JP2528067B2 - Method for producing 1,4-cyclohexane dimethanol - Google Patents

Method for producing 1,4-cyclohexane dimethanol

Info

Publication number
JP2528067B2
JP2528067B2 JP4357871A JP35787192A JP2528067B2 JP 2528067 B2 JP2528067 B2 JP 2528067B2 JP 4357871 A JP4357871 A JP 4357871A JP 35787192 A JP35787192 A JP 35787192A JP 2528067 B2 JP2528067 B2 JP 2528067B2
Authority
JP
Japan
Prior art keywords
hydrogen
raw material
hydrogenation reaction
stage
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4357871A
Other languages
Japanese (ja)
Other versions
JPH06192146A (en
Inventor
光男 真柄
好美 小野田
史人 山崎
進 米田
和昭 加藤
Original Assignee
東和化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東和化成工業株式会社 filed Critical 東和化成工業株式会社
Priority to JP4357871A priority Critical patent/JP2528067B2/en
Publication of JPH06192146A publication Critical patent/JPH06192146A/en
Application granted granted Critical
Publication of JP2528067B2 publication Critical patent/JP2528067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

【0002】本発明は、1,4−シクロヘキサンジメタ
ノール(以下、1,4−CHDMと云うことがある。)
の製造方法に関する。
The present invention is 1,4-cyclohexanedimethanol (hereinafter sometimes referred to as 1,4-CHDM).
Manufacturing method.

【0003】[0003]

【従来の技術】[Prior art]

【0004】1,4−CHDMは、ポリエステル系塗料
やポリエステル系の合成繊維、合成樹脂等の原料として
有用であり、特に、耐熱性、耐候性、物理的強度等の優
れた樹脂や繊維製造用の原料として用いられる。
1,4-CHDM is useful as a raw material for polyester-based paints, polyester-based synthetic fibers, synthetic resins and the like, and particularly for producing resins and fibers excellent in heat resistance, weather resistance and physical strength. Used as a raw material.

【0005】1,4−CHDMを製造する方法として
は、工業用原料として製造されているテレフタル酸ジア
ルキルエステルを用い、ベンゼン環及びエステル基を水
素化して得る方法等が代表的であり、既にいくつかの方
法が報告されている。
A typical method for producing 1,4-CHDM is a method in which a benzene ring and an ester group are hydrogenated using a terephthalic acid dialkyl ester produced as an industrial raw material. That method has been reported.

【0006】例えば、米国特許第3,334,149
号には、テレフタル酸ジアルキルエステルを原料として
用い、固定床式連続水素添加装置の上端から原料及び水
素を導入して、塔内に充填されているパラジウム水素添
加触媒を用いてベンゼン環に水素添加した後、反応塔の
下端から反応生成物及び水素を抜きだし、第二段の固定
床式連続水素添加装置の上端から第一段の反応生成物及
び水素を導入し、塔内に充填されている銅クロマイト水
素添加触媒を用いて第一段の反応生成物のエステル部分
を水素化分解した後反応塔の下端から抜きだし、目的の
1,4−CHDMを得る方法が紹介されている。
For example, US Pat. No. 3,334,149
In the No. 1, terephthalic acid dialkyl ester was used as the raw material, the raw material and hydrogen were introduced from the upper end of the fixed bed type continuous hydrogenation device, and hydrogen was added to the benzene ring using the palladium hydrogenation catalyst packed in the tower. After that, the reaction product and hydrogen are extracted from the lower end of the reaction tower, and the reaction product and hydrogen of the first stage are introduced from the upper end of the fixed-bed continuous hydrogenation device of the second stage, and the reaction mixture is filled into the tower. A method for obtaining the desired 1,4-CHDM by hydrolyzing the ester portion of the reaction product of the first stage using the existing copper chromite hydrogenation catalyst and then extracting it from the lower end of the reaction column is introduced.

【0007】また、米国特許第5,030,771号
には、1,4−シクロヘキサンジカルボン酸ジアルキル
エステルを原料として用い、バリウム等のアルカリ金属
を助触媒として含有した亜クロム酸銅触媒を用いて、原
料のエステル部分を水素化分解した後、反応塔の下端か
ら抜きだし、目的の1,4−CHDMを得る方法が紹介
されている。
In US Pat. No. 5,030,771, 1,4-cyclohexanedicarboxylic acid dialkyl ester is used as a raw material, and a copper chromite catalyst containing an alkali metal such as barium as a promoter is used. A method of hydrolyzing the ester portion of the raw material and then withdrawing it from the lower end of the reaction column to obtain the desired 1,4-CHDM is introduced.

【0008】[0008]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0009】しかし、何れの方法にも課題が残されてい
た。
However, problems remain in any of the methods.

【0010】例えば、前記米国特許第3,334,1
49号の方法には、第一段の水素添加反応及び第二段の
水素添加反応共に、被反応物及び水素を反応塔の上端か
ら導入して反応塔の下端から抜きだすと云う、いわゆる
ダウンフロー方式を採用しており、且つ、第一段の水素
添加反応の触媒としてパラジウム水素添加触媒を用いて
いることから、各種の制約や不都合を生じていた。
For example, the above-mentioned US Pat. No. 3,334,1
In the method of No. 49, in both the first-stage hydrogenation reaction and the second-stage hydrogenation reaction, the so-called down, which is to introduce the reactant and hydrogen from the upper end of the reaction column and withdraw from the lower end of the reaction column Since the flow system is adopted and the palladium hydrogenation catalyst is used as the catalyst for the first stage hydrogenation reaction, various restrictions and inconveniences have occurred.

【0011】つまり、採用している触媒の種類及び水素
添加の方式から、反応条件として温度100℃〜350
℃、実施例の中では、150℃〜275℃、圧力50気
圧〜500気圧、実施例の中では385kg/cm2
390kg/cm2 にする必要があり、しかも、水素と
被反応物との導入割合が第一段目の水素添加反応時にモ
ル比で1:90〜1:180、第二段目の水素添加時に
モル比で1:100〜1:300と、比較的厳しい水素
添加条件を選ぶ必要があったのである。
That is, depending on the type of catalyst employed and the hydrogenation system, the reaction conditions may range from 100 ° C to 350 ° C.
° C., Among embodiments, 0.99 ° C. to 275 ° C., the pressure 50 atm to 500 atm, is in the example 385 kg / cm 2 ~
Must be 390 kg / cm 2, moreover, 1 the introduction ratio of the hydrogen and the reactant molar ratio during the first stage of the hydrogenation reaction: 1:90: 180, during hydrogenation in the second stage It was necessary to select relatively strict hydrogenation conditions such as a molar ratio of 1: 100 to 1: 300.

【0012】この厳しい水素添加条件のために副反応の
進行を充分に抑制することが困難になり、反応生成物中
に沸点の高い不純物等を生じて、触媒の活性が損なわれ
る場合が多いと云う課題が残されていた。
[0012] Due to the severe hydrogenation conditions, it becomes difficult to sufficiently suppress the progress of side reactions, and impurities having a high boiling point are generated in the reaction product, which often impairs the activity of the catalyst. There was a problem left to say.

【0013】また、このような連続水素添加反応の場合
には、一般に、反応後の余剰水素は回収され、再度反応
に使用されることが多いが、この米国特許に紹介されて
いる技術では、反応生成物中に不純物を生じる結果、回
収される水素中に不純物が多く蓄積するので、再度使用
する前に、吸着法等の方法によって水素を精製する必要
があると云う課題もあった。
In the case of such a continuous hydrogenation reaction, generally, excess hydrogen after the reaction is often recovered and used again in the reaction. However, in the technique introduced in this US patent, As a result of producing impurities in the reaction product, many impurities are accumulated in the recovered hydrogen, so that there is also a problem that it is necessary to purify the hydrogen by a method such as an adsorption method before reuse.

【0014】更に、この水素添加反応は発熱反応であ
り、反応温度を一定に保持するためには発生した反応熱
を効率良く除去する必要があるが、前記のように、ダウ
ンフロー方式を採用しているので、触媒表面で発生した
熱を外部に伝える媒体の大部分が水素であって、熱伝導
効率が低く、熱除去のためには反応塔内の水素の流量を
非常に多くする必要があると云う課題もあった。
Further, this hydrogenation reaction is an exothermic reaction, and in order to keep the reaction temperature constant, it is necessary to efficiently remove the generated heat of reaction, but as mentioned above, the downflow system is adopted. Since most of the medium that transfers the heat generated on the catalyst surface to the outside is hydrogen, the heat conduction efficiency is low, and it is necessary to increase the flow rate of hydrogen in the reaction column very much for heat removal. There was also a problem to say.

【0015】また、ダウンフロー式の水素添加反応を採
用した場合には、一般に、触媒表面に被反応物が薄い膜
を造って流下する方式になり、被反応物が積極的に攪拌
されず触媒表面での物質移動が速やかに行われないの
で、水素添加の効率を高めるためには触媒表面の被反応
物の膜を薄い状態に保持する必要があるが、そのために
も反応塔内の水素の流量を被反応物の供給量の90倍〜
300倍モル程度と、大きくする必要があると云う課題
も残されていた。
When the down-flow type hydrogenation reaction is adopted, generally, a method is adopted in which a thin film of the reaction product is formed on the surface of the catalyst to flow down, and the reaction product is not actively stirred and the catalyst is not stirred. Since the mass transfer on the surface is not carried out promptly, it is necessary to keep the film of the reactant on the catalyst surface thin in order to improve the efficiency of hydrogen addition. The flow rate is 90 times the supply amount of the reactant
There is also a problem that it needs to be increased to about 300 times mol.

【0016】前記のような理由で、反応系で発生した熱
を除去することに困難を伴うためにパラジウム触媒に較
べて安価ではあるが熱に弱いルテニウム触媒を採用する
ことができず、また、反応生成物を被反応物に混合して
被反応物の濃度を、通常は4〜16%程度、最大でも6
0%程度に抑制する必要があること、等の工業的に不利
な様々な課題が残されていたのである。
For the reasons described above, it is difficult to remove the heat generated in the reaction system, and thus it is not possible to employ a ruthenium catalyst, which is cheaper than the palladium catalyst but weak to heat, and The reaction product is mixed with the reaction product so that the concentration of the reaction product is usually about 4 to 16%, and at most 6%.
Various problems that are industrially disadvantageous, such as the need to suppress it to about 0%, remain.

【0017】一方、米国特許第5,030,771号
に紹介されている方法には、第一段目の水素添加の課題
について改善の記載が無く、且つ、反応方式としてダウ
ンフロー方式が採用されていることから、前記の場合
と同様に各種の工業的に不利な課題が残されている他
に、前記の方法に較べて原料の入手が困難であると云
う課題も残されていた。
On the other hand, in the method introduced in US Pat. No. 5,030,771, there is no description of improvement regarding the problem of the first stage hydrogenation, and the downflow method is adopted as the reaction method. Therefore, in addition to various industrially disadvantageous problems as in the case described above, there is also a problem that it is difficult to obtain the raw material as compared with the above method.

【0018】以上のような状況から、反応条件を少しで
も緩やかにできるような各種反応条件の改善や副反応の
抑制とその結果得られる製品の純度向上、更に、使用す
る原料や水素等の資材が節約できるような改善等が望ま
れていた。
In view of the above circumstances, various reaction conditions such that the reaction conditions can be made mild as much as possible, suppression of side reactions and improvement of the purity of the product obtained as a result, raw materials to be used and materials such as hydrogen are used. There was a demand for improvements that could save money.

【0019】[0019]

【課題を解決するための手段】[Means for Solving the Problems]

【0020】本発明の課題を解決するための手段は、下
記の通りである。
Means for solving the problems of the present invention are as follows.

【0021】本発明者等は、前記のような様々な課題を
改善するために、鋭意研究を重ねた結果、テレフタル酸
ジアルキルエステルの第一段目の水素添加、即ち、高温
での核飽和にはあまり適切でないとされていたルテニウ
ム系の触媒の採用を可能にし、更に、比較的温和な水素
添加条件を見出し、前記のような従来方法の様々な課題
を改善することに成功して、本発明を完成するに至っ
た。
The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned various problems, and as a result, have found that hydrogenation of the first stage of terephthalic acid dialkyl ester, that is, nuclear saturation at high temperature. Made it possible to adopt a ruthenium-based catalyst, which was considered to be not suitable, and found a relatively mild hydrogenation condition and succeeded in improving various problems of the conventional method as described above. The invention was completed.

【0022】第一の本発明は、1,4−シクロヘキサン
ジメタノールを製造するに際し、(1)ルテニウム金属
の担持割合が0.05〜10重量%のルテニウム水素化
触媒が充填された固定床連続式水素添加装置の上端又は
下端に、水素を導入し、同時に、第一原料としてテレフ
タル酸ジアルキルエステル又は、テレフタル酸ジアルキ
ルエステルと第一段水素添加反応生成物とを、SV(触
媒容積を1としたときの1時間あたりの空間速度)=1
〜10で導入し、第一段水素添加反応の未反応成分の初
期濃度を5〜100重量%として、温度90〜240
℃、水素圧力5〜150kgf/cm2 の条件で第一段
の水素添加反応を行い、反応生成物及び余剰の水素を該
装置の下端又は上端から排出する第一工程、(2)銅ク
ロマイト水素化触媒が充填された固定床連続式水素添加
装置の上端又は下端に水素を導入し、同時に、第二原料
として第一段水素添加反応生成物又は、式(I)で表さ
れる化合物、式(II)で表される化合物、式(III)で
表される化合物から成る群から選ばれる2種以上が相互
に任意の組み合わせでエステル交換により1〜10個結
合した化合物の混合物と第一段水素添加反応生成物と
を、SV=0.1〜1で導入し、第二段水素添加反応の
未反応成分の初期濃度を10〜100重量%として、温
度200〜300℃、水素圧力50〜180kgf/c
2 の条件で第二段の水素添加反応を行い、反応生成物
及び余剰の水素を該装置の下端又は上端から排出する第
二工程、の二工程を逐次的に経由することを特徴とする
1,4−シクロヘキサンジメタノールの製造方法であ
る。
According to the first aspect of the present invention, in producing 1,4-cyclohexanedimethanol, (1) a fixed bed continuous filled with a ruthenium hydrogenation catalyst having a ruthenium metal loading ratio of 0.05 to 10% by weight. Hydrogen is introduced into the upper end or the lower end of the formula type hydrogenation apparatus, and at the same time, terephthalic acid dialkyl ester or the terephthalic acid dialkyl ester and the first stage hydrogenation reaction product as SV (catalyst volume 1 and Space velocity per hour when doing) = 1
10 to 10, the initial concentration of unreacted components of the first stage hydrogenation reaction is 5 to 100% by weight, and the temperature is 90 to 240.
The first step of carrying out the first stage hydrogenation reaction under the conditions of ℃ and hydrogen pressure of 5 to 150 kgf / cm 2 and discharging the reaction product and excess hydrogen from the lower end or the upper end of the apparatus, (2) copper chromite hydrogen Introducing hydrogen into the upper or lower end of a fixed bed continuous hydrogenation apparatus filled with a hydrogenation catalyst, and at the same time, a first stage hydrogenation reaction product or a compound represented by the formula (I) as a second raw material, A mixture of a compound represented by (II) and a compound represented by the formula (III), in which two or more kinds selected from the group consisting of the compound represented by the formula (III) are bonded to each other by transesterification in an arbitrary combination with each other in the first stage. The hydrogenation reaction product and SV = 0.1 to 1 were introduced, and the initial concentration of the unreacted components of the second stage hydrogenation reaction was set to 10 to 100% by weight, the temperature was 200 to 300 ° C, and the hydrogen pressure was 50 to 50%. 180 kgf / c
It is characterized in that the second stage hydrogenation reaction is carried out under the condition of m 2 and the reaction product and the surplus hydrogen are discharged from the lower end or the upper end of the apparatus, and the second step is sequentially passed. This is a method for producing 1,4-cyclohexanedimethanol.

【0023】[0023]

【化4】 Embedded image

【0024】[0024]

【化5】 Embedded image

【0025】[0025]

【化6】 [Chemical 6]

【0026】第二の本発明は、1,4−シクロヘキサン
ジメタノールを製造するに際し、(1)装置の下部に目
皿板を備えた固定床連続式水素添加装置の下端から水素
を導入し、同時に、第一原料を導入し、第一段の水素添
加反応を行い、反応生成物及び余剰の水素を該装置の上
端から排出する第一工程、(2)塔内の下部に目皿板を
備えた固定床連続式水素添加装置の下端から水素を導入
し、同時に、第二原料を導入し、第二段の水素添加反応
を行い、反応生成物及び余剰の水素を該装置の上端から
排出する第二工程、の二工程を逐次的に経由することを
特徴とする前記第一記載の1,4−シクロヘキサンジメ
タノールの製造方法である。
In the second aspect of the present invention, when 1,4-cyclohexanedimethanol is produced, (1) hydrogen is introduced from the lower end of a fixed bed continuous hydrogenation device equipped with a perforated plate at the bottom of the device, At the same time, the first step of introducing the first raw material, carrying out the first-stage hydrogenation reaction, and discharging the reaction product and excess hydrogen from the upper end of the apparatus, (2) installing a perforated plate at the bottom of the tower Hydrogen is introduced from the lower end of the provided fixed bed continuous hydrogenation device, at the same time, the second raw material is introduced, the second stage hydrogenation reaction is performed, and the reaction product and excess hydrogen are discharged from the upper end of the device. In the method for producing 1,4-cyclohexanedimethanol described in the first item, the first step and the second step are sequentially performed.

【0027】第三の本発明は、第一原料の未反応成分の
濃度を5〜20重量%の範囲に調整して第一段の水素添
加反応を実施し、第二原料の未反応成分の濃度を20〜
100重量%の範囲に調整して第二段の水素添加反応を
実施することを特徴とする前記第一〜第二の何れかに記
載の1,4−シクロヘキサンジメタノールの製造方法で
ある。
In the third aspect of the present invention, the concentration of the unreacted components of the first raw material is adjusted to be in the range of 5 to 20% by weight, and the first stage hydrogenation reaction is carried out to obtain the unreacted components of the second raw material. Concentration 20 ~
The method for producing 1,4-cyclohexanedimethanol according to any one of the first to second aspects, characterized in that the second stage hydrogenation reaction is carried out by adjusting the range to 100% by weight.

【0028】第四の本発明は、第一原料と水素との導入
割合をモル比で1:6〜1:33の範囲で実施し、第二
原料と水素との導入割合をモル比で1:14〜1:84
の範囲で実施することを特徴とする前記第一〜第三の何
れかに記載の1,4−シクロヘキサンジメタノールの製
造方法である。
The fourth aspect of the present invention is carried out in such a manner that the introduction ratio of the first raw material and hydrogen is in the range of 1: 6 to 1:33 and the introduction ratio of the second raw material and hydrogen is 1 in the molar ratio. : 14-1: 84
The method for producing 1,4-cyclohexanedimethanol according to any one of the first to third aspects, wherein the method is carried out in the range of

【0029】第五の本発明は、目皿板により、原料と水
素が目皿板の開孔部を通過するときの速度がそれぞれ線
速度で0.01m/秒〜1.0m/秒及び0.1m/秒
〜12.0m/秒の範囲になるように調節することを特
徴とする前記第二〜第四の何れかに記載の1,4−シク
ロヘキサンジメタノールの製造方法である。
According to a fifth aspect of the present invention, the velocities when the raw material and hydrogen pass through the apertures of the mortar plate are 0.01 m / sec to 1.0 m / sec and 0 in linear velocity, respectively. The method for producing 1,4-cyclohexanedimethanol according to any one of the second to fourth aspects, characterized in that it is adjusted to fall within a range of 1 m / sec to 12.0 m / sec.

【0030】本発明の原料として用いるテレフタル酸ジ
アルキルエステルの品質は、工業用原料として販売され
ている程度の品質で充分であり、種類は、最終的に副成
するアルコール類が分離し易い等の理由から、アルキル
部分の長さが炭素4個までのものが好ましいが、それら
の中でも炭素1個のテレフタル酸ジメチルエステルが最
も有利に使用できる。
The quality of the terephthalic acid dialkyl ester used as the raw material of the present invention is such that it can be sold as an industrial raw material, and the type is such that the alcohols formed as a by-product are easily separated. For reasons, alkyl moieties of up to 4 carbons are preferred, of which 1 carbon terephthalic acid dimethyl ester is most advantageously used.

【0031】本発明の第一段目の水素添加反応、即ち、
ベンゼン環の飽和に用いる原料の濃度は、反応率を高め
る意味や、反応熱を適度に抑制する意味等から、好まし
くは5〜100%、更に好ましくは5〜20%である
が、この濃度を調節するためにテレフタル酸ジアルキル
エステルに加えるものとしては、第一段目の水素添加反
応を終えた反応物が、第一段階での水素添加反応に対し
て不活性であることや、その後の分離操作で回収できる
こと、更に、反応系内に余計な成分を混入させないほう
が良いこと等の理由から最も好ましい。
The first stage hydrogenation reaction of the present invention, that is,
The concentration of the raw material used for the saturation of the benzene ring is preferably 5 to 100%, more preferably 5 to 20% from the viewpoint of increasing the reaction rate and appropriately suppressing the heat of reaction. To add to the terephthalic acid dialkyl ester for adjustment, the reaction product after the first stage hydrogenation reaction is inert to the first stage hydrogenation reaction and the subsequent separation It is most preferable because it can be recovered by operation, and it is better not to mix extra components into the reaction system.

【0032】本発明の第一段目の水素添加反応に用いる
水素の品質は、工業用に市販されているもので十分であ
るが、その他に、本発明を実施して回収された余剰水素
もそのままで、又は必要に応じて精製した後に、使用す
ることができる。
As for the quality of hydrogen used in the first stage hydrogenation reaction of the present invention, those commercially available for industrial use are sufficient, but in addition, excess hydrogen recovered by carrying out the present invention is also used. It can be used as it is or after purification if necessary.

【0033】本発明の第一段目の反応の触媒として用い
るルテニウム水素添加触媒は、ベンゼン核に水素を添加
する能力のあるルテニウム触媒ならば概ね使用可能であ
るが、担体の種類としては、例えば、シリカ、アルミ
ナ、珪藻土、活性炭などがあるが、比重や強度などの点
から最も好ましいのはアルミナであり、好ましいルテニ
ウム金属の担持量としては、0.05〜10%が挙げら
れる。
The ruthenium hydrogenation catalyst used as the catalyst for the first-step reaction of the present invention can be generally used as long as it is a ruthenium catalyst capable of adding hydrogen to the benzene nucleus. , Silica, alumina, diatomaceous earth, activated carbon, etc., but alumina is the most preferable in terms of specific gravity and strength, and the preferable amount of ruthenium metal supported is 0.05 to 10%.

【0034】このルテニウム金属の担持量が0.05%
未満の場合には、触媒の扱い量が必要以上に大きくなっ
て装置が大型化してしまうので経済的に不利なことや未
還元物が生成しやすいこと等から好ましくなく、10%
を超えた場合には、担体からのルテニウムの剥離等によ
る金属の損失が起こりがちなことや担持量が多い割りに
は還元能率が高まらないこと等から好ましくない。
The supported amount of this ruthenium metal is 0.05%
If it is less than 10%, the amount of catalyst to be handled becomes unnecessarily large and the apparatus becomes large, which is economically disadvantageous and unreduced substances are easily generated.
If it exceeds, the loss of metal tends to occur due to peeling of ruthenium from the carrier, and the reduction efficiency does not increase despite the large amount supported, which is not preferable.

【0035】本発明を実施するうえで、本発明の第一段
目の水素添加に用いる固定床連続式水素添加装置は、装
置の上端又は下端に水素及び原料の導入口を備え、他端
に水素及び第一段目の水素添加反応生成物の排出口を備
えた、温度制御の可能な構造にする必要がある。
In carrying out the present invention, the fixed bed continuous hydrogenation apparatus used for the first stage hydrogenation of the present invention is provided with an inlet for hydrogen and a raw material at the upper or lower end of the apparatus and at the other end. It is necessary to have a structure capable of controlling temperature, which is provided with an outlet for hydrogen and the hydrogenation reaction product of the first stage.

【0036】その装置の形状は、水素添加反応が充分に
進行するものであれば特に制約を受けないが、一般に、
直径の長さ1に対して縦の長さが1以上の、縦に長い円
筒状のものが、水素添加反応を実施したり、触媒の再生
や、触媒の交換、その他の各種補修をしたりするうえで
最も好ましい。
The shape of the apparatus is not particularly limited as long as the hydrogenation reaction proceeds sufficiently, but in general,
A vertically long cylinder with a vertical length of 1 or more for a diameter of 1 can be used for hydrogenation reactions, catalyst regeneration, catalyst replacement, and other various repairs. It is most preferable for

【0037】本発明を実施する反応の方式には、(1)
水素及び原料が装置の下端から供給されて上端から排出
される、いわゆるアッパーフロー方式、(2)水素及び
原料が装置の上端から供給されて下端から排出される、
いわゆるダウンフロー方式、(3)原料が装置の上端か
ら供給されて下端から排出され、水素が装置の下端から
供給されて上端から排出される、いわゆるカウンターフ
ロー方式の何れも採用可能であるが、発明者の確認した
ところによれば、(1)及び(2)の方式が最も優れた
方式である。
The reaction method for carrying out the present invention includes (1)
Hydrogen and raw materials are supplied from the lower end of the device and discharged from the upper end, so-called upper flow method, (2) Hydrogen and raw materials are supplied from the upper end of the device and discharged from the lower end,
A so-called downflow method, (3) a so-called counterflow method in which a raw material is supplied from the upper end of the device and discharged from the lower end, and hydrogen is supplied from the lower end of the device and discharged from the upper end, can be adopted. According to the inventor's confirmation, the methods (1) and (2) are the best.

【0038】(1)の方式には、水素及び原料を供給す
る際に、塔内よりもやや高い圧力が要求されたり、塔下
部に拡散板又はディストリビューター又は目皿板のよう
な、水素及び原料を充分に混合・分散する機能や部品が
要求されるものの、反応装置内の温度制御が容易である
ことや反応装置内に原料等が滞留する時間を制御し易い
等の優れた特徴がある。
In the method (1), when supplying hydrogen and raw materials, a slightly higher pressure than that in the tower is required, and hydrogen and other materials such as a diffusion plate, a distributor or a plate plate are provided at the bottom of the tower. Although functions and parts for sufficiently mixing and dispersing the raw materials are required, they have excellent features such as easy temperature control in the reactor and easy control of the residence time of the raw materials in the reactor. .

【0039】また、(2)の方式の場合には、ディスト
リビューターのような、主に原料を触媒の上に充分に分
散させる機能や部品が要求されるものの、装置のL/D
(長さ/直径)の割合を大きくすることができることや
装置の肉厚が薄くできること等の優れた特徴がある。
Further, in the case of the method (2), although a function and parts such as a distributor for mainly sufficiently dispersing the raw materials on the catalyst are required, the L / D of the apparatus is required.
It has excellent features such that the ratio of (length / diameter) can be increased and the thickness of the device can be reduced.

【0040】本発明の更に好ましい実施態様に於いて
は、装置の下端に目皿板を備えることが好ましいが、そ
の目皿板は、装置の下端から導入される原料と水素と
が、層流状態を理想として少しでもその状態に近づける
性能を有するものであれば良く、その材質は、本発明に
用いる原料や溶媒、反応生成物に侵されないことや反応
時の熱に耐えること等の要求はあるが、それ以上の材質
上の制約も孔の形状や数等の制約も無い。
In a further preferred embodiment of the present invention, it is preferable that the lower end of the apparatus is provided with a sparse plate, and the sine plate is a laminar flow of raw material and hydrogen introduced from the lower end of the apparatus. As long as it has the ability to bring the state to an ideal state even a little closer to that state, the material is required to have the raw materials and the solvent used in the present invention, not to be attacked by the reaction product, and to withstand the heat during the reaction. However, there are no further restrictions on the material and restrictions on the shape and number of holes.

【0041】その目皿板としての性能を発揮するために
は、例えば、装置の下端に取り付けたときに、その縁辺
部分に不必要な隙間がなくある程度の開孔率を有するも
のが好ましいが、その開孔率は、例えば、原料と水素と
が目皿板の開孔部分を通過するときの速度が、それぞれ
線速度で、0.01m/秒〜1.0m/秒及び0.1m
/秒〜12.0m/秒の範囲になるように開孔面積を調
節することが好ましい。
In order to exert its performance as a perforated plate, for example, it is preferable that when it is attached to the lower end of the device, it has a certain open area ratio without any unnecessary gap in its edge portion. The porosity is, for example, 0.01 m / sec to 1.0 m / sec and 0.1 m, which are linear velocities when the raw material and hydrogen pass through the perforated portion of the perforated plate, respectively.
It is preferable to adjust the opening area so as to be in the range of 1 / sec to 12.0 m / sec.

【0042】目皿板の開孔面積が大き過ぎて原料と水素
との線速度がそれぞれ0.01m/秒未満、又は0.1
m/秒未満の場合には、反応系の入り口に到達した水素
と原料とがよく混合されないことや反応塔内に分散され
にくいこと、それによって、塔内の流れ方に偏りが発生
しやすいこと等の不都合があるので好ましくなく、一
方、開孔面積が小さ過ぎて原料と水素との目皿板通過時
の線速度がそれぞれ1.0m/秒及び12.0m/秒を
越える場合には、反応塔への供給口と反応塔内の圧力に
大きな差が生じることや目皿板を通過した流れにあたる
部分の触媒が動き出して触媒が破損すること、更には、
反応にムラが生ずる等の理由から好ましくない。
The open area of the perforated plate is too large so that the linear velocities of the raw material and hydrogen are each less than 0.01 m / sec, or 0.1
If it is less than m / sec, the hydrogen reaching the inlet of the reaction system and the raw material are not well mixed and are not easily dispersed in the reaction column, which tends to cause a deviation in the flow direction in the column. However, if the opening area is too small and the linear velocities of the raw material and hydrogen when passing through the perforated plate exceed 1.0 m / sec and 12.0 m / sec, respectively, A large difference between the pressure in the reaction tower and the supply port to the reaction tower and the catalyst in the part corresponding to the flow passing through the perforated plate starts moving and the catalyst is damaged,
It is not preferable because of unevenness in the reaction.

【0043】本発明の第一段目の水素添加反応の実施条
件として適切な原料の導入速度は、装置の形状や触媒の
量、触媒の残存活性、反応温度、圧力等によって様々な
影響を受けるために、一義的に表現することが困難であ
るが、通常は、SV(触媒容積を1としたときの1時間
あたりの空間速度)で表現した場合に、SV=1〜10
とすることが好ましい。
The introduction rate of the raw materials suitable as the conditions for carrying out the first stage hydrogenation reaction of the present invention is affected variously by the shape of the apparatus, the amount of the catalyst, the residual activity of the catalyst, the reaction temperature, the pressure and the like. Therefore, it is difficult to uniquely express it, but normally, when expressed by SV (space velocity per hour when the catalyst volume is 1), SV = 1 to 10
It is preferable that

【0044】この原料の導入速度がそれぞれ1未満の場
合には、原料や反応生成物の分解を招くことが多いので
好ましくなく、10を超えた場合には、装置から未反応
物質が排出されたりして歩留まりの低下を招くことが多
いので好ましくない。
If the introduction rate of each raw material is less than 1, it often causes decomposition of the raw materials and reaction products, and if it exceeds 10, unreacted substances are discharged from the apparatus. As a result, the yield is often lowered, which is not preferable.

【0045】第一段目の水素添加反応の原料と水素との
導入割合は、モル比で1:6〜1:33程度が好ましい
が、その割合が1:6未満の場合には水素が反応塔内に
行き渡らないことがあったり、反応の進行が遅くなった
りすることがある等の理由から好ましくなく、その割合
が1:33を越える場合には、反応塔内の原料が過度に
攪拌されてしまい、未反応の成分が反応塔上端から排出
されることがあったり、触媒が破損することがある等の
理由から、好ましくない。
The introduction ratio of the raw material and hydrogen in the first stage hydrogenation reaction is preferably about 1: 6 to 1:33 by molar ratio, but when the ratio is less than 1: 6, hydrogen is reacted. It is not preferable because it may not spread all over the tower or the reaction may slow down. When the ratio exceeds 1:33, the raw materials in the reaction tower are excessively stirred. It is not preferable because unreacted components may be discharged from the upper end of the reaction column and the catalyst may be damaged.

【0046】また、第一段目の水素添加反応時の温度は
90〜240℃が好ましいが、この温度範囲を外れた場
合には、低い場合には未反応物の生成があり、高い場合
には分解物の生成があって、何れの場合も収率の低下を
招くことが多いので好ましくない。
The temperature during the first stage hydrogenation reaction is preferably 90 to 240 ° C. When the temperature is out of this temperature range, unreacted substances are produced when the temperature is low, and when the temperature is high. Is not preferable because decomposition products are produced, and in many cases, the yield is lowered.

【0047】さらに、第一段目の水素添加反応時の水素
圧力は5〜150kgf/cm2 程度が好ましいが、そ
の圧力が5kgf/cm2 未満の場合には、水素添加反
応の速度が遅くなること等の理由から、また、150k
gf/cm2 を越える場合には圧力を高くしてもそれに
つれて水素添加反応の反応速度が高くならないので、経
済的な意味が無い等の理由から何れも好ましくない。
[0047] Furthermore, the hydrogen pressure during the hydrogenation reaction of the first stage is preferably about 5~150kgf / cm 2, when the pressure is less than 5 kgf / cm 2, the rate of hydrogenation reaction becomes slow Because of that, 150k
When it exceeds gf / cm 2 , the reaction rate of the hydrogenation reaction does not increase with the increase of the pressure, which is not preferable because it has no economic meaning.

【0048】このようにして第一段目の水素添加反応を
実施することにより、純度98〜99.5%程度で、ヘ
キサヒドロ安息香酸メチルエステル、メチルシクロヘキ
サン、テレフタル酸ジメチルエステル等のような不純物
含有量が合計2〜0.5%程度の第一段目の水素添加反
応生成物、即ち、テレフタル酸ジアルキルエステルの核
飽和物を製造することができる。
By carrying out the first-stage hydrogenation reaction in this manner, impurities such as hexahydrobenzoic acid methyl ester, methylcyclohexane, terephthalic acid dimethyl ester, etc., having a purity of about 98 to 99.5% are contained. It is possible to produce the first stage hydrogenation reaction product in a total amount of about 2 to 0.5%, that is, the nuclear saturated product of the terephthalic acid dialkyl ester.

【0049】次に、本発明の第二段目の水素添加反応に
ついて説明する。
Next, the second stage hydrogenation reaction of the present invention will be described.

【0050】本発明の第二段目の水素添加反応に使用す
る原料、即ち第二原料としては、第一段目の水素添加反
応生成物又は、前記式(I)で表される化合物及び前記
式(II)で表される化合物及び前記式(III)で表され
る化合物から成る群から選ばれる2種以上が相互に任意
の組み合わせでエステル交換により1〜10個結合した
化合物の混合物と第一段目の水素添加反応生成物が用い
られる。
As the raw material used in the second stage hydrogenation reaction of the present invention, that is, the second raw material, the first stage hydrogenation reaction product or the compound represented by the above formula (I) and the above A mixture of two or more compounds selected from the group consisting of the compound represented by the formula (II) and the compound represented by the formula (III), which are bonded to each other by any desired combination by transesterification and 1 to 10; The first stage hydrogenation reaction product is used.

【0051】具体的には、第一段目の水素添加反応生成
物は、そのままの形で用いることもできるが、第二段目
の水素添加反応生成物や蒸留後の釜残や粗製品1,4−
CHDM等の1,4−CHDM含有物を装置の入り口の
手前又は後で加えることによって、第二段目の水素添加
反応の未反応物質の濃度を調節して用いることもでき
る。
Specifically, the hydrogenation reaction product of the first stage can be used as it is, but the hydrogenation reaction product of the second stage, the still residue after distillation or the crude product 1 , 4-
It is also possible to adjust the concentration of unreacted substances in the second stage hydrogenation reaction by adding 1,4-CHDM-containing substances such as CHDM before or after the entrance of the apparatus.

【0052】本発明の第二原料の未反応物質の濃度は、
第二段目の水素添加反応率を高める意味や、反応熱を適
度に抑制する意味等から20〜100%程度が好まし
く、必要に応じてこの濃度を調節するには、前記1,4
−CHDM及び/又はその誘導体含有物を加え、この範
囲に濃度を調整することが好ましい。
The concentration of the unreacted substance of the second raw material of the present invention is
From the meaning of increasing the hydrogenation reaction rate in the second stage, the meaning of appropriately suppressing the reaction heat, etc., about 20 to 100% is preferable, and in order to adjust this concentration, the above 1,4
It is preferable to add -CHDM and / or its derivative-containing material and adjust the concentration to this range.

【0053】また、本発明の第二段目の水素添加反応に
用いる水素の品質も第一段目の水素添加反応に用いる程
度の品質で十分であり、本発明を実施して回収された余
剰水素もそのままで、又は必要に応じて精製した後に、
使用することができる。
The quality of hydrogen used in the second-stage hydrogenation reaction of the present invention is sufficient to be used in the first-stage hydrogenation reaction, and the surplus recovered by carrying out the present invention is sufficient. Hydrogen as it is, or after purification if necessary,
Can be used.

【0054】本発明の第二段目の反応の触媒として用い
る銅クロマイト水素添加触媒は、第二原料に含まれるエ
ステル基部分を水素化分解できる性能を備えているもの
であれば良く、市販の水素添加触媒を採用することがで
きるが、その銅やクロムの比率や担体についても格別の
制約は無い。
The copper chromite hydrogenation catalyst used as the catalyst for the second-stage reaction of the present invention may be any one as long as it has the ability to hydrolyze the ester group portion contained in the second raw material, and is commercially available. A hydrogenation catalyst can be used, but there are no particular restrictions on the ratio of copper or chromium or the carrier.

【0055】また、本発明の第二段目の水素添加反応に
用いる装置も、第一段目の水素添加に用いる装置と同様
の構造及び形状が要求されるが、その他に要求される格
別の制約は無い。
The apparatus used for the second-stage hydrogenation reaction of the present invention is also required to have the same structure and shape as the apparatus used for the first-stage hydrogenation reaction. There are no restrictions.

【0056】更に、本発明の好ましい態様で採用される
第二段目の装置下部に備える目皿板も、第一段目の装置
に用いる目皿板と同様の性能、材質、開孔面積であれば
よく、その他に要求されるべき制約は無い。
Further, the perforated plate provided in the lower part of the second-stage device adopted in the preferred embodiment of the present invention has the same performance, material and open area as the perforated plate used in the first-stage device. Yes, there are no other restrictions that should be required.

【0057】次に、第二段目の水素添加反応の条件につ
いて説明する。
Next, the conditions for the second stage hydrogenation reaction will be described.

【0058】まず、本発明の第二段目の水素添加反応の
実施条件として適切な原料の導入速度は、装置の形状や
触媒の量、触媒の残存活性、反応温度、圧力等によって
様々な影響を受けるために、一義的に表現することが困
難であるが、通常は、SV=0.1〜1とすることが好
ましい。
First, the introduction rate of the raw materials suitable as the conditions for carrying out the second stage hydrogenation reaction of the present invention has various influences depending on the shape of the apparatus, the amount of the catalyst, the residual activity of the catalyst, the reaction temperature, the pressure and the like. Since it is difficult to express uniquely, it is usually preferable to set SV = 0.1-1.

【0059】第二原料の導入速度がそれぞれ0.1未満
の場合には、第二原料の構成成分や水素添加反応生成物
が分解することがあり、1を超えた場合には未反応物質
が装置から排出されることがあって、何れの場合にも歩
留まりの低下を招くことが多いので好ましくない。
When the introduction rate of the second raw material is less than 0.1, the constituents of the second raw material and the hydrogenation reaction product may be decomposed. It may be discharged from the device, and in any case, the yield is often lowered, which is not preferable.

【0060】第二原料及び水素の導入割合は、モル比で
1:14〜1:84の範囲が好ましいが、その割合が
1:14未満の場合には水素が反応塔内に行き渡らない
ことがあったり、反応の進行が遅くなったりすることが
ある等の理由から好ましくなく、その割合が1:84を
越える場合には、反応塔内の原料が過度に攪拌されてし
まい、未反応の成分が反応塔から排出されることがあっ
たり、触媒が破損することがある等の理由から、これも
好ましくない。
The introduction ratio of the second raw material and hydrogen is preferably in the range of 1:14 to 1:84 by molar ratio, but if the ratio is less than 1:14, hydrogen may not spread into the reaction column. It is not preferable for the reason that it may occur or the reaction may slow down, and if the ratio exceeds 1:84, the raw materials in the reaction tower are excessively stirred and unreacted components This is also not preferable because it may be discharged from the reaction tower or the catalyst may be damaged.

【0061】第二段目の水素添加反応時の温度は200
〜300℃が好ましいが、この温度範囲を外れた場合に
は、未反応物の生成や分解物の生成等により何れの場合
も歩留まりの低下を招くことが多いので好ましくない。
The temperature during the second stage hydrogenation reaction is 200
Although the temperature is preferably up to 300 ° C., when the temperature is out of this range, the yield is often lowered due to the production of unreacted substances or decomposed products, which is not preferable.

【0062】さらに、第二段目の水素添加反応時の水素
圧力は50〜180kgf/cm2の範囲が好ましい
が、その圧力が50kgf/cm2 未満の場合には、水
素添加反応の速度が遅くなること等の理由から、また、
180kgf/cm2 を越える場合には圧力を高くして
もそれにつれて水素添加反応の反応速度が高くならない
ので、経済的な意味が無い等の理由から何れも好ましく
ない。
[0062] Further, the second stage hydrogen pressure during the hydrogenation reaction of is preferably in the range of 50~180kgf / cm 2, if the pressure is less than 50 kgf / cm 2, it may slow down the hydrogenation reaction For reasons such as
If the pressure exceeds 180 kgf / cm 2 , even if the pressure is increased, the reaction rate of the hydrogenation reaction does not increase accordingly, so that neither is economically desirable, and therefore neither is preferable.

【0063】このようにして第二段目の水素添加反応を
実施することにより、その後の気液分離器等によるメタ
ノール除去後の純度が93〜96%程度で、4−メチル
シクロヘキサンメタノール、4−ヒドロキシメチルシク
ロヘキサンカルボン酸メチル、ヘキサヒドロジメチルテ
レフタレート、メタノール及び式(I)等で表される化
合物等のような不純物含有量が4〜7%程度の1,4−
CHDM含有物を高い歩留まりで製造することができる
が、この後は、蒸留や分画等の通常の手段によって、
1,4−CHDM含有物から、更に純度の高い1,4−
CHDMを容易に回収することができる。
By carrying out the second-stage hydrogenation reaction in this manner, the purity after removal of methanol by a gas-liquid separator or the like is about 93 to 96%, and 4-methylcyclohexanemethanol, 4-methylcyclohexanemethanol 1,4-Methyl hydroxymethylcyclohexanecarboxylate, hexahydrodimethyl terephthalate, methanol and 1,4-containing 4 to 7% of impurities such as compounds represented by formula (I)
The CHDM-containing material can be produced with a high yield, but thereafter, by a usual means such as distillation or fractionation,
1,4-CHDM-containing material produces 1,4-
CHDM can be easily recovered.

【0064】[0064]

【実施例】【Example】

【0065】以下に、実施例を掲げて本発明の内容を更
に具体的に説明するが、本発明はその要旨を越えない限
り以下の例に限定されるものでは無い。
The contents of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0066】また、例の中では、特に断らない限り%は
重量%を表すものとする。
In the examples,% represents% by weight unless otherwise specified.

【0067】実施例−1(第一工程及び第二工程)Example-1 (first step and second step)

【0068】アルミナ担持0.5%ルテニウム水素添加
用触媒ペレット(3φ×3mm)[エヌ・イー・ケムキ
ャット社製]0.21m3 が充填され、120℃に温度
を保持したステンレス製連続水素添加反応装置(SUS
316L製)に、第一原料として、核飽和されたテレ
フタル酸ジメチルエステル80%とテレフタル酸ジメチ
ルエステル20%との混合物を120℃で加熱溶解した
ものをSV(触媒容積を1としたときの1時間あたりの
空間速度)=6で、同時に、水素を原料の未還元物総
量の18倍モルに相当する速度で、予め配管中で気液混
合し、予熱器で120℃まで加熱した後に該装置の上端
から連続的に供給した。
Continuous stainless steel hydrogenation reaction in which alumina-supported 0.5% ruthenium hydrogenation catalyst pellets (3φ × 3 mm) [manufactured by NE Chemcat] 0.21 m 3 were filled and the temperature was kept at 120 ° C. Device (SUS
316L), as a first raw material, a mixture of 80% terephthalic acid dimethyl ester and 20% terephthalic acid dimethyl ester, which were nuclear-saturated, was heated and dissolved at 120 ° C. (Space velocity per time) = 6, and at the same time, hydrogen was mixed in a pipe in advance at a rate corresponding to 18 times the total amount of unreduced materials as raw materials, and heated to 120 ° C. in a preheater. Was continuously supplied from the upper end of.

【0069】この時、装置内水素圧力を100kgf/
cm2 に保持して第一段の水素添加反応を行い、反応生
成物及び余剰の水素を該装置の下端から排出し、余剰の
水素を気液分離器で分離して、核飽和されたテレフタル
酸ジメチルエステルの純度が98.98%の第一段水素
添加反応生成物を得た。
At this time, the hydrogen pressure in the apparatus was 100 kgf /
The reaction product and surplus hydrogen are discharged from the lower end of the device by carrying out the first-stage hydrogenation reaction while maintaining the same in cm 2 , and the surplus hydrogen is separated by a gas-liquid separator to obtain a nuclear-saturated terephthalate. A first stage hydrogenation reaction product having a purity of acid dimethyl ester of 98.98% was obtained.

【0070】次に、銅クロム水素添加用触媒[エヌ・イ
ー・ケムキャット社製、Cu−1164T]0.28m
3 が充填され、温度250℃に保持したステンレス製連
続水素添加反応装置(SUS316L製)の上端から、
第二原料として第一段の水素添加反応生成物を250℃
に加熱したものを1時間あたりSV=0.45で、同時
に、水素を第二段水素添加反応の未反応物総量の44倍
モルに相当する速度で、予め配管中で気液混合し、予熱
器で250℃まで加熱した後に概装置の上端から連続的
に供給した。
Next, a catalyst for hydrogenating copper chromium hydrogen [Cu Chem 1164T, Cu-1164T] 0.28 m
From the upper end of a continuous hydrogenation reactor made of stainless steel (SUS316L) filled with 3 and kept at a temperature of 250 ° C,
The hydrogenation reaction product of the first stage was used as the second raw material at 250 ° C.
What was heated to SV = 0.45 per hour, and at the same time, hydrogen was preliminarily gas-liquid mixed in the pipe at a rate equivalent to 44 times the total amount of unreacted substances in the second stage hydrogenation reaction and preheated. After being heated to 250 ° C. in a vessel, it was continuously fed from the upper end of the apparatus.

【0071】この時、装置内水素圧力を150kgf/
cm2 に保持して第二段の水素添加反応を行い、反応生
成物及び余剰の水素を該装置の下端から排出し、水素添
加反応生成物を得た。
At this time, the hydrogen pressure in the apparatus was set to 150 kgf /
The second stage hydrogenation reaction was carried out with the pressure held at cm 2 , and the reaction product and excess hydrogen were discharged from the lower end of the apparatus to obtain a hydrogenation reaction product.

【0072】得られた反応生成物を反応時と同一温度及
び同一圧力の下で気液分離して余剰水素及びメタノール
を除去した後、ガスクロマトグラフ法により組成を分析
した結果、生成物中の1,4−シクロヘキサンジメタノ
ール純度は94.0%であり、生成物中に含まれる不純
物としては、4−ヒドロキシメチルシクロヘキサンカル
ボン酸メチル、1,4−シクロヘキサンジカルボン酸ジ
メチル等があった。
The obtained reaction product was subjected to gas-liquid separation under the same temperature and the same pressure as during the reaction to remove excess hydrogen and methanol, and then the composition was analyzed by gas chromatography. The purity of 4-cyclohexanedimethanol was 94.0%, and impurities contained in the product were methyl 4-hydroxymethylcyclohexanecarboxylate, dimethyl 1,4-cyclohexanedicarboxylate and the like.

【0073】実施例−2(第一工程)Example-2 (first step)

【0074】実施例−1のアルミナ担持0.5%ルテニ
ウム水素添加用触媒ペレットに代えて同一会社製、同一
サイズのアルミナ担持0.1%ルテニウム水素添加用触
媒を使用し、原料余熱温度、装置加熱温度及び反応温度
を170℃とし、反応時の水素圧力を150kgf/c
2 とし、原料供給速度をSV=3、水素供給速度を3
3倍モルとした他は実施例−1と同様にして第一段の水
素添加反応を行った結果、純度95.50%の第一段水
素添加反応生成物を得た。
In place of the alumina-supported 0.5% ruthenium hydrogenation catalyst pellets of Example-1, the same company, same-sized alumina-supported 0.1% ruthenium hydrogenation catalyst was used. The heating temperature and the reaction temperature are 170 ° C., and the hydrogen pressure during the reaction is 150 kgf / c.
m 2 , the raw material supply rate is SV = 3, and the hydrogen supply rate is 3
As a result of carrying out the first-stage hydrogenation reaction in the same manner as in Example 1 except that the molar ratio was 3-fold, a first-stage hydrogenation reaction product having a purity of 95.50% was obtained.

【0075】実施例−3(第一工程)Example-3 (first step)

【0076】原料及び水素を、下部に目皿板を備えた水
素添加装置の下端からそれぞれ線速度0.53m/秒及
び3.1m/秒で導入し、上端から生成物及び余剰の水
素を排出した他は実施例−1と同様にして第一段の水素
添加反応を行った結果、純度99.12%の第一段水素
添加反応生成物を得た。
The raw material and hydrogen were introduced at the linear velocities of 0.53 m / sec and 3.1 m / sec respectively from the lower end of the hydrogenation device equipped with a perforated plate at the bottom, and the product and excess hydrogen were discharged from the upper end. As a result of carrying out the first-stage hydrogenation reaction in the same manner as in Example 1 except for the above, a first-stage hydrogenation reaction product having a purity of 99.12% was obtained.

【0077】実施例−4(第一工程)Example-4 (first step)

【0078】原料及び水素を水素添加装置の下端から導
入し、上端から生成物及び余剰の水素を排出し、原料余
熱温度、装置加熱温度及び反応温度を120℃とした以
外は実施例−2と同様にして第一段の水素添加反応を行
った結果、純度93.69%の第一段水素添加反応生成
物を得た。
Example 2 and Example 2 except that the raw material and hydrogen were introduced from the lower end of the hydrogenation apparatus, the product and excess hydrogen were discharged from the upper end, and the raw material residual heat temperature, the apparatus heating temperature and the reaction temperature were 120 ° C. As a result of carrying out the first stage hydrogenation reaction in the same manner, a first stage hydrogenation reaction product having a purity of 93.69% was obtained.

【0079】実施例−5(第一工程)Example-5 (first step)

【0080】アルミナ担持1.0%ルテニウム水素添加
用触媒(エヌ・イー・ケムキャット社製、3φ×3m
m)を使用し、原料余熱温度、装置加熱温度及び反応温
度を170℃とし、反応時の水素圧力を9kgf/cm
2 とし、第一原料として、核飽和されたテレフタル酸ジ
メチルエステル95%とテレフタル酸ジメチルエステル
5%との混合物を加熱溶解したものを用い、原料供給速
度をSV=2とし、水素供給速度を84倍モルとした他
は実施例−3と同様にして第一段の水素添加反応を行っ
た結果、純度99.17%の第一段水素添加反応生成物
を得た。
Alumina-supported 1.0% ruthenium hydrogenation catalyst (manufactured by NE Chemcat Co., 3φ × 3 m)
m) is used, the raw material residual heat temperature, the apparatus heating temperature and the reaction temperature are 170 ° C., and the hydrogen pressure during the reaction is 9 kgf / cm 2.
2 , a mixture of 95% terephthalic acid dimethyl ester and 5% terephthalic acid dimethyl ester, which had been nuclear-saturated, was heated and dissolved, and the raw material supply rate was SV = 2 and the hydrogen supply rate was 84%. As a result of carrying out the first-stage hydrogenation reaction in the same manner as in Example 3 except that the molar amount was doubled, a first-stage hydrogenation reaction product having a purity of 99.17% was obtained.

【0081】実施例−6(第一工程)Example-6 (first step)

【0082】原料余熱温度、装置加熱温度及び反応温度
を170℃とし、反応時の水素圧力を9kgf/cm2
とし、原料供給速度をSV=1、水素供給速度を33倍
モルとした他は実施例−3と同様にして第一段の水素添
加反応を行った結果、純度92.67%の第一段水素添
加反応生成物を得た。
The raw material residual heat temperature, the apparatus heating temperature and the reaction temperature were set to 170 ° C., and the hydrogen pressure during the reaction was set to 9 kgf / cm 2.
And the raw material feed rate was SV = 1 and the hydrogen feed rate was 33 times mol, and the first-stage hydrogenation reaction was carried out in the same manner as in Example-3, and as a result, the first-stage hydrogen with a purity of 92.67% was obtained. A hydrogenation reaction product was obtained.

【0083】実施例−7(第一工程)Example-7 (first step)

【0084】アルミナ担持0.5%ルテニウム水素添加
触媒(エヌ・イー・ケムキャット社製、3φ×3mm)
を用い、原料余熱温度、装置加熱温度及び反応温度を9
0℃とし、第一原料として、核飽和されたテレフタル酸
ジメチルエステル90%とテレフタル酸ジメチルエステ
ル10%との混合物を加熱溶解したものを用い、原料供
給速度をSV=2とした他は実施例−4と同様にして第
一段の水素添加反応を行った結果、純度99.42%の
第一段水素添加反応生成物を得た。
Alumina-supported 0.5% ruthenium hydrogenation catalyst (manufactured by NE Chemcat, 3φ × 3 mm)
The raw material residual heat temperature, the apparatus heating temperature and the reaction temperature to 9
Example in which the temperature was set to 0 ° C., a mixture of 90% of terephthalic acid dimethyl ester and 10% of terephthalic acid dimethyl ester that had been nuclear-saturated was heated and dissolved, and the raw material supply rate was SV = 2. As a result of carrying out the first stage hydrogenation reaction in the same manner as in -4, a first stage hydrogenation reaction product having a purity of 99.42% was obtained.

【0085】実施例−8(第一工程)Example-8 (first step)

【0086】第一原料として、核飽和されたテレフタル
酸ジメチルエステル80%とテレフタル酸ジメチルエス
テル20%との混合物を加熱溶解したものを用い、原料
供給速度をSV=3とした他は実施例−7と同様にして
第一段の水素添加反応を行った結果、純度98.71%
の第一段水素添加反応生成物を得た。
As the first raw material, a mixture of 80% terephthalic acid dimethyl ester and 20% terephthalic acid dimethyl ester, which had been nuclear-saturated, was heated and dissolved, and the raw material supply rate was set to SV = 3. As a result of carrying out the first stage hydrogenation reaction in the same manner as in 7, the purity was 98.71%.
The first stage hydrogenation reaction product of was obtained.

【0087】実施例−9(第二工程)Example-9 (second step)

【0088】下部に目皿板を備えた第二段連続水素添加
装置の下端から第二原料及び水素をそれぞれ線速度0.
14m/秒及び8.7m/秒で供給し、上端から反応生
成物及び余剰の水素を排出した他は実施例−1の第二工
程と同様にして水素添加反応を行い、得られた反応生成
物をガスクロマトグラフ法により分析した結果、生成物
中の1,4−シクロヘキサンジメタノール純度は95.
5%であった。
From the lower end of the second-stage continuous hydrogenator equipped with a perforated plate at the bottom, the second raw material and hydrogen were supplied at a linear velocity of 0.
The hydrogenation reaction was performed in the same manner as in the second step of Example-1 except that the reaction product and excess hydrogen were discharged from the upper end at 14 m / sec and 8.7 m / sec. As a result of analyzing the product by gas chromatography, the purity of 1,4-cyclohexanedimethanol in the product was 95.
5%.

【0089】実施例−10(第二工程)Example-10 (second step)

【0090】第二原料として実施例−2で得た生成物を
使用し、その供給速度をSV=0.90とした他は実施
例−1の第二工程と同様にして水素添加反応を行い、得
られた反応生成物を分析した結果、生成物中の1,4−
シクロヘキサンジメタノール純度は93.2%であっ
た。
The hydrogenation reaction was carried out in the same manner as in the second step of Example-1, except that the product obtained in Example-2 was used as the second raw material and the supply rate was SV = 0.90. As a result of analyzing the obtained reaction product, 1,4-
The cyclohexanedimethanol purity was 93.2%.

【0091】実施例−11(第二工程)Example-11 (second step)

【0092】第二原料として実施例−6で得た生成物を
用い、第二段水素添加反応温度及び第二原料加熱温度、
予熱温度を270℃とし、第二原料の供給速度をSV=
0.30とし、水素供給速度を64倍モル、水素圧力を
100kgf/cm2 とした他は実施例−1の第二工程
と同様にして水素添加反応を行い、得られた反応生成物
を分析した結果、生成物中の1,4−シクロヘキサンジ
メタノール純度は91.1%であった。
Using the product obtained in Example-6 as the second raw material, the second stage hydrogenation reaction temperature and the second raw material heating temperature,
The preheating temperature is 270 ° C., and the supply rate of the second raw material is SV =
The hydrogenation reaction was performed in the same manner as in the second step of Example-1 except that the hydrogen supply rate was 0.30, the hydrogen supply rate was 64 times mol, and the hydrogen pressure was 100 kgf / cm 2 , and the obtained reaction product was analyzed. As a result, the purity of 1,4-cyclohexanedimethanol in the product was 91.1%.

【0093】実施例−12(第二工程)Example-12 (second step)

【0094】水素圧力を150kgf/cm2 とした他
は実施例−11と同様にして水素添加反応を行い、得ら
れた反応生成物を分析した結果、生成物中の1,4−シ
クロヘキサンジメタノール純度は92.0%であった。
Hydrogenation reaction was carried out in the same manner as in Example 11 except that the hydrogen pressure was 150 kgf / cm 2 , and the obtained reaction product was analyzed. As a result, 1,4-cyclohexanedimethanol in the product was analyzed. The purity was 92.0%.

【0095】実施例−13(第二工程)Example-13 (second step)

【0096】触媒として、エヌ・イー・ケムキャット社
製、のCu−1132−Tを用い、第二原料として実施
例−3で得た生成物を用い、第二段水素添加反応温度及
び第二原料加熱温度、予熱温度を230℃とし、水素供
給速度を84倍モル、とした他は実施例−1の第二工程
と同様にして水素添加反応を行い、得られた反応生成物
を分析した結果、生成物中の1,4−シクロヘキサンジ
メタノール純度は96.0%であった。
Cu-1132-T manufactured by NE Chemcat Co., Ltd. was used as the catalyst, the product obtained in Example-3 was used as the second raw material, and the second stage hydrogenation reaction temperature and the second raw material were used. Results of analyzing the obtained reaction product by carrying out hydrogenation reaction in the same manner as in the second step of Example-1 except that the heating temperature and the preheating temperature were 230 ° C. and the hydrogen supply rate was 84 times mol. The purity of 1,4-cyclohexanedimethanol in the product was 96.0%.

【0097】実施例−14(第二工程)Example-14 (second step)

【0098】第二段水素添加反応温度及び第二原料加熱
温度、予熱温度を250℃とし、水素供給速度を44倍
モル、とした他は実施例−13と同様にして水素添加反
応を行い、得られた反応生成物を分析した結果、生成物
中の1,4−シクロヘキサンジメタノール純度は96.
3%であった。
The hydrogenation reaction was carried out in the same manner as in Example-13 except that the second stage hydrogenation reaction temperature, the second raw material heating temperature and the preheating temperature were 250 ° C. and the hydrogen supply rate was 44 times mol. As a result of analyzing the obtained reaction product, the purity of 1,4-cyclohexanedimethanol in the product was 96.
It was 3%.

【0099】実施例−15(第二工程)Example-15 (second step)

【0100】第二原料として、実施例−1の第一段水素
添加反応生成物に第二段水素添加反応生成物の蒸留残渣
を混合して第二段水素添加反応の未還元物濃度を77.
1%に調整したものを用いた他は、実施例−9と同様に
して水素添加反応を行い、得られた反応生成物を分析し
た結果、生成物中の1,4−シクロヘキサンジメタノー
ル純度は96.0%であった。
As the second raw material, the first stage hydrogenation reaction product of Example-1 was mixed with the distillation residue of the second stage hydrogenation reaction product to adjust the unreduced product concentration of the second stage hydrogenation reaction to 77. .
A hydrogenation reaction was carried out in the same manner as in Example-9 except that the product adjusted to 1% was used, and the obtained reaction product was analyzed. As a result, the purity of 1,4-cyclohexanedimethanol in the product was It was 96.0%.

【0101】[0101]

【発明の効果】【The invention's effect】

【0102】以上に述べたように、本発明を実施するこ
とにより、パラジウムよりも安価なルテニウム触媒の採
用が可能になり、且つ、従来に較べて温和な条件での第
一段目の水素添加反応を実現することが可能になり、全
工程で生じる不純物の生成量を少なくすることが可能に
なり、経済的に有利に1,4−シクロヘキサンジメタノ
ールを製造することができる。
As described above, by carrying out the present invention, it becomes possible to employ a ruthenium catalyst which is cheaper than palladium, and the hydrogenation of the first stage under milder conditions than conventional ones can be carried out. The reaction can be realized, the amount of impurities produced in all steps can be reduced, and 1,4-cyclohexanedimethanol can be economically produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 29/19 C07C 29/19 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07C 29/19 C07C 29/19

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1,4−シクロヘキサンジメタノールを
製造するに際し、(1)ルテニウム金属の担持割合が
0.05〜10重量%のルテニウム水素化触媒が充填さ
れた固定床連続式水素添加装置の上端又は下端に、水素
を導入し、同時に、第一原料としてテレフタル酸ジアル
キルエステル又は、テレフタル酸ジアルキルエステルと
第一段水素添加反応生成物とを、SV(触媒容積を1と
したときの1時間あたりの空間速度)=1〜10で導入
し、第一段水素添加反応の未反応成分の初期濃度を5〜
100重量%として、温度90〜240℃、水素圧力5
〜150kgf/cm2 の条件で第一段の水素添加反応
を行い、反応生成物及び余剰の水素を該装置の下端又は
上端から排出する第一工程、(2)銅クロマイト水素化
触媒が充填された固定床連続式水素添加装置の上端又は
下端に水素を導入し、同時に、第二原料として第一段水
素添加反応生成物又は、式(I)で表される化合物、式
(II)で表される化合物、式(III)で表される化合物
から成る群から選ばれる2種以上が相互に任意の組み合
わせでエステル交換により1〜10個結合した化合物の
混合物と第一段水素添加反応生成物とを、SV=0.1
〜1で導入し、第二段水素添加反応の未反応成分の初期
濃度を10〜100重量%として、温度200〜300
℃、水素圧力50〜180kgf/cm2 の条件で第二
段の水素添加反応を行い、反応生成物及び余剰の水素を
該装置の下端又は上端から排出する第二工程、の二工程
を逐次的に経由することを特徴とする1,4−シクロヘ
キサンジメタノールの製造方法。 【化1】 【化2】 【化3】
1. When producing 1,4-cyclohexanedimethanol, a fixed-bed continuous hydrogenation apparatus filled with (1) a ruthenium hydrogenation catalyst having a ruthenium metal loading ratio of 0.05 to 10% by weight is used. Hydrogen is introduced into the upper end or the lower end, and at the same time, terephthalic acid dialkyl ester as the first raw material or terephthalic acid dialkyl ester and the first stage hydrogenation reaction product are mixed with SV (1 hour when the catalyst volume is 1). (Space velocity per unit) = 1 to 10, and the initial concentration of unreacted components in the first-stage hydrogenation reaction is 5 to 5
100% by weight, temperature 90 to 240 ° C., hydrogen pressure 5
The first step of carrying out the first stage hydrogenation reaction under the condition of up to 150 kgf / cm 2 and discharging the reaction product and excess hydrogen from the lower end or the upper end of the apparatus, (2) is filled with a copper chromite hydrogenation catalyst Hydrogen is introduced into the upper or lower end of the fixed bed continuous hydrogenation device, and at the same time, the first stage hydrogenation reaction product as the second raw material, the compound represented by the formula (I) or the compound represented by the formula (II) is used. And a mixture of compounds in which 2 to 10 selected from the group consisting of compounds represented by formula (III) are bound to each other by transesterification in an arbitrary combination with each other and a first stage hydrogenation reaction product And SV = 0.1
˜1, and the initial concentration of the unreacted components of the second stage hydrogenation reaction is 10 to 100% by weight, and the temperature is 200 to 300.
The second step of carrying out the second stage hydrogenation reaction under the conditions of ℃ and hydrogen pressure of 50 to 180 kgf / cm 2 and discharging the reaction product and surplus hydrogen from the lower end or the upper end of the apparatus is carried out sequentially. The method for producing 1,4-cyclohexanedimethanol is characterized in that Embedded image Embedded image Embedded image
【請求項2】 1,4−シクロヘキサンジメタノールを
製造するに際し、(1)装置の下部に目皿板を備えた固
定床連続式水素添加装置の下端から水素を導入し、同時
に、第一原料を導入し、第一段の水素添加反応を行い、
反応生成物及び余剰の水素を該装置の上端から排出する
第一工程、(2)塔内の下部に目皿板を備えた固定床連
続式水素添加装置の下端から水素を導入し、同時に、第
二原料を導入し、第二段の水素添加反応を行い、反応生
成物及び余剰の水素を該装置の上端から排出する第二工
程、の二工程を逐次的に経由することを特徴とする請求
項1記載の1,4−シクロヘキサンジメタノールの製造
方法。
2. When producing 1,4-cyclohexanedimethanol, (1) hydrogen is introduced from the lower end of a fixed bed continuous hydrogenation device equipped with a perforated plate at the bottom of the device, and at the same time, the first raw material is introduced. Is introduced, the first stage hydrogenation reaction is carried out,
First step of discharging the reaction product and excess hydrogen from the upper end of the device, (2) introducing hydrogen from the lower end of a fixed bed continuous hydrogenation device equipped with a perforated plate at the bottom of the tower, and at the same time, A second step of introducing a second raw material, performing a second stage hydrogenation reaction, and discharging a reaction product and excess hydrogen from the upper end of the apparatus, which is characterized by sequentially passing through two steps. The method for producing 1,4-cyclohexanedimethanol according to claim 1.
【請求項3】 第一原料の未反応成分の濃度を5〜20
重量%の範囲に調整して第一段の水素添加反応を実施
し、第二原料の未反応成分の濃度を20〜100重量%
の範囲に調整して第二段の水素添加反応を実施すること
を特徴とする請求項1〜2の何れかに記載の1,4−シ
クロヘキサンジメタノールの製造方法。
3. The concentration of the unreacted component of the first raw material is 5 to 20.
The first stage hydrogenation reaction is carried out by adjusting to the range of 20% by weight, and the concentration of unreacted components of the second raw material is 20 to 100% by weight.
The method for producing 1,4-cyclohexanedimethanol according to any one of claims 1 to 2, wherein the hydrogenation reaction of the second stage is carried out by adjusting to the range.
【請求項4】 第一原料と水素との導入割合をモル比で
1:6〜1:33の範囲で実施し、第二原料と水素との
導入割合をモル比で1:14〜1:84の範囲で実施す
ることを特徴とする請求項1〜3の何れかに記載の1,
4−シクロヘキサンジメタノールの製造方法。
4. The introduction ratio of the first raw material and hydrogen is carried out in a molar ratio of 1: 6 to 1:33, and the introduction ratio of the second raw material and hydrogen is 1:14 to 1: 1. It implements in the range of 84, 1, in any one of Claims 1-3 characterized by the above-mentioned.
Method for producing 4-cyclohexanedimethanol.
【請求項5】 目皿板により、原料と水素が目皿板の開
孔部を通過するときの速度がそれぞれ線速度で0.01
m/秒〜1.0m/秒及び0.1m/秒〜12.0m/
秒の範囲になるように調節することを特徴とする請求項
2〜4の何れかに記載の1,4−シクロヘキサンジメタ
ノールの製造方法。
5. The linear plate has a linear velocity such that the raw material and hydrogen pass through the apertures of the perforated plate at a velocity of 0.01.
m / sec to 1.0 m / sec and 0.1 m / sec to 12.0 m /
The method for producing 1,4-cyclohexanedimethanol according to any one of claims 2 to 4, wherein the method is adjusted to be within the range of seconds.
JP4357871A 1992-12-25 1992-12-25 Method for producing 1,4-cyclohexane dimethanol Expired - Lifetime JP2528067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357871A JP2528067B2 (en) 1992-12-25 1992-12-25 Method for producing 1,4-cyclohexane dimethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357871A JP2528067B2 (en) 1992-12-25 1992-12-25 Method for producing 1,4-cyclohexane dimethanol

Publications (2)

Publication Number Publication Date
JPH06192146A JPH06192146A (en) 1994-07-12
JP2528067B2 true JP2528067B2 (en) 1996-08-28

Family

ID=18456369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357871A Expired - Lifetime JP2528067B2 (en) 1992-12-25 1992-12-25 Method for producing 1,4-cyclohexane dimethanol

Country Status (1)

Country Link
JP (1) JP2528067B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922690B1 (en) 1996-06-28 2003-12-03 SK NJC Co., Ltd. Process for the preparation of cyclohexanedimethanol
US6919489B1 (en) 2004-03-03 2005-07-19 Eastman Chemical Company Process for a cyclohexanedimethanol using raney metal catalysts
US7538060B2 (en) 2007-02-14 2009-05-26 Eastman Chemical Company Palladium-copper chromite hydrogenation catalysts
CN102256919B (en) * 2008-12-17 2014-06-25 巴斯夫欧洲公司 Continuous method for producing substituted cyclohexylmethanols
US8410317B2 (en) * 2011-07-29 2013-04-02 Eastman Chemical Company Process for the preparation of 1,4-cyclohexanedimethanol
KR101883993B1 (en) 2016-09-29 2018-07-31 롯데케미칼 주식회사 Preparation method of 1,3-cyclohexanedicarboxylic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334149A (en) * 1964-07-21 1967-08-01 Eastman Kodak Co Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite
JPS50130738A (en) * 1974-04-03 1975-10-16
JPS5828255B2 (en) * 1974-05-04 1983-06-15 東洋紡績株式会社 1,4 Cyclohexane dimethanol
JPS52242A (en) * 1975-06-18 1977-01-05 Toyobo Co Ltd Process for preparing 1,4-cyclohexane dimethanol
DE2823165A1 (en) * 1978-05-26 1979-11-29 Bayer Ag PROCESS FOR MANUFACTURING CYCLOALIPHATIC CARBONIC ACID ESTERS
DE3843956A1 (en) * 1988-12-24 1990-06-28 Huels Chemische Werke Ag METHOD FOR PRODUCING ALIPHATIC AND CYCLOALIPHATIC DIOLS BY CATALYTIC HYDRATION OF DICARBONIC ACID ESTERS

Also Published As

Publication number Publication date
JPH06192146A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
EP0601571B1 (en) Method for purifying 1,4-butanediol, by hydrogenation and distillation
JPH11322658A (en) Production of acetaldehyde from acetic acid and catalyst to be used therefor
EP0703896B1 (en) Low pressure process for the manufacture of cyclohexanedicarboxylate esters
JPH0357905B2 (en)
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JP2528067B2 (en) Method for producing 1,4-cyclohexane dimethanol
JP3484305B2 (en) Method for continuous production of 4-amino-2,2,6,6-tetra-methylpiperidine
US4225729A (en) Process for hydrogenation of diacetoxybutene
JPH06321823A (en) Production of 1,3-cyclohexanedimethanol
EP2398754B1 (en) Continuous process to produce hexafluoroisopropanol
KR101639487B1 (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
US6965053B2 (en) Process for the production of aromatic amines
JPS6228081B2 (en)
JP2819171B2 (en) Method for producing aromatic alcohol
CA1216304A (en) Continuous process for the production of methomyl
US4178295A (en) Method of preparing phthalide
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
JP2528067C (en)
JP3336644B2 (en) Method for hydrogenating diacetoxybutene
JPH0931011A (en) Production of succinic acid
JP3959793B2 (en) Method for producing butanediol
JP2024511854A (en) Process carried out adiabatically for the production of 1,3-butadiene from a mixture of ethanol and acetaldehyde
JPH0576932B2 (en)
JP2000229904A (en) Production of saturated ketone compound
US4264527A (en) Process for the preparation of cyclopropylmethyl-n-propylamine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960312