ジャ
ケットを取り付けたり、溶液室3内にヒータを取り付け
たり、さらには分離槽5の全体を加熱したり、任意の方
法でおこなうことができる。この加熱は、少なくとも分
離槽5が置かれている雰囲気温度よりも高い温度に混合
溶液2を昇温させるようにすればよく、加熱の温度は何
等規制されない。透過膜4の冷却は、例えば透過膜4の
周囲にジャケット8を取り付けてジャケット8に冷媒を
通すことによっておこなうことができる。この冷却は透
過膜4の温度が溶液室3の混合溶液2の液温より低く保
つことができるものであればよい。また、この図2の装
置で液分離をおこなう場合には、混合溶液2として沸点
の異なる2以上の液成分が混合されたもの、例えば水と
エタノール(沸点78. 3℃) との混合溶液2や水とメ
タノール( 沸点64. 1℃) との混合溶液2などを使用
するものであり、さらに多孔質の透過膜4として混合溶
液2中の沸点の低い液成分と親和性が高くこの沸点の低
い液成分を選択的に優先して透過させるもの、すなわち
混合溶液2中の沸点の低い液成分の表面張力に臨界表面
張力が近く、また沸点の低い液成分の表面張力よりも臨
界表面張力が大きく、且つ混合溶液2中の他の沸点の高
い液成分の表面張力に臨界表面張力が近くなく、またこ
の沸点の高い液成分の表面張力よりも臨界表面張力が小
さい透過膜4を用いるものである。
FIG. 2 shows an improved example of the principle of liquid separation by the vaporization and permeation method, in which the mixed solution 2 in the solution chamber 3 is heated and the permeable membrane 4 is cooled. is there. The heating of the mixed solution 2 is performed by immersing the solution chamber 3 in the heating bath 7, a heating jacket is attached to the outer periphery of the solution chamber 3, a heater is attached in the solution chamber 3, and the entire separation tank 5 is It can be heated or performed by any method. This heating may be performed by raising the temperature of the mixed solution 2 to a temperature higher than at least the ambient temperature in which the separation tank 5 is placed, and the heating temperature is not regulated at all. The permeable membrane 4 can be cooled by, for example, attaching a jacket 8 around the permeable membrane 4 and passing a coolant through the jacket 8. This cooling may be performed as long as the temperature of the permeable membrane 4 can be kept lower than the liquid temperature of the mixed solution 2 in the solution chamber 3. When liquid separation is performed with the apparatus of FIG. 2, a mixed solution 2 in which two or more liquid components having different boiling points are mixed, for example, a mixed solution 2 of water and ethanol (boiling point 78.3 ° C.) Or a mixed solution 2 of water and methanol (boiling point 64.1 ° C.) is used, and the porous permeable membrane 4 has a high affinity with a liquid component having a low boiling point in the mixed solution 2 A material that selectively preferentially permeates a low liquid component, that is, the critical surface tension is close to the surface tension of the liquid component having a low boiling point in the mixed solution 2, and the critical surface tension is higher than that of the liquid component having a low boiling point. The permeable membrane 4 is large and has a critical surface tension not close to the surface tension of other liquid components having a high boiling point in the mixed solution 2 and a critical surface tension smaller than the surface tension of the liquid components having a high boiling point. is there.

【0015】このものにあって、減圧室1を減圧すると
共に溶液室3内の混合溶液2を加熱すると、混合溶液2
の各成分のうち沸点の低い液成分が蒸発され易いため
に、透過膜4に達する蒸気は沸点の低い液成分の濃度が
高くなっており、そしてこの沸点の低い液成分が選択的
に透過膜4を優先して透過されるために、透過膜4を透
過させて分離する液成分の濃度を高めることができ、混
合溶液2の分離性能を高めることができるのである。し
かもこのとき、上記のように透過膜4を冷却することに
よって、混合溶液2の分離性能を一層高めることができ
る。その理由は明らかではないが、溶液室3において混
合溶液2から蒸発した蒸気がこの透過膜4に至ると、透
過膜4による冷却作用で蒸気中の沸点の高い液成分は沸
点の低い液成分よりも凝縮され易く、従って沸点の高い
液成分は会合され易くなって分子の集合形態が大きくな
り、この結果、沸点の高い液成分は透過膜4の細孔をよ
り透過し難くなると共に、これに伴って沸点の低い液成
分が透過膜4の細孔をより優先して透過されることにな
るためであると予想される。このように混合溶液2を加
熱すると共に透過膜4を冷却することによって、透過膜
4を透過させて分離する液成分の濃度を高めることがで
きることになるのである。
In this case, when the decompression chamber 1 is decompressed and the mixed solution 2 in the solution chamber 3 is heated, the mixed solution 2
The liquid component having a low boiling point has a high concentration in the vapor reaching the permeable membrane 4, and the liquid component having a low boiling point is selectively evaporated in the vapor reaching the permeable membrane 4. 4 is preferentially permeated, so that the concentration of the liquid component that permeates the permeable membrane 4 to be separated can be increased, and the separation performance of the mixed solution 2 can be improved. Moreover, at this time, the separation performance of the mixed solution 2 can be further enhanced by cooling the permeable membrane 4 as described above. Although the reason is not clear, when the vapor evaporated from the mixed solution 2 in the solution chamber 3 reaches the permeable membrane 4, the liquid component having a high boiling point in the vapor is cooled more than the liquid component having a lower boiling point by the cooling action of the permeable membrane 4. Are also easily condensed, and therefore the liquid components having a high boiling point are easily associated with each other to increase the aggregated form of molecules. As a result, the liquid components having a high boiling point are more difficult to permeate through the pores of the permeable membrane 4, and Accordingly, it is expected that the liquid component having a low boiling point is more preferentially permeated through the pores of the permeable membrane 4. By thus heating the mixed solution 2 and cooling the permeable membrane 4, it is possible to increase the concentration of the liquid component that permeates the permeable membrane 4 and separates.

【0016】[0016]

【実施例】次に、本発明を実施例によって例証する。実施例 1 多孔質の透過膜4としてヘキスト社製「セルガード#2
400」を用いた。この「セルガード#2400」は厚
みが25μ、臨界表面張力が35dyne/cmの多孔
質ポリプロピレンフィルムであり、細孔は長径×短径=
0.125×0.05μの平均の大きさの長孔(平均直
径0.079μ)として形成されており、空孔率は38
%である。そして混合溶液2として10重量%のエタノ
ールを含む水−エタノール溶液を用い、図2の装置で、
溶液室3内の混合溶液2を40℃の加熱浴7で加熱する
と共に透過膜4を0℃のジャケット8で冷却し、減圧室
1を10-1Torrの条件で減圧することによって、液
の分離操作をおこなった。エタノールは表面張力が2
2.6dyne/cm、沸点が78.3℃であるのに対
して、水は表面張力が72.8dyne/cm、沸点が
100℃であるために、エタノールが透過膜4を優先的
に透過し、減圧室1においてエタノールの濃度が高めら
れた液を捕集して回収した。
The invention will now be illustrated by the examples. Example 1 As the porous permeable membrane 4, “Celguard # 2” manufactured by Hoechst Co., Ltd.
400 ”was used. This “Celguard # 2400” is a porous polypropylene film having a thickness of 25 μ and a critical surface tension of 35 dyne / cm, and the pores have a major axis × minor axis =
It is formed as a long hole having an average size of 0.125 × 0.05μ (average diameter 0.079μ) and has a porosity of 38.
%. Then, using a water-ethanol solution containing 10% by weight of ethanol as the mixed solution 2, the apparatus of FIG.
The mixed solution 2 in the solution chamber 3 is heated in a heating bath 7 at 40 ° C., the permeable membrane 4 is cooled by a jacket 8 at 0 ° C., and the decompression chamber 1 is decompressed under the condition of 10 −1 Torr to remove the liquid. A separation operation was performed. The surface tension of ethanol is 2
While water has a surface tension of 72.8 dyne / cm and a boiling point of 100 ° C., ethanol preferentially permeates the permeable membrane 4 while 2.6 dyne / cm and a boiling point of 78.3 ° C. Then, in the decompression chamber 1, a liquid having an increased concentration of ethanol was collected and collected.

【0017】実施例2 多孔質の透過膜4として住友電工社製の「フロロポアF
P−010」を用いた。この「フロロポアFP−01
0」は厚みが60μ、臨界表面張力が28.5dyne
/cmの多孔質ポリテトラフルオロエチレンフィルムで
あり、細孔は平均直径が0.10μの丸孔として形成さ
れており、空孔率は70%である。あとは実施例1と同
様にして液分離操作をおこない、減圧室1においてエタ
ノールの濃度が高められた液を捕集して回収した。
Example 2 "Fluorophore F" manufactured by Sumitomo Electric Industries, Ltd. was used as the porous permeable membrane 4.
P-010 ”was used. This "Fluorophore FP-01
0 ”has a thickness of 60 μ and a critical surface tension of 28.5 dyne.
/ Cm porous polytetrafluoroethylene film, the pores are formed as round pores having an average diameter of 0.10 μ, and the porosity is 70%. After that, the liquid separation operation was performed in the same manner as in Example 1 to collect and collect the liquid in which the concentration of ethanol was increased in the decompression chamber 1.

【0018】比較例 透過膜4として非多孔質のポリジ
メチルシロキサンフィルム(東レダウコーニング社製
「SE−9520」)を用いた。あとは実施例1と同様
にして液分離操作をおこない、減圧室1においてエタノ
ールの濃度が高められた液を捕集して回収した。実施例
1、2及び比較例において減圧室1から回収した液のエ
タノールの濃度を透過液濃度として測定すると共にこの
液が透過膜4を透過する速度を透過速度として測定し、
さらにエタノールの分離係数αを測定した。この分離係
数αは次式で定義されるものである。 α=(Y1 /Y2 )/(X1 /X2 ) 式中X1 とX2 は溶液室3に導入される混合溶液2のエ
タノールの重量分率と水の重量分率を、Y1 とY2 は減
圧室1で捕集された溶液のエタノールの重量分率と水の
重量分率をそれぞれ示すものであり、従ってαが1以上
の数値であると、透過膜4を透過する液はエタノールの
分量が水の分量よりも大きいということになり、αの数
値が大きい程エタノールが優先的に透過膜4を透過する
ということを意味する。これらの測定結果を「表2」に
示す。
Comparative Example As the permeable membrane 4, a non-porous polydimethylsiloxane film (“SE-9520” manufactured by Toray Dow Corning) was used. After that, the liquid separation operation was performed in the same manner as in Example 1 to collect and collect the liquid in which the concentration of ethanol was increased in the decompression chamber 1. In Examples 1 and 2 and Comparative Example, the concentration of ethanol in the liquid recovered from the decompression chamber 1 was measured as the permeate concentration, and the rate at which this liquid permeated through the permeable membrane 4 was measured as the permeation rate.
Further, the separation coefficient α of ethanol was measured. The separation coefficient α is defined by the following equation. α = (Y 1 / Y 2 ) / (X 1 / X 2 ) where X 1 and X 2 are the weight fraction of ethanol and the weight fraction of water of the mixed solution 2 introduced into the solution chamber 3, respectively. 1 and Y 2 represent the weight fraction of ethanol and the weight fraction of water of the solution collected in the decompression chamber 1, respectively. Therefore, when α is a numerical value of 1 or more, it permeates the permeable membrane 4. The liquid means that the amount of ethanol is larger than the amount of water, and the larger the value of α, the more preferentially the ethanol permeates the permeable membrane 4. The results of these measurements are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】「表2」にみられるように、非多孔質の透
過膜を用いた比較例のものでは、透過液濃度や分離係数
は高いレベルであるが、透過速度は低いために実用化は
困難である。これに対して多孔質の透過膜を用いた実施
例1及び実施例2のものでは透過液濃度や分離係数とし
て所定のレベルを得ることができると共に、透過速度が
極めて速くなっているために、実用化が可能である。
As can be seen from "Table 2", in the case of the comparative example using the non-porous permeable membrane, the permeated liquid concentration and the separation coefficient are at a high level, but the permeation rate is low, so that it is not practically used. Have difficulty. On the other hand, in Examples 1 and 2 using the porous permeable membrane, a predetermined level can be obtained as the concentration of the permeate and the separation coefficient, and the permeation rate is extremely high, Practical application is possible.

【0021】[0021]

【発明の効果】上記のように本発明は、分離される液成
分は多孔質の透過膜の細孔を通過して減圧室側から溶液
室側に透過されるようにしたので、非多孔質の透過膜の
ように液成分を透過膜中に拡散させて浸透させることに
よって透過させる場合に比べて、分離される液成分が透
過膜を透過する速度が極めて速くなり、実用的なレベル
の透過速度を得ることができるものである。しかもこの
透過膜として、混合溶液中の成分のうち他の液成分より
も分離する特定の液成分の表面張力に近い臨界表面張力
を有すると共に、分離する特定の液成分の表面張力より
大きく且つ他の液成分の表面張力より小さい臨界表面張
力を有する多孔質膜を用いるようにしているので、透過
膜に至った混合溶液の各液成分の蒸気のうち、透過膜の
臨界表面張力に表面張力が近く、また透過膜の臨界表面
張力よりも表面張力が小さい液成分は透過膜の表面に親
和して細孔を容易に透過するが、透過膜の臨界表面張力
に表面張力が近くなく、また透過膜の臨界表面張力より
も表面張力が大きい液成分は透過膜の表面にはじかれて
細孔を透過し難いものであって、混合溶液中の各液成分
のうち透過膜の臨界表面張力に表面張力が近く、また透
過膜の臨界表面張力よりも表面張力が小さい液成分を優
先的に透過膜を透過させて、混合溶液から所定の液成分
を効率良く分離することができるものであり、実用的な
レベルの透過速度を得ながら、分離性能を実用レベルに
高めることができるものである。
As described above, according to the present invention, the liquid phase separation is performed.
The solution passes through the pores of the porous permeable membrane from the decompression chamber side to the solution
Since it is made to permeate to the chamber side, a non-porous permeable membrane
To diffuse and permeate liquid components into the permeable membrane.
Therefore, compared with the case of permeation, the liquid component to be separated is transparent.
The permeation rate through the membrane is extremely high, which is a practical level.
It is possible to obtain the transmission rate of Moreover, this permeable membrane has a critical surface tension closer to the surface tension of the specific liquid component to be separated than the other liquid components among the components in the mixed solution, and the surface tension of the specific liquid component to be separated. Since a porous membrane having a larger critical surface tension than the surface tension of other liquid components is used, the critical surface tension of the permeable membrane in the vapor of each liquid component of the mixed solution reaching the permeable membrane is used. The surface tension is close to that of the permeable membrane, and the liquid component whose surface tension is smaller than the critical surface tension of the permeable membrane has an affinity for the surface of the permeable membrane and easily permeates through the pores, but the surface tension is close to the critical surface tension of the permeable membrane. Liquid components with a surface tension greater than the critical surface tension of the permeable membrane are repelled by the surface of the permeable membrane and are difficult to permeate through the pores. Surface tension is close to that of surface tension Of the surface tension is less liquid component is transmitted through the preferentially permeable membrane than the critical surface tension, which a predetermined liquid component from a mixed solution can be efficiently separated, practical
Separation performance at a practical level while achieving a level of permeation speed
It can be raised.

【図面の簡単な説明】[Brief description of drawings]

【図1】気化浸透法による液分離の原理装置を示す断面
図である。
FIG. 1 is a sectional view showing a principle device of liquid separation by a vaporization and permeation method.

【図2】気化浸透法による液分離の原理装置の改良例を
示す断面図である。
FIG. 2 is a cross-sectional view showing an improved example of the principle device for liquid separation by the vaporization and permeation method.

【符号の説明】[Explanation of symbols]

1 減圧室 2 混合溶液 3 溶液室 4 透過膜 1 decompression chamber 2 mixed solution 3 solution chamber 4 permeable membrane

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の液成分が混合された混合溶液が導
入される溶液室と減圧室との間に混合溶液に接触されな
い状態で透過膜を設け、減圧室を減圧して溶液室内で発
生する混合溶液の蒸気を溶液室側から減圧室側へと透過
膜を透過させることによって、混合溶液中から特定の液
成分を分離するにあたって、透過膜として、混合溶液中
の成分のうち他の液成分よりも分離する特定の液成分の
表面張力に近い臨界表面張力を有すると共に、分離する
特定の液成分の表面張力より大きく且つ他の液成分の表
面張力より小さい臨界表面張力を有する多孔質膜を用い
ることを特徴とする混合溶液の分離方法。
1. A permeable membrane is provided between a decompression chamber and a solution chamber into which a mixed solution in which a plurality of liquid components are mixed is introduced, and the decompression chamber is decompressed to generate a permeable membrane inside the solution chamber. When a specific liquid component is separated from the mixed solution by allowing the vapor of the mixed solution to pass through the permeable membrane from the solution chamber side to the decompression chamber side, it is used as a permeable membrane in the mixed solution.
Of certain liquid components that are separated from other liquid components
It has a critical surface tension close to the surface tension and separates
Table of other liquid components that are higher than the surface tension of a specific liquid component
A method for separating a mixed solution, which comprises using a porous membrane having a critical surface tension smaller than the surface tension .
【請求項2】 透過膜を構成する多孔質膜は孔の平均直
径が1×10 -3 〜5μであり、空孔率が5%以上である
ことを特徴とする請求項1に記載の混合溶液の分離方
法。
2. The porous membrane constituting the permeable membrane has an average straightness of pores.
The diameter is 1 × 10 −3 to 5 μ, and the porosity is 5% or more.
The method for separating a mixed solution according to claim 1 , wherein:
【請求項3】 分離する液成分の沸点が他の液成分の沸
点よりも低い混合溶液を用い、溶液室内の混合溶液を加
熱すると共に透過膜をこの加熱温度よりも低い温度に冷
却することを特徴とする請求項1又は2に記載の混合溶
液の分離方法。
3. The boiling point of the liquid component to be separated is the boiling point of the other liquid component.
Use a mixed solution lower than the point and add the mixed solution in the solution chamber.
Heat and cool the permeable membrane to a temperature below this heating temperature.
The method for separating a mixed solution according to claim 1 or 2 , wherein the method is separated.
JP3059863A 1986-12-25 1991-03-25 Separation method of mixed solution Expired - Lifetime JP2529478B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3059863A JP2529478B2 (en) 1991-03-25 1991-03-25 Separation method of mixed solution
US07/856,797 US5271846A (en) 1986-12-25 1992-03-24 Method for separating a liquid component from a solution containing two or more liquid components
EP19920105130 EP0506010B1 (en) 1991-03-25 1992-03-25 Method for separating a liquid component from a solution containing two or more liquid components
BR929201042A BR9201042A (en) 1991-03-25 1992-03-25 PROCESS TO SEPARATE A SPECIFIC LIQUID COMPONENT FROM A SOLUTION CONTAINING TWO OR MORE LIQUID COMPONENTS
DE1992604511 DE69204511T2 (en) 1991-03-25 1992-03-25 Process for separating a liquid component from a solution containing two or more liquid components.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059863A JP2529478B2 (en) 1991-03-25 1991-03-25 Separation method of mixed solution

Publications (2)

Publication Number Publication Date
JPH04293524A JPH04293524A (en) 1992-10-19
JP2529478B2 true JP2529478B2 (en) 1996-08-28

Family

ID=13125440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059863A Expired - Lifetime JP2529478B2 (en) 1986-12-25 1991-03-25 Separation method of mixed solution

Country Status (1)

Country Link
JP (1) JP2529478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662878A (en) * 1996-04-25 1997-09-02 University Of Chicago Process for the production of hydrogen peroxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126521A (en) * 1986-11-14 1988-05-30 Mitsubishi Heavy Ind Ltd Dehydrating method for triethylene glycol
JPH0634900B2 (en) * 1988-06-15 1994-05-11 リグナイト株式会社 Separation method of mixed solution

Also Published As

Publication number Publication date
JPH04293524A (en) 1992-10-19

Similar Documents

Publication Publication Date Title
Prasad et al. Further studies on solvent extraction with immobilized interfaces in a microporous hydrophobic membrane
US3335545A (en) Gas separation by differential permeation
EP0273267B1 (en) Method of separating a particular component from its liquid solution
Jian et al. Separation of dilute organic/water mixtures with asymmetric poly (vinylidene fluoride) membranes
Prasad et al. Microporous membrane solvent extraction
US4919860A (en) Manufacture of porous carbon membranes
US20120061319A1 (en) Thin film pervaporation membranes
JP3999423B2 (en) Carbon dioxide separation and dehumidification method and apparatus using liquid membrane
Liu et al. Nanofiltration membranes prepared by direct microemulsion copolymerization using poly (ethylene oxide) macromonomer as a polymerizable surfactant
WO2018221684A1 (en) Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
JP2529478B2 (en) Separation method of mixed solution
JP2774843B2 (en) Spiral type degassing module
JPH0634900B2 (en) Separation method of mixed solution
Nguyen et al. Poly (dimethylsiloxane) crosslinked in different conditions. Part II.† Pervaporation of water–ethyl acetate mixtures
JP2005501168A (en) Oil dehydrator
JPH0761412B2 (en) Ultrapure water production system
Thai et al. Preparation and characterization of PVA thin-film composite membrane for pervaporation dehydration of ethanol solution
JP2774103B2 (en) Manufacturing method of double layer film
Yeom et al. Characterization of permeation behaviors of ethanol–water mixtures through sodium alginate membrane with crosslinking gradient during pervaporation separation
US5271846A (en) Method for separating a liquid component from a solution containing two or more liquid components
JPH0817907B2 (en) Separation method of mixed solution
GB2174619A (en) Composite separation membranes
US5324430A (en) High performance pan composite membranes
JP2597777B2 (en) Separation method of mixed solution
Huang et al. Ethylene propylene diene monomer (EPDM) membranes for the pervaporation separation of aroma compound from water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960423