JP2528686Y2 - Constant-level pumping tester - Google Patents

Constant-level pumping tester

Info

Publication number
JP2528686Y2
JP2528686Y2 JP1987148870U JP14887087U JP2528686Y2 JP 2528686 Y2 JP2528686 Y2 JP 2528686Y2 JP 1987148870 U JP1987148870 U JP 1987148870U JP 14887087 U JP14887087 U JP 14887087U JP 2528686 Y2 JP2528686 Y2 JP 2528686Y2
Authority
JP
Japan
Prior art keywords
negative pressure
water
hollow pipe
pumping
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987148870U
Other languages
Japanese (ja)
Other versions
JPS6453227U (en
Inventor
有司 安部
Original Assignee
有司 安部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有司 安部 filed Critical 有司 安部
Priority to JP1987148870U priority Critical patent/JP2528686Y2/en
Publication of JPS6453227U publication Critical patent/JPS6453227U/ja
Application granted granted Critical
Publication of JP2528686Y2 publication Critical patent/JP2528686Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は、地質調査の一貫として行われる透水試験
のうち、地下水を揚水して、その低下水位量Sと揚水量
Qから透水係数Kなどを求める揚水法を行なう場合の水
位の低下安定法に関する。
[Detailed description of the invention] (Industrial application field) In this invention, groundwater is pumped out of the permeability test that is performed as part of the geological survey, and the water permeability coefficient K and the like are calculated based on the reduced water level S and the water yield Q. The present invention relates to a method for stabilizing a drop in water level when a pumping method is used to determine the water level.

(従来の技術) 透水試験のうち、特に揚水法に関して述べれば、次の
ようになる。
(Prior art) The following is a description of the permeability test, particularly regarding the pumping method.

(A)電動水中ポンプを使用して地下水を汲み上げる方
法。
(A) Pumping groundwater using an electric submersible pump.

このときの低下水位安定法は、所定の位置に電気接点
を設け、この接点が水面から離れると揚水を停止でき、
再び水位が上昇して接点に触れると揚水を開始する仕組
みとなっている。この方法の場合、電動水中ポンプが稼
動している段階では水位は接点より上にあることにな
り、電動水中ポンプが停止して初めて所定の位置に水位
が低下したことが分かる事になる。また、電動水中ポン
プは外径も大きくボーリング径が150mm程度となりポン
プ自体が長いため、充分深いボーリングを掘削せねばな
らない欠点がある。
At this time, the water level stabilization method provides an electrical contact at a predetermined position, and when the contact is separated from the water surface, the pumping can be stopped.
When the water level rises again and comes into contact with the contact point, pumping starts. In the case of this method, when the electric submersible pump is operating, the water level is above the contact point, and it can be seen that the water level has dropped to the predetermined position only after the electric submersible pump stops. Further, the electric submersible pump has a disadvantage that the outer diameter is large and the boring diameter is about 150 mm, and the pump itself is long, so that a sufficiently deep boring must be excavated.

(B)エアリフト方式による揚水法 低下水位安定法は、その方法がない、すなわちある一
定のエアを管内に送り続けエアの浮力を利用して水を揚
水するため、エア管、揚水管、の他に揚水管の外側に外
管を設置して、揚水管と外管の間で水位を測定するしか
ないため、水位自体の制御、揚水量自体の制御も出来
ず、水位低下量Sと揚水量Qとが一定になるまで連続揚
水を行なう必要がある。
(B) Pumping method by air lift method The low water level stabilization method has no method. That is, since a certain amount of air is continuously fed into the pipe and water is pumped by using the buoyancy of the air, an air pipe, a pumping pipe, etc. Since there is no choice but to install an outer pipe outside the pumping pipe and measure the water level between the pumping pipe and the outer pipe, it is not possible to control the water level itself and the pumping amount itself. It is necessary to continuously pump water until Q becomes constant.

またこれも、理論上地下水面下充分深いボーリング孔
を掘削する必要があり、経費が多大にかかるため、一般
的ではない。
This is also unusual, since it is theoretically necessary to drill a borehole that is sufficiently deep below the groundwater table, which is very expensive.

(C)陸上においた機械式ポンプのサクションホース先
端を水中にいれて揚水する方法。
(C) A method in which the suction hose tip of a mechanical pump placed on land is put in water to pump water.

水中深くサクションホースを挿入し、揚水する場合
は、所定の位置に水位を保つ方法はなく、機械能力にお
おじた水位低下量Sと揚水量Qとが一定になるまで長時
間連続揚水を行なう必要がある。
When a suction hose is inserted deep underwater to pump water, there is no way to maintain the water level at a predetermined position, and continuous pumping is performed for a long time until the water level drop amount S and the pumping amount Q, which are determined by the mechanical capacity, become constant. There is a need.

これら機械式ポンプは元来吐出力を目的としており負
圧力は小さいためサクション部への空気の吸引はサクシ
ョン内部の負圧力が弱まり吸引力が小さくなる、このた
め再び吸引を開始するまでに時間がかかりその間に水位
が回復してしまい低下水位の安定は出来ない事になる。
更に機械部に空気が入り込むと水密性がなくなり、機械
自体が機能しなくなる恐れがある。このため空気を取り
入れて水位を安定させる本考案法を使用することは出来
ない。
Since these mechanical pumps are originally intended for discharge force and have a small negative pressure, the suction of air into the suction part weakens the negative pressure inside the suction and reduces the suction force.Therefore, it takes time before suction is started again. During that time, the water level recovers and the falling water level cannot be stabilized.
Furthermore, if air enters the machine part, watertightness is lost and the machine itself may not function. For this reason, it is not possible to use the present invention to stabilize the water level by taking in air.

(考案が解決しようとする問題点) 土中の透水性は地質調査の段階で正確に把握しておき
設計に反映しておかなければ施工中に思わぬ災害を招く
ことになりかねない。高透水性地盤においては特に正確
をきす必要がある。
(Problems to be solved by the invention) Unless water permeability in the soil is accurately grasped at the geological survey stage and reflected in the design, an unexpected disaster may occur during construction. In the case of highly permeable ground, it is particularly necessary to improve accuracy.

高透水性地盤でしかも浅い地下水の場合適用できる試
験方法は、回復法でJFT法、注入法で圧入法、また水を
汲み上げる揚水法とがある。
Test methods applicable to ground with high permeability and shallow groundwater include JFT method for recovery method, injection method for injection method, and pumping method for pumping water.

JFT法は、予め中空パイプの先端を水密に保ち所定の
深度まで挿入した後パッカーによって試験区間外の水と
遮断する。その後、先端を瞬時に開放して地下水の回復
速度を計測するもので、計測は中空パイプ内に等間隔に
電気接点を多数設けたレーブルが配線してあり、地下水
が各接点を通過する度にパルスを発生させ距離と時間の
関係を求める方法である。
In the JFT method, the tip of a hollow pipe is kept watertight in advance and inserted to a predetermined depth, and then cut off from water outside the test section by a packer. Then, the tip is instantaneously opened and the groundwater recovery rate is measured.The measurement is performed by laying a wire with many electrical contacts at equal intervals in a hollow pipe, and every time groundwater passes through each contact. In this method, a pulse is generated to determine the relationship between distance and time.

この場合、パッカーによる試験区間外の水との遮断が
砂礫層のような場合はたして遮断しているかどうか疑問
である。また、電気接点の間隔にもよるが水面の回復量
が充分ないと測定が不可能となる。
In this case, it is doubtful whether the packer blocks the water outside the test section in the case of a gravel layer. Also, depending on the interval between the electrical contacts, measurement becomes impossible if the amount of water surface recovery is insufficient.

圧入法は、高透水性の場合大量の水を準備する必要が
あり、条件によっては対処できない場合がある。また、
土の間隙の目詰まりが起こり正確な値が得られないこと
が多い。
The injection method requires a large amount of water to be prepared in the case of high water permeability, and may not be able to cope with it depending on conditions. Also,
In many cases, clogging of soil gaps occurs and accurate values cannot be obtained.

この様な状況のため、現状では高透水性地盤において
正確なデータを得ることができる方法は、本格的な揚水
試験しかない。この揚水試験は中央に揚水用の本井戸と
観測用の6本程度の井戸を掘削し、本井戸に揚水施設を
設け地下水を汲み上げ、この為に低下した地下水位を観
測井戸で測定し、安定したときの水位の状態から定常流
解析を行なうものである。この揚水試験は1回行なうに
しても規模が大きくまた長時間を要し費用も多大にな
る。
Due to such a situation, at present, the only method that can obtain accurate data on highly permeable ground is a full-scale pumping test. In this pumping test, a well for pumping and about 6 wells for observation were excavated in the center, a pumping facility was set up in this well, and groundwater was pumped up. The steady flow analysis is performed from the water level state at the time of the above. Even if this pumping test is performed once, the scale is large, a long time is required, and the cost is large.

この様な理由から、揚水法を用い簡単で安価にしかも
正確な値が得られる方法が是非とも必要となる。
For these reasons, it is absolutely necessary to provide a simple, inexpensive, and accurate method for obtaining accurate values using the pumping method.

試験の基本は、低下水面と揚水量Qが同時に安定にな
った時点で解析すれば良いが、いずれかを固定させなけ
れば容易に安定しない。このため低下水面を一定に保つ
方法を考案したものである。
The basics of the test may be analyzed at the time when the lowered water surface and the pumped water amount Q become stable at the same time, but it is not easily stabilized unless one of them is fixed. For this reason, a method was devised to keep the water level constant.

(問題を解決するための手段) 低下水面を一定に保つ手段を図面を追いながら説明す
れば イ)負圧力を発生するジェット(6)から負圧を発生さ
せる側(4)へ導かれたパイプ(3)に伸縮しない硬質
な中空パイプ(2)を接続する。この中空パイプ(2)
の先端が吸引口(1)となる。
(Means for solving the problem) The means for keeping the water level constant will be described with reference to the drawings. A) A pipe led from the jet (6) generating negative pressure to the side (4) generating negative pressure. A hard hollow pipe (2) that does not expand and contract is connected to (3). This hollow pipe (2)
Is the suction port (1).

ロ)中空パイプ(2)をボーリング孔内に挿入し、任意
の位置に固定できるようにし、しかも移動可能としてお
く。つまり、この中空パイプは、ボーリング孔内に上下
動可能に挿入される。
B) The hollow pipe (2) is inserted into the boring hole so that it can be fixed at an arbitrary position and can be moved. That is, the hollow pipe is inserted into the borehole so as to be vertically movable.

ハ)吸引口(1)は斜めに切断し、即ち中空パイプの軸
方向から傾斜して形成しておき空気が取り込まれ易くし
ておく。
C) The suction port (1) is cut obliquely, that is, formed so as to be inclined from the axial direction of the hollow pipe so that air can be easily taken in.

ニ)吸引口(1)は中空パイプ(2)を直接加工しても
良いが、加工したものを取り付けても良い。(第2図、
第3図) (作用) ボーリング孔内に予め中空パイプ(2)を立て込み吸
引口(1)が水中に有るように設置しておいた場合の作
用は、次のようになる。
D) The suction port (1) may be formed by directly processing the hollow pipe (2), or may be formed by processing the hollow pipe (2). (Fig. 2,
(FIG. 3) (Operation) The operation when the hollow pipe (2) is set up in advance in the borehole and the suction port (1) is installed so as to be in the water is as follows.

負圧力を発生させるため動力を稼動させると負圧力に
おおじて吸引口(1)から水が吸い込まれる。水位が低
下して吸引口(1)の最も高い位置付近まで低下してく
ると空気が吸い込まれ始める。この時中空パイプ(2)
と(6)の区間は負圧力が一瞬低下するが負圧力を連続
的に発生させているのと同時に水位が上昇してくるた
め、再び吸引口(1)が水でふさがれ吸い込まれること
になる。尚、ジェット(6)の能力は揚水量に対して、
充分な物を使用することは言うまでもない。
When the power is operated to generate a negative pressure, water is sucked from the suction port (1) upon the negative pressure. When the water level drops and drops to near the highest position of the suction port (1), air starts to be sucked. At this time hollow pipe (2)
In the section (6) and (6), the negative pressure drops momentarily, but since the negative pressure is continuously generated and the water level rises at the same time, the suction port (1) is closed with water again and sucked. Become. The capacity of the jet (6) depends on the amount of pumped water.
Needless to say, use enough.

この繰り返しが自然に間断なく行われるため水位を吸
引口(1)で一定に保つことができる。
Since the repetition is performed naturally without interruption, the water level can be kept constant at the suction port (1).

揚水中における中空パイプ(2)内の水と空気の流れ
はある一定の間隔をおいて規則正しいため、この量を計
量すれば揚水量Qが求められ揚水量Qが一定となったと
きが定常流状態である。
Since the flow of water and air in the hollow pipe (2) during pumping is regular at certain intervals, the pumping amount Q can be obtained by measuring this amount, and when the pumping amount Q becomes constant, the steady flow occurs. State.

揚水量Qの計量は、負圧力を発生させる装置のうち高
圧流体の噴射によって発生させるものは、駆動水と吐出
総水との差分で、また機械的に発生させるものは中空パ
イプ(2)とジェット(6)の間に真空タンクを設け水
の増加分を計量するか流量計を利用すれば良い。
The pumping amount Q is measured by the difference between the driving water and the total discharge water among the devices that generate the negative pressure by injecting the high-pressure fluid, and the device that mechanically generates the negative pressure by the hollow pipe (2). A vacuum tank may be provided between the jets (6) to measure the increase in water or use a flow meter.

(実施例) この考案の実施例を、図面を参照しながら説明する。Embodiment An embodiment of the present invention will be described with reference to the drawings.

第1実施例 第1図は、この考案の第1実施例を示している。First Embodiment FIG. 1 shows a first embodiment of the present invention.

第1実施例は高圧流体の噴射によって生ずる吐出負圧
力を利用して揚水を行う場合を示す。
The first embodiment shows a case where water is pumped by utilizing a discharge negative pressure generated by injection of a high-pressure fluid.

高圧流体を発生させるポンプ(5)に吐出負圧力を発
生させるジェット(6)を接続し、これにより負圧力発
生手段が構成される、吐出側はパイプ(7)を接続し駆
動水タンク(8)にリターンさせる。ジェット(6)の
負圧力を発生させる側(4)には負圧力に耐える屈曲自
在な中空パイプ(3)を接続し、この先端に伸縮しない
硬質に中空パイプ(2)を接続する。この中空パイプ
(2)の先端が吸引口(1)である。吸引口(1)は、
斜めにカットしておく。尚、吸引口(1)は、中空パイ
プ(2)を直接加工しても良いが加工したものを取り付
けても良く、空気の取り込みのための形状は、第2図乃
至第3図などがある。駆動水タンク(8)には、越流溝
(9)を設け、越流した水をノッチタンク(10)に導き
計量する。この越流した水は吸引されている地下水量に
相当する。尚、吸引された地下水の計量はノッチタンク
(10)に限らず計量枡や流量計によっても良い。
A jet (6) for generating a negative discharge pressure is connected to a pump (5) for generating a high-pressure fluid, thereby constituting a negative pressure generating means. The discharge side is connected to a pipe (7) and a driving water tank (8) is connected. ). A flexible hollow pipe (3) that can withstand the negative pressure is connected to a side (4) of the jet (6) that generates a negative pressure, and a rigid hollow pipe (2) that does not expand and contract is connected to this end. The tip of the hollow pipe (2) is the suction port (1). The suction port (1)
Cut diagonally. The suction port (1) may be formed by directly processing the hollow pipe (2), or may be formed by processing the hollow pipe (2). . An overflow groove (9) is provided in the driving water tank (8), and the overflowed water is guided to the notch tank (10) and measured. This overflowed water corresponds to the amount of groundwater being sucked. In addition, the measurement of the sucked ground water is not limited to the notch tank (10), but may be performed by a measuring basin or a flow meter.

第2実施例 第4図は、この考案の第2実施例を示している。Second Embodiment FIG. 4 shows a second embodiment of the present invention.

この第2実施例は負圧力の発生法を機械式の真空機器
で実施した例で、中空パイプ(2)と負圧力発生部
(6)の間に真空タンク(11)を設け、ここに吸引され
た地下水の量を計量する方法を示す。具体的な揚水量の
計量方法は、真空タンク(11)内の水面の上昇速度でも
とめる。真空タンク(11)が一杯になれば、排水ポンプ
(12)で再び水面を低下させる。
In the second embodiment, a negative pressure is generated by a mechanical vacuum device. A vacuum tank (11) is provided between a hollow pipe (2) and a negative pressure generator (6), and suction is performed here. The method for measuring the amount of groundwater drained is shown. The specific method of measuring the amount of pumped water is determined by the rising speed of the water surface in the vacuum tank (11). When the vacuum tank (11) is full, the water level is lowered again by the drain pump (12).

(考案の効果) 砂礫層等の高透水性地盤における透水係数は、1〜1
×10-2cm/sec程度である。これを具体的な水量で表現し
てみると次のようになる。
(Effect of the invention) The permeability coefficient of highly permeable ground such as gravel layer is 1-1.
It is about × 10 -2 cm / sec. When this is expressed in terms of the specific amount of water, it is as follows.

例えば、不圧不完全井戸で透水係数5×10-1cm/secの
地盤にφ86mmのボーリング孔を掘削し、地下水を平衡水
位から1.0m下げて定常流にした場合の揚水量Qを近似値
で求めて見ると、 Q=K×4×r×S (C.G.S単位) =5.0×10-1×4×4.3×100 =860cc/sec =51.6l/min 但し K:透水係数(cm/sec) r:孔の半径(cm) S:低下水位(cm) つまり、52l/minの水が沸き出てくることになる。
For example, a drilling hole of φ86mm was drilled in the ground with a permeability of 5 × 10 -1 cm / sec in an unpressurized imperfect well, and the pumping rate Q when the groundwater was lowered 1.0m from the equilibrium water level to a steady flow was approximated. Q = K x 4 x r x S (CGS unit) = 5.0 x 10 -1 x 4 x 4.3 x 100 = 860 cc / sec = 51.6 l / min where K: permeability coefficient (cm / sec) r: radius of the hole (cm) S: falling water level (cm) That is, 52 l / min of water comes out.

一般に、現場透水試験と言えば非定常流解析でボーリ
ングの孔内水位を低下させておき、その水面の回復速度
から透水係数Kを求めるが、人力では52l/minもの水を
汲み上げてしかも、水位を低下させることは不可能であ
る。したがって、注入法、JFT法、大掛かりな揚水法等
を行なわなければならない。しかしこれらの方法も(考
案が解決しようとする問題点)で述べたような問題点が
あり、一般化されていないのが実状である。
In general, speaking of the on-site permeability test, the water level in the borehole is lowered by unsteady flow analysis, and the permeability coefficient K is calculated from the recovery speed of the water surface. It is not possible to lower. Therefore, injection method, JFT method, large-scale pumping method, etc. must be performed. However, these methods also have the problems described in (Problems to be solved by the invention), and in fact, they are not generalized.

とかく『砂礫での透水試験はあてにならない』『砂礫
での透水係数は求めたいが試験が高価なため推定で求め
よう』的な言われ方が一般化している。これは上記理由
によるもので、とりもなおさず適当な試験方法が無かっ
たためである。
Anyway, it is common to say that "permeability test with gravel cannot be relied upon" and "permeability coefficient with gravel is to be obtained but estimation is expensive because the test is expensive". This is because of the above-mentioned reason, and there is no appropriate test method.

本考案による低下水位を一定に保てる揚水試験方法を
実施すれば、通常の地質調査で多用される孔径φ86mmの
小孔径ボーリングでも、実施でき、掘削の非常に困難な
砂礫層でも地下水面下わずか数十センチ有れば試験可能
のため、孔壁保護のためのベントナイトを使用する前
に、すなわち目詰まりを起こす前に値を求めることがで
きる。また、揚水法自体は、かりにベントナイトを使用
していても洗浄効果が高く、この点でも有利である。
By implementing the pumping test method that can keep the water level constant according to the present invention, it is possible to carry out boring with a small hole diameter of 86 mm, which is often used in ordinary geological surveys. Since the test is possible if there is 10 cm, the value can be obtained before using bentonite for protecting the pore wall, that is, before clogging occurs. In addition, the pumping method itself has a high cleaning effect even when bentonite is used for the scale, and is also advantageous in this respect.

この様に簡単で安価にしかも正確な値が得られるた
め、多目的な地質調査の段階で数多く試験ができ、設
計、施工の精度を高めることができるとともに、高透水
性地盤の実態も明確化される。
Since accurate values can be obtained in a simple, inexpensive and accurate manner, many tests can be conducted at the stage of versatile geological survey, and the accuracy of design and construction can be improved, and the actual condition of highly permeable ground has been clarified. You.

【図面の簡単な説明】[Brief description of the drawings]

第1図は考案の第1実施例を示す部分断面斜視図、第2
図は吸引口(1)の断面図、第3図は吸引口(1)の加
工図、第4図は考案の第2実施例を示す部分断面実施図
である。 (1)……吸引口 (2)……硬質中空パイプ (3)……屈曲可能な中空パイプ (4)……負圧力発生側パイプ (5)……高圧噴射ポンプ (6)……負圧力発生部(第1図ではジェット) (7)……吐出側パイプ (8)……駆動水タンク (9)……越流溝 (10)……ノッチタンク (11)……真空タンク (12)……排水ポンプ
FIG. 1 is a partially sectional perspective view showing a first embodiment of the invention, and FIG.
FIG. 3 is a sectional view of the suction port (1), FIG. 3 is a processing diagram of the suction port (1), and FIG. 4 is a partial sectional execution view showing a second embodiment of the invention. (1) Suction port (2) Hard hollow pipe (3) Bendable hollow pipe (4) Negative pressure generating pipe (5) High pressure injection pump (6) Negative pressure Generator (jet in Fig. 1) (7)… Discharge pipe (8)… Driving water tank (9)… Overflow groove (10)… Notch tank (11)… Vacuum tank (12) …… Sump pump

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】負圧力発生手段と、少なくとも地下水面下
まで到達し得るボーリング孔と、上記負圧力発生手段に
よって発生した負圧側に接続されると共に上記ボーリン
グ孔内に上下動可能に挿入された中空パイプと、上記中
空パイプの先端に設けた吸引口と、を備え、 上記負圧力発生手段は、高圧流体を噴射させるポンプと
このポンプに接続されたジェットとから成り、このジェ
ットの吐出側が駆動水タンクにリターンすると共に該ジ
ェットの負圧側に上記中空パイプが接続され、上記吸引
口は、上記中空パイプの軸方向から傾斜して形成されて
いると共に上記ボーリング孔内で地下水面下の所定の高
さ位置に浸漬されることを特徴とする定水位揚水試験
器。
1. A negative pressure generating means, a boring hole capable of reaching at least below the groundwater level, and connected to a negative pressure side generated by the negative pressure generating means and inserted vertically into the boring hole. A hollow pipe, and a suction port provided at a tip of the hollow pipe, wherein the negative pressure generating means includes a pump for injecting a high-pressure fluid and a jet connected to the pump, and a discharge side of the jet is driven. Returning to the water tank, the hollow pipe is connected to the negative pressure side of the jet, the suction port is formed to be inclined from the axial direction of the hollow pipe, and a predetermined hole below the groundwater level in the borehole. A constant water level pumping tester characterized by being immersed in the height position.
JP1987148870U 1987-09-29 1987-09-29 Constant-level pumping tester Expired - Lifetime JP2528686Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987148870U JP2528686Y2 (en) 1987-09-29 1987-09-29 Constant-level pumping tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987148870U JP2528686Y2 (en) 1987-09-29 1987-09-29 Constant-level pumping tester

Publications (2)

Publication Number Publication Date
JPS6453227U JPS6453227U (en) 1989-04-03
JP2528686Y2 true JP2528686Y2 (en) 1997-03-12

Family

ID=31420580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987148870U Expired - Lifetime JP2528686Y2 (en) 1987-09-29 1987-09-29 Constant-level pumping tester

Country Status (1)

Country Link
JP (1) JP2528686Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755973Y2 (en) * 1978-07-03 1982-12-02

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
土木学会編「新版土木工学ハンドブック上巻」(昭53−4−1)技報堂出版株式会社 P.279 「4.6.2 現場透水試験」の欄

Also Published As

Publication number Publication date
JPS6453227U (en) 1989-04-03

Similar Documents

Publication Publication Date Title
EP2766569B1 (en) Formation pressure sensing system
US20030205375A1 (en) Treatment well tiltmeter system
RU2610941C1 (en) Evaluation method of production watering in oil-producing well
CN106192971A (en) A kind of artesian water water-level observation well construction and the method for multilamellar water-level observation
CN104297129A (en) Hydrogeologic testing method based on water injection free vibration method
KR101144289B1 (en) Water sampler
CN116678476B (en) Drilling water level measuring device for hydrogeology investigation
CN112437828A (en) Removing downhole water in a dry gas well
CN112681295A (en) Construction method of concrete-filled steel tube pile foundation and concrete-filled steel tube pile foundation
US6843118B2 (en) Formation tester pretest using pulsed flow rate control
US3115775A (en) Method and apparatus for measuring the pressures of fluids in subsurface rocks
JP2528686Y2 (en) Constant-level pumping tester
KR101144285B1 (en) Multistage water sampler and multistage sampling method
Reeve Water potential: piezometry
CN109470622B (en) Method for measuring rock stratum permeability
JP3353714B2 (en) Pore water measurement method and apparatus
SU1677628A1 (en) A method of determining ground percolation coefficient
JP2000199396A (en) Permeability test device by filling and sucking borehole water by piston
JP2626456B2 (en) Rock permeability test equipment
Reeve Hydraulic head
EP1680692A1 (en) Method and system for assessing pore fluid pressure behaviour in a subsurface formation
CN218003401U (en) Long-term monitoring system for dissolved methane in underground water body of frozen soil area
RU2012866C1 (en) Method of measuring filtration coefficient and water loss of ground at field conditions
CN218496221U (en) Drilling mud liquid level detection device
JP2704302B2 (en) Permeability test method and equipment