JP2527304B2 - Printed circuit board - Google Patents

Printed circuit board

Info

Publication number
JP2527304B2
JP2527304B2 JP60095542A JP9554285A JP2527304B2 JP 2527304 B2 JP2527304 B2 JP 2527304B2 JP 60095542 A JP60095542 A JP 60095542A JP 9554285 A JP9554285 A JP 9554285A JP 2527304 B2 JP2527304 B2 JP 2527304B2
Authority
JP
Japan
Prior art keywords
cloth
cross
resin
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60095542A
Other languages
Japanese (ja)
Other versions
JPS61258043A (en
Inventor
博紀 太田
巍 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60095542A priority Critical patent/JP2527304B2/en
Priority to EP19860105496 priority patent/EP0199328B1/en
Priority to DE8686105496T priority patent/DE3686346T2/en
Publication of JPS61258043A publication Critical patent/JPS61258043A/en
Priority to US07/246,967 priority patent/US4981753A/en
Application granted granted Critical
Publication of JP2527304B2 publication Critical patent/JP2527304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、プリント回路基板に関するものである。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a printed circuit board.

[発明の技術的背景と問題点] 従来のプリント回路基板用クロスは、無機質繊維製の
ものとしては無アルカリガラス糸(例えばJIS R 3413に
記述されているもの)によるガラスクロスが一般的であ
り、ごく少量として、石英ガラス繊維によるクロスが用
いられている。これらの繊維はいずれも熔融法で製造さ
れるものであり、その単繊維の断面形状はほぼ真円また
は真円に近い円形で実際上円形と云ってよい。これらの
繊維を製織してなるクロス(例えばJIS R 3414に記述さ
れているもの)は、不飽和ポリエステル樹脂、エポキシ
樹脂、フェノール樹脂などを結合材とした成形品、例え
ばプリント回路基板基材として使用される場合には、先
ずヒートクリーニング等の方法によって修束剤が除去さ
れ、樹脂との接着を強固にするためクロム系処理剤やシ
ラン系処理剤による表面処理が施された処理クロス(例
えばJIS R 3416に記述されているもの)として使用され
る。
[Technical Background and Problems of the Invention] As a conventional cloth for printed circuit board, a glass cloth made of non-alkali glass thread (for example, one described in JIS R 3413) is generally used as the inorganic fiber cloth. As a very small amount, a cloth made of quartz glass fiber is used. All of these fibers are produced by the melting method, and the cross-sectional shape of the single fiber may be a substantially perfect circle or a circle close to a perfect circle, and may be said to be practically a circle. A cloth made by weaving these fibers (for example, one described in JIS R 3414) is used as a molded product using unsaturated polyester resin, epoxy resin, phenol resin, etc. as a binder, for example, as a printed circuit board substrate. In that case, the bundling agent is first removed by a method such as heat cleaning, and a treatment cloth (for example, JIS JIS) that has been surface-treated with a chromium-based treatment agent or a silane-based treatment agent to strengthen the adhesion with the resin. As described in R 3416).

プリント回路基板は樹脂を結合材として処理クロスを
積層してつくられた積層板である。積層数は通常は4〜
8層であるが、多層積層板(以下多層板と呼ぶ)におい
ては10数層のもの、多いものではそれ以上のものもあ
る。この積層板の片面もしくは両面に銅はくを張り合わ
せたものをプリント回路用銅張積層板と云っている。
The printed circuit board is a laminated board made by laminating processing cloth using resin as a binder. The number of layers is usually 4 to
Although there are eight layers, there are more than 10 layers in a multi-layer laminated board (hereinafter referred to as a multi-layer board), and many have more layers. A laminate obtained by laminating copper foil on one side or both sides of this laminate is called a copper clad laminate for printed circuits.

プリント回路基板用クロスとして使われるガラスクロ
スは厚さおよそ0.03〜0.18mm、質量25〜200g/m2程度の
平織の無アルカリガラスクロスが一般的である。ガラス
クロスがプリント回路基板用基材としてもつ特徴は、そ
の電気特性、機械的性質、化学的抵抗性、非吸水性など
の諸特性、特に不燃性、耐熱性、寸法安定性である。ま
た品質規格は一般用ガラスクロスに比べ厳しく特に数値
諸元の均一性、外観欠点について要求が厳しい。
The glass cloth used as a cloth for printed circuit boards is generally a plain weave non-alkali glass cloth having a thickness of about 0.03 to 0.18 mm and a mass of about 25 to 200 g / m 2 . The characteristics of the glass cloth as a substrate for a printed circuit board are various characteristics such as its electrical characteristics, mechanical properties, chemical resistance, non-water absorption, etc., especially nonflammability, heat resistance, and dimensional stability. In addition, the quality standards are stricter than those of general-purpose glass cloth, and in particular, the requirements for uniformity of numerical specifications and appearance defects are strict.

プリント回路基板が特に多層板の場合、多層プリント
回路基板あるいは多層プリント回路用銅張積層板(本願
においてはいずれも以下単に多層板と呼ぶ)のもつべき
性能のうち特に基材であるガラスクロスと樹脂に多くを
依存する性能の一つとして寸法安定性(変化率)があげ
られる。JIS C6486−1980によれば、多層プリント回路
用銅張積層板(ガラス布基材エポキシ樹脂)の寸法安定
性(変化率)としてエッチング後において、0.05%以
下、熱処理後において、0.05%以下が要求されている。
通常の無アルカリガラス糸からなるガラスクロスによる
多層板はこの要求値を満足するが、積層数が増加するに
つれこの要求値は厳しい衝壁となっている。JIS C6486
−1980における寸法安定性(変化率)とは、原厚のまま
切り出した試験片のエッチングによる銅はく除去後の寸
法変化率ならびに銅はく除去後の寸法と170℃で30分処
理し室温まで冷却後の寸法の変化率である。該寸法安定
性に寄与する因子としては、樹脂の熱膨張係数等熱的性
質、ガラスの熱膨張係数、樹脂とガラスの結合の強さ等
がある。寸法安定性を良くする方向として、樹脂の熱膨
張係数が小さいこと、加熱の前後での原寸への復帰性の
良いこと、ガラスの熱膨張係数(通常樹脂より小さい)
が小さいこと、ならびに樹脂とガラスの結合を強くする
ことが考えられる。
In the case where the printed circuit board is a multi-layer board in particular, a glass cloth which is a base material among the performance to be possessed by the multi-layer printed circuit board or the copper-clad laminate for a multi-layer printed circuit (hereinafter, simply referred to as a multi-layer board). Dimensional stability (rate of change) is one of the performances that depend largely on the resin. According to JIS C6486-1980, the dimensional stability (rate of change) of copper clad laminates (glass cloth base epoxy resin) for multilayer printed circuits is required to be 0.05% or less after etching and 0.05% or less after heat treatment. Has been done.
A multi-layer board made of a normal glass cloth made of alkali-free glass yarn satisfies this requirement, but as the number of laminated layers increases, this requirement becomes a severe barrier. JIS C6486
The dimensional stability (rate of change) at -1980 is the rate of dimensional change after removal of the copper foil by etching the test piece cut out in the original thickness, and the dimension after removal of the copper foil and room temperature after treatment at 170 ° C for 30 minutes. Is the rate of dimensional change after cooling. Factors that contribute to the dimensional stability include thermal properties such as the thermal expansion coefficient of the resin, the thermal expansion coefficient of the glass, and the strength of the bond between the resin and the glass. In order to improve dimensional stability, the coefficient of thermal expansion of the resin is small, the ability to return to the original size before and after heating is good, and the coefficient of thermal expansion of glass (smaller than ordinary resin)
May be small, and the bond between the resin and glass may be strengthened.

[発明の目的] 本発明は無機質繊維からなるクロスと樹脂とからなる
寸法安定性の優れたプリント回路基板を提供することを
目的とする。
[Object of the Invention] An object of the present invention is to provide a printed circuit board which is made of a cloth made of inorganic fibers and a resin and has excellent dimensional stability.

[発明の目的を達成するための手段] 本発明のプリント回路基板は、単繊維の断面形状が
「くの字」状であり、かつ、その「くの字」の湾曲の外
側の少なくとも一部に凹部を有する形状の無機質繊維を
主体としてなるプリント回路基板用クロスと樹脂とから
なるものである。
[Means for Achieving the Object of the Invention] In the printed circuit board of the present invention, the cross-sectional shape of the monofilament is a "dogleg" shape, and at least a part of the outside of the "dogleg" curve. It is composed of a resin and a cloth for a printed circuit board, which is mainly composed of an inorganic fiber having a concave portion.

ここに無機質繊維とは、Eガラス繊維、石英ガラス繊
維、その他の組成のガラス繊維等であり、クロスとは無
処理のクロスならびに処理クロスならびにロービングク
ロスを含むものとする。
Here, the inorganic fibers include E glass fibers, quartz glass fibers, glass fibers having other compositions, and the like, and the cloth includes untreated cloth, treated cloth, and roving cloth.

前記した断面形状をもつ無機質繊維として例えばゾル
ゲル直接紡糸法によって得られる石英ガラス繊維が挙げ
られる。
Examples of the inorganic fibers having the above-mentioned cross-sectional shape include quartz glass fibers obtained by the sol-gel direct spinning method.

ゾルゲル直接紡糸法とは、金属アルコレート(エチル
シリケート、メチルシリケート等)を酸またはアルカリ
を触媒として加水分解・重合させて の如き鎖状高分子を主体としたゾル液を作り、適度な粘
性(10〜1,000poise)になったところで、ゾル液をノズ
ルから押出して紡糸し、ゲル繊維を作成する。この状態
ではまだ繊維内にはアルコキシドなど多くの炭素が残存
しており、繊維の引張り強度は低いので、700〜1300℃
まで数分〜数時間加熱処理して残留カーボンを揮散させ
ると共に、焼成して高強度の石英ガラス繊維を得る。
The sol-gel direct spinning method is to hydrolyze and polymerize a metal alcoholate (ethyl silicate, methyl silicate, etc.) with an acid or alkali as a catalyst. A sol liquid mainly composed of a chain polymer as described above is prepared, and when the viscosity becomes appropriate (10 to 1,000 poise), the sol liquid is extruded from a nozzle and spun to form a gel fiber. In this state, a lot of carbon such as alkoxide still remains in the fiber, and the tensile strength of the fiber is low, so 700-1300 ℃
Heat treatment is performed for several minutes to several hours to volatilize residual carbon, and is baked to obtain high-strength quartz glass fiber.

従来,石英ガラス繊維は熔融法で作成されており、高
純度の珪砂などを1600〜1800℃で熔融して石英ガラスの
円柱状プリカーサーを作り、これを再度ガスバーナー等
で再熔融して繊維を作成する。このため、莫大なエネル
ギーを要し、極めて高価な繊維になるが、ゾルゲル法で
は、せいぜい1200〜1300℃までの熱処理ですむため、安
価な石英ガラス繊維が得られることとなる。
Conventionally, quartz glass fibers have been produced by the melting method.High-purity silica sand is melted at 1600 to 1800 ° C to make a cylindrical precursor of quartz glass, which is then remelted with a gas burner etc. create. For this reason, a huge amount of energy is required and an extremely expensive fiber is obtained, but the sol-gel method requires heat treatment up to 1200 to 1300 ° C. at the most, so that an inexpensive quartz glass fiber can be obtained.

ゾルゲル直接紡糸法は、前述した如く、金属アルコレ
ートを酸またはアルカリを触媒として加水分解・重合さ
せたゾル液を紡糸することにあるが、この場合主とし
て、金属アルコレート,酢酸セルロース,水,触媒、そ
れに水を希釈するためのアセトン等からなる出発原料を
用いると、断面形状が、「くの字」状の単繊維が得られ
る。
As described above, the sol-gel direct spinning method consists in spinning a sol solution obtained by hydrolyzing and polymerizing a metal alcoholate with an acid or an alkali as a catalyst. In this case, the metal alcoholate, cellulose acetate, water and catalyst are mainly used. If a starting material made of acetone or the like for diluting water is used, a single fiber having a "doglegged" cross section can be obtained.

本発明における、ゾルゲル直接紡糸法によって得た石
英ガラス繊維の単繊維の断面形状の一部態様を第1図
(a)に示す。第1図(b)はくの字の湾曲の外側がな
だらかな曲線状をなした断面形状の態様である。本発明
では上記(b)の断面形状の態様も含めて「くの字」状
の断面形状という。また、上記(b)の断面形状の無機
質繊維も含めて、単繊維の断面形状が「くの字」状の無
機質繊維という。(b)に比べ(a)は、外周の長さが
長い。(a),(b)は近似的な意味で対称軸をもつ
が、対称軸をもたない、歪んだ断面形状のものも本発明
では「くの字」状という。「くの字」状の(a),
(b)共になだらかな曲線形状であり、本発明における
単繊維の断面形状のひとつの態様である(a)は二部分
に凹部であるA部分をもっている。
FIG. 1 (a) shows a partial aspect of the cross-sectional shape of the single fiber of the quartz glass fiber obtained by the sol-gel direct spinning method in the present invention. FIG. 1 (b) shows a mode of a cross-sectional shape in which the outer side of the curved V-shaped curve has a gentle curved shape. In the present invention, the cross-sectional shape including the above (b) cross-sectional shape is referred to as a “doglegged” shape. In addition, the inorganic fibers having the cross-sectional shape of the above (b) are also referred to as inorganic fibers whose cross-sectional shape is a "dogleg". The outer circumference is longer in (a) than in (b). Although (a) and (b) have an axis of symmetry in an approximate sense, a distorted cross-sectional shape having no axis of symmetry is also referred to as a "dogleg" shape in the present invention. "A square" shape (a),
(B) Both have a gentle curved shape, and (a) which is one aspect of the cross-sectional shape of the single fiber in the present invention has an A portion which is a recess in two portions.

「くの字」状断面の「くの字」の湾曲の度合を第2図
(a),(b)に示す角αで表し、αを湾曲角と呼ぶこ
とにする。αは第2図(a),(b)に示すように、単
繊維の「くの字」状断面を、湾曲の内側部を下方にし
て、水平面に垂直に立て、水平面との接点をAおよびB
とし、線分ABの中点をM、線分ABの垂直二等分線をm,m
と「くの字」状断面の湾曲の内側部との交点をOとした
とき、OAとOBのなす角、即ち∠AOBである。第2図
(a),(b)において、直線lは前記水平面上にあっ
てA,Bを結ぶ直線である。lと「くの字」状断面との接
点がAおよびBである。αを測定する場合、「くの字」
状断面または該断面を相似に拡大した曲線形において、
湾曲の内側部分を形成する両凸部に接点をもつ一つの直
線を引き、該接点をA,Bとして以下上記の如く∠AOBを求
めてもよい。また、上記接点を求め難い場合は、近似的
な意味で点と見 すことができれば実際上問題はない。
The degree of bending of the "dogleg" in the "dogleg" cross section is represented by an angle α shown in FIGS. 2A and 2B, and α is called a bending angle. As shown in FIGS. 2 (a) and 2 (b), α stands vertically with respect to the horizontal plane with the inner side of the curve facing downward, and the contact point with the horizontal plane is A. And B
And the midpoint of line segment AB is M, and the perpendicular bisector of line segment AB is m, m
And O is the intersection of the curved inner part of the V-shaped cross section and OA, it is ∠AOB. In FIGS. 2A and 2B, the straight line 1 is a straight line connecting A and B on the horizontal plane. The points of contact between l and the "dogleg" cross section are A and B. When measuring α
In a cross section or a curved shape in which the cross section is enlarged in a similar manner,
It is also possible to draw a straight line having a contact point on both convex portions forming the inner part of the curve and set the contact points as A and B to obtain ∠AOB as described above. Also, if it is difficult to find the contact point, there is no practical problem if it can be regarded as a point in an approximate sense.

本発明における無機質繊維、ゾルゲル直接紡糸法によ
り製作した石英ガラス繊維において好ましいαの範囲
は、80゜≦α≦170゜の範囲であり、さらに好ましくは9
0゜≦α≦170゜の範囲である。
In the inorganic fiber of the present invention and the silica glass fiber produced by the sol-gel direct spinning method, the preferable range of α is 80 ° ≦ α ≦ 170 °, and more preferably 9 °.
The range is 0 ° ≦ α ≦ 170 °.

前記した出発原料において水に対するアセトンの比率
を大きくすると、単繊維の断面形状は、第1図(b)の
「くの字」状から同図(a)の「くの字」状に次第に移
行する。即ち、第1図(a)の断面形状と(b)の断面
形状は前記した出発原料の、成分は同じで単に水に対す
るアセトンの比率が異る場合に対応している。
When the ratio of acetone to water in the above-mentioned starting material is increased, the cross-sectional shape of the single fiber gradually shifts from the "dogleg" shape of Fig. 1 (b) to the "dogleg" shape of Fig. 1 (a). To do. That is, the cross-sectional shape of FIG. 1 (a) and the cross-sectional shape of FIG. 1 (b) correspond to the case where the starting materials described above have the same components but simply different ratios of acetone to water.

湾曲角αがあまり小さいと、樹脂を含浸させる積層板
をつくる際、「くの字」の湾曲部の開口部が狭くなるた
め、その部分に樹脂が侵入し難くなり、樹脂と単繊維と
の結合を強化するために単繊維の表面積を大きくしたこ
との効果が発現し難くなる。当然のことであるが、樹脂
が存在しない単繊維の表面部分では、単繊維と樹脂の結
合は存在しないからである。また出発原料の構成から、
αはあまり大きくはなり得ないことがわかっている。
If the bending angle α is too small, the opening of the curved portion of the "dogleg" will become narrow when making a laminated plate impregnated with resin, so it will be difficult for the resin to enter that portion, and the resin and monofilament The effect of increasing the surface area of the single fiber in order to strengthen the bond is less likely to be exhibited. This is because, of course, there is no bond between the single fiber and the resin on the surface portion of the single fiber where the resin does not exist. Also, from the composition of the starting material,
It is known that α cannot be too large.

単繊維の断面形状が「くの字」状の無機質繊維および
/または単繊維の断面形状が前記「くの字」状の少なく
とも一部に凹部を有する形状の無機質繊維を主体として
なるクロスをつくる際の製織性は、従来の無機質繊維に
よるクロスの製織性と比べて格別の問題は生じない。ま
た、本発明に係るクロスの、ヒートクリーニング等によ
る集束剤の除去や各種処理剤による表面処理も従来のク
ロスの場合と特に変らない。また本発明のプリント回路
基板のドリル加工性も従来品と特に変ることがない。
A cloth mainly composed of an inorganic fiber having a cross-section of a single fiber and / or an inorganic fiber having a recess in at least a part of the cross-section of a single fiber is produced. The weaving property at that time does not cause any particular problem as compared with the weaving property of a cloth made of a conventional inorganic fiber. Further, the removal of the sizing agent by heat cleaning or the like of the cloth according to the present invention and the surface treatment with various treatment agents are not particularly different from those of the conventional cloth. Further, the drilling workability of the printed circuit board of the present invention is not different from that of the conventional product.

また本発明における無機質繊維の単繊維の引張り強度
は、紡糸工程、それ以降の加工工程、および製織工程に
おける作業性や品質面を考慮して、約15kg/mm2以上を有
することが望ましい。
Further, the tensile strength of the inorganic single fiber in the present invention is preferably about 15 kg / mm 2 or more in consideration of workability and quality in the spinning step, the subsequent processing steps, and the weaving step.

本発明におけるプリント回路基板用クロスは厚さが0.
025〜0.40mm、好ましくは0.030〜0.30mm、重量が15〜45
0g/m2、特に15〜300g/m2の範囲が好ましい。
The printed circuit board cloth according to the present invention has a thickness of 0.
025 ~ 0.40 mm, preferably 0.030 ~ 0.30 mm, weight 15 ~ 45
0 g / m 2, in particular in the range of 15~300g / m 2 is preferred.

上記範囲より薄くなり、あるいは質量が軽くなると、
基板にしたときのクロスの補強効果が小さくなり、所期
の目的が得られなくなる。しかし、多層板に使う場合に
は上記程度の薄いクロスが必要であり、一方、プリント
回路基板用であるので極端に厚いクロスは必要がない。
また種々の厚さのクロスを用意することにより、小数枚
の厚いクロスの代りに、基板中のクロスの全重量を変え
ないで、より多くの枚数の薄いクロスを使うこと、ある
いはその逆など、補強効果、作業性等を考慮しながら使
用するクロスの選択の幅を広げることができる。
If it becomes thinner than the above range or the mass becomes lighter,
The reinforcing effect of the cloth when it is used as a substrate becomes small, and the intended purpose cannot be obtained. However, when it is used for a multi-layer board, a thin cloth having the above-mentioned degree is required. On the other hand, since it is for a printed circuit board, an extremely thick cloth is not necessary.
Also, by preparing cloths of various thicknesses, instead of a small number of thick cloths, use a larger number of thin cloths without changing the total weight of cloths in the substrate, or vice versa. It is possible to widen the selection range of the cloth to be used while considering the reinforcing effect, workability and the like.

本発明におけるプリント回路基板用クロスは単繊維の
断面形状が「くの字」状の無機質繊維および/または単
繊維の断面形状が前記「くの字」状の少なくとも一部に
凹部を有する形状の無機質繊維を主体としてなるプリン
ト回路基板クロスであって、主体の程度は重量比で40〜
100%、好ましくは50〜100%の範囲である。
The cloth for a printed circuit board according to the present invention has a shape in which the cross-sectional shape of the monofilament is a "dogleg" shape and / or the shape of the monofilament has a concave portion in at least a part of the "dogleg" shape. It is a printed circuit board cloth mainly composed of inorganic fibers, and the degree of the main body is 40-
It is in the range of 100%, preferably 50-100%.

クロスを構成する無機質繊維は、上記単繊維からなる
より糸が一般的であるが、その他ストランド、スライバ
ー、およびそれらを引きそろえたロービング、引きそろ
え糸等(より糸から引きそろえ糸まで、これらを総称し
て糸と呼ぶことにする)であってもよい。
Inorganic fibers constituting the cloth are generally twisted yarns composed of the above-mentioned single fibers, but other strands, sliver, and rovings aligned with them, aligned yarns (from twisted yarns to aligned yarns, these are collectively referred to as I will call it a thread).

本発明におけるプリント回路基板用クロスの無機質繊
維には前記した断面形状以外の断面形状をもつ単繊維を
含んでいてもよい。
The inorganic fibers of the printed circuit board cloth in the present invention may include single fibers having a cross-sectional shape other than the above-mentioned cross-sectional shape.

クロスを構成する無機質繊維からなる糸が前記した断
面形状の単繊維の他に前記した断面形状以外の断面形状
をもつ単繊維を含んでいてもよいし、またクロスのたて
方向の糸(いわゆるたて糸)とよこ方向の糸(いわゆる
よこ糸)のいずれか一方の糸が前記した断面形状以外の
断面形状をもつ単繊維からなる糸、例えば熔融法による
石英ガラス繊維からなっていてもよい。
The yarn composed of the inorganic fibers forming the cloth may include, in addition to the monofilament having the above-described cross-sectional shape, monofilaments having a cross-sectional shape other than the above-mentioned cross-sectional shape, and the yarn in the warp direction of the cloth (so-called Either one of the warp yarn and the weft yarn (so-called weft yarn) may be made of a single fiber having a cross-sectional shape other than the above-mentioned cross-sectional shape, for example, a quartz glass fiber produced by a melting method.

上記プリント回路基板用クロスは、先ずヒートクリー
ニング等の方法により集束剤が除去され、次いで樹脂と
の接着を強固にするためクロム系処理剤やシラン系処理
剤によって表面処理が施されて処理クロスとされる。本
発明のプリント回路基板は樹脂を結合材として上記の処
理されたプリント回路基板用クロスを積層してつくられ
る。前記した如く、プリプレグの形で積層するのが一般
的である。
The printed circuit board cloth is first treated by a method such as heat cleaning to remove the sizing agent, and then subjected to a surface treatment with a chromium-based treatment agent or a silane-based treatment agent in order to strengthen the adhesion with the resin. To be done. The printed circuit board of the present invention is made by laminating the above treated printed circuit board cloth using a resin as a binder. As described above, it is common to laminate in the form of prepreg.

上記の樹脂としては、例えば不飽和ポリエステル樹
脂、エポキシ樹脂、フェノール樹脂などがあげられる [作用] 本発明の技術分野であるプリント回路基板は、無機質
繊維と樹脂とのいわゆる複合材であり、無機質繊維は樹
脂の補強材としての機能をもっている。無機質繊維がガ
ラス繊維の場合、前記した如く、ガラス繊維の表面をク
ロム系処理剤やシラン系処理剤によって処理し、ガラス
繊維と樹脂との接着を強固ならしめる。JIS C 6486
−1980に規定されているプリント回路基板の寸法安定性
を良くする方向として、樹脂の熱膨張係数が小さいこ
と、加熱の前後での原寸への復帰性の良いこと、ガラス
繊維の熱膨張係数(通常樹脂より小さい)が小さいこと
ならびに樹脂とガラス繊維の結合を強くすることが挙げ
られる。ガラス繊維の熱膨張係数を小さくする方向とし
て、通常のEガラスの繊維の代りに石英ガラス繊維を使
うことが考えられ、実用されている。
Examples of the above-mentioned resin include unsaturated polyester resin, epoxy resin, and phenol resin. [Function] The printed circuit board which is the technical field of the present invention is a so-called composite material of inorganic fiber and resin. Has a function as a resin reinforcing material. When the inorganic fiber is a glass fiber, as described above, the surface of the glass fiber is treated with a chromium-based treating agent or a silane-based treating agent to strengthen the adhesion between the glass fiber and the resin. JIS C 6486
-1980: To improve the dimensional stability of printed circuit boards, the coefficient of thermal expansion of the resin is small, the ability to return to the original size before and after heating is good, and the coefficient of thermal expansion of glass fiber ( Smaller than (usually smaller than the resin) and strengthening the bond between the resin and the glass fiber. In order to reduce the coefficient of thermal expansion of glass fiber, it is considered and practical to use quartz glass fiber in place of ordinary E glass fiber.

本発明はクロスを構成する無機質繊維を、「くの字」
状の断面形状および/または前記「くの字」状の少なく
とも一部に凹部を有する断面形状をもつ単繊維を主体と
することによって、該クロスと樹脂との接着力を増大せ
しめることを基盤としている。
In the present invention, the inorganic fibers forming the cloth are
On the basis of increasing the adhesive force between the cloth and the resin by mainly using a monofilament having a cross-sectional shape and / or a cross-sectional shape having a recess in at least a part of the "dogleg" shape. There is.

プリント回路基板の補強材である無機質繊維と樹脂の
接着力は他の条件が一定であれば、樹脂と界面を接する
無機質繊維の表面積に比例する。多数の無機質繊維を考
える代りに代表として単繊維を考えてみる。無機質繊維
の単繊維の長手方向に垂直な断面を考えると、同一組成
で物理的性質が同等な種々の繊維の表面積の大きさの比
は、単繊維の該断面の周辺長さの比に等しいと考えてよ
く、同一重量の繊維とは該断面の面積が等しい繊維と考
えてよい。結局プリント回路基板の無機質繊維含有量を
一定として、同一重量の前記種々の繊維の表面積の大き
さを比較するには、前記断面の面積が等しい場合に、該
断面の周辺長さを比較すればよい。本発明は平面図形で
ある単繊維の断面形状の面積が一定の場合、その周辺長
さが最も短いのは円形であることから、断面形状が円形
である通常の無機質繊維よりも同一重量の下で表面積の
大きい、断面形状が円形でなく「くの字」状の断面形状
および/または前記「くの字」状の少なくとも一部に凹
部を有する断面形状の無機質繊維からなるクロスを補強
材としてもつプリント回路基板を提案するものである。
If the other conditions are constant, the adhesive force between the inorganic fiber, which is the reinforcing material of the printed circuit board, and the resin is proportional to the surface area of the inorganic fiber that is in contact with the resin. Instead of considering a large number of inorganic fibers, consider a single fiber as a representative. Considering the cross section perpendicular to the longitudinal direction of the monofilament of the inorganic fiber, the ratio of the surface area size of various fibers having the same composition and the same physical property is equal to the ratio of the peripheral length of the cross section of the monofilament. And the fibers having the same weight may be considered as fibers having the same cross-sectional area. After all, in order to compare the surface area sizes of the various fibers of the same weight with the inorganic fiber content of the printed circuit board being constant, when the areas of the cross sections are equal, the peripheral lengths of the cross sections are compared. Good. In the present invention, when the area of the cross-sectional shape of a monofilament that is a plane figure is constant, the shortest peripheral length is a circle, so that the same weight is lower than that of a normal inorganic fiber having a circular cross-sectional shape. And having a large surface area, a cross-sectional shape that is not circular and has a "dogleg" shape and / or a cross-sectional inorganic fiber having a recess in at least a part of the "dogleg" shape as a reinforcing material A printed circuit board having the same is proposed.

[実施例] 基材として第1表に示す本発明におけるゾルゲル直接
紡糸法石英ガラス繊維の平織クロス、通常のEガラス繊
維の平織クロスおよび熔融法石英ガラス繊維の平織クロ
スを選んだ。各クロスをヒートクリーニング後、エポキ
シシランで表面処理し、耐熱用エポキシ樹脂を含浸させ
プリプレグにした。これを8層に積層して成形し積層板
とした。このときの積層板試験片280mm×280mmの寸法安
定性(変化率)をJIS C 6486に準拠して測定した。
該 JISにおける寸法安定性とは、170℃で30分処理を行
う前後の、前記積層板試験片の寸法変化率である。測定
の結果を第2表に示す。
[Examples] As a substrate, a sol-gel direct-spun silica glass fiber plain weave cloth, a normal E glass fiber plain weave cloth, and a fused silica glass fiber plain weave cloth shown in Table 1 were selected. Each cloth was heat-cleaned, then surface-treated with epoxysilane, and impregnated with a heat-resistant epoxy resin to prepare a prepreg. This was laminated in eight layers and molded into a laminated plate. At this time, the dimensional stability (rate of change) of the laminated plate test piece 280 mm × 280 mm was measured according to JIS C 6486.
The dimensional stability in JIS is the dimensional change rate of the laminate test piece before and after the treatment at 170 ° C. for 30 minutes. Table 2 shows the measurement results.

比較例としてのEガラス繊維のクロスによる積層板お
よび熔融法石英ガラス繊維のクロスによる積層板に比
べ、本発明のゾルゲル直接紡糸法石英ガラス繊維のクロ
スによる積層板の寸法安定性は優れている。
The dimensional stability of the laminated sheet of the sol-gel direct-spun quartz glass fiber cloth of the present invention is superior to the laminated sheet of the E glass fiber cloth and the laminated sheet of the fused silica glass fiber cloth as comparative examples.

[発明の効果] 本発明におけるクロスは、同一の織方、同じ密度、同
じ質量(g/m2)の従来のクロスよりも単繊維の表面積の
総計が大きい。例えば第1図(a)に示した単繊維の断
面形状はα≒110゜であるが、その周囲長は同じ断面積
をもつ円形断面の単繊維の周囲長のおよそ約1.4倍であ
り、従って単繊維の表面積の総計も約1.4倍である。ま
た、第1図(b)に示した単繊維の断面形状はα≒118
゜であるが、その周囲長は同じ断面積をもつ円形断面の
単繊維の周囲長のおよそ約1.35倍であり、従って単繊維
の表面積の総計も約1.35倍である。
[Effect of the Invention] The cloth of the present invention has a larger total surface area of single fibers than the conventional cloth having the same weave, the same density and the same mass (g / m 2 ). For example, the cross-sectional shape of the monofilament shown in FIG. 1 (a) is α≈110 °, but its perimeter is about 1.4 times the perimeter of a monofilament with a circular cross-section having the same cross-sectional area. The total surface area of single fibers is also about 1.4 times. The cross-sectional shape of the single fiber shown in FIG. 1 (b) is α≈118.
However, its perimeter is about 1.35 times the perimeter of a single fiber of circular cross section with the same cross-sectional area, and thus the total surface area of the single fiber is also about 1.35.

本発明におけるクロスと不飽和ポリエステル樹脂、エ
ポキシ樹脂、フェノール樹脂などの複合材からなるプリ
ント回路基板は、本発明におけるクロスのもつ上記した
特性の故に、従来のクロスを用いた場合よりも樹脂とク
ロスの接着が全体として強固である。プリント回路基板
の号部環境温度を上昇させた場合、クロスは熱膨張係数
のより大きい樹脂の膨張を自由な膨張から抑える作用を
もつが、本発明におけるクロスは従来のクロスよりも樹
脂との接着がはるかに強固であるが故に、上記の樹脂の
膨張を抑える作用もまた大きい。
A printed circuit board made of a composite material such as a cloth and an unsaturated polyester resin, an epoxy resin, or a phenol resin in the present invention has a resin and a cloth more than a case where a conventional cloth is used because of the above-mentioned characteristics of the cloth in the present invention. The adhesion is strong as a whole. When the ambient temperature of the printed circuit board is increased, the cloth has an action of suppressing the expansion of the resin having a larger thermal expansion coefficient from free expansion, but the cloth of the present invention is more bonded to the resin than the conventional cloth. Is much stronger, the effect of suppressing the expansion of the resin is also great.

この樹脂の膨張を自由な膨張から抑える作用は、クロ
スの材料として熱膨張係数のできる限り小さい材料を選
ぶことによっても得られる。実際、広く用いられている
Eガラス繊維の代りに熱膨張係数のより小さい石英ガラ
ス繊維によるクロスを使用することもある。石英ガラス
繊維によるクロスを用いる場合においても断面形状が円
形の単繊維よりも本発明における断面形状の単繊維から
なる糸によるクロスの方が上記の樹脂の自由な膨張を抑
える作用が大きい。
The function of suppressing the expansion of the resin from free expansion can also be obtained by selecting a material having a thermal expansion coefficient as small as possible as the material of the cloth. In fact, instead of the widely used E glass fiber, a cloth made of quartz glass fiber having a smaller coefficient of thermal expansion may be used. Even when the cloth made of quartz glass fiber is used, the cloth made of the yarn made of the monofilament having the cross-sectional shape in the present invention has a larger effect of suppressing the free expansion of the resin than the monofilament having the circular cross-section.

上記した樹脂の自由な膨張を抑える作用が従来のクロ
スに比べて顕著である故に、本発明におけるクロスを構
成部分としてもつ複合材からなるプリント回路基板は、
従来のクロスによるものに比べて寸法安定性が優れてい
る。
Since the effect of suppressing the free expansion of the above-mentioned resin is remarkable as compared with the conventional cloth, the printed circuit board made of the composite material having the cloth as a component in the present invention is
Dimensional stability is superior to that of conventional cloth.

また本発明におけるクロスは、構成する糸が単繊維の
断面形状が「くの字」状の無機質繊維および/または前
記「くの字」状の少なくとも一部に凹部を有する形状の
無機質繊維からなっているが故に、単繊維相互ならびに
糸相互がずれ難く、従ってクロスの欠点である糸の目ず
れや繊維のほつれが生じ難いという長所をもっている。
Further, in the cloth of the present invention, the constituent yarns are composed of inorganic fibers having a single-fiber cross-sectional shape of "dogleg" and / or inorganic fibers having a recess in at least a part of the "dogleg" shape. Therefore, there is an advantage that the single fibers and the yarns are not easily displaced, and therefore the defect of the cloth, the misalignment of the yarns and the fraying of the fibers are less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明におけるゾルゲル直接紡糸法によって
得た石英ガラス繊維の単繊維の断面形状の態様を示す断
面図である。(a)は「くの字」状であり、かつ、その
「くの字」の湾曲の外側の少なくとも一部に凹部を有す
る形状の態様を示す断面図である。(b)は参考のため
に示す「くの字」状の湾曲の外側がなだらかな曲線状を
なした断面形状の態様を示す断面図である。Aは断面の
一部の凹部を示す。第2図は湾曲角αを示す説明図であ
る。
FIG. 1 is a cross-sectional view showing a mode of a cross-sectional shape of a single fiber of quartz glass fiber obtained by the sol-gel direct spinning method in the present invention. (A) is sectional drawing which shows the aspect of the shape which is a "dogleg" shape, and has a recessed part at least at the outer side of the curve of the "dogleg". (B) is a cross-sectional view showing a mode of a cross-sectional shape in which the outside of a "dogleg" -shaped curve shown for reference is a gently curved line. A shows a concave part of a cross section. FIG. 2 is an explanatory view showing the bending angle α.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単繊維の断面形状が、「くの字」状であ
り、かつ、その「くの字」の湾曲の外側の少なくとも一
部に凹部を有する形状の無機質繊維を主体としてなるプ
リント回路基板用クロスと樹脂とからなるプリント回路
基板。
1. A print mainly composed of an inorganic fiber in which the cross-sectional shape of a single fiber is a "dogleg" shape, and a concave portion is provided at least at a part outside the curve of the "dogleg". A printed circuit board consisting of a circuit board cloth and resin.
【請求項2】無機質繊維が、ゾルゲル直接紡糸法により
製作した石英ガラス繊維であることを特徴とする特許請
求の範囲第1項記載のプリント回路基板。
2. The printed circuit board according to claim 1, wherein the inorganic fiber is a silica glass fiber produced by a sol-gel direct spinning method.
JP60095542A 1985-04-23 1985-05-07 Printed circuit board Expired - Lifetime JP2527304B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60095542A JP2527304B2 (en) 1985-05-07 1985-05-07 Printed circuit board
EP19860105496 EP0199328B1 (en) 1985-04-23 1986-04-21 Fabric for printed circuit substrate and printed circuit substrate
DE8686105496T DE3686346T2 (en) 1985-04-23 1986-04-21 FABRIC RAIL FOR PRINTED CIRCUIT BOARD AND PRINTED CIRCUIT BOARD.
US07/246,967 US4981753A (en) 1985-04-23 1988-09-21 Fabric for printed circuit substrate and printed circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095542A JP2527304B2 (en) 1985-05-07 1985-05-07 Printed circuit board

Publications (2)

Publication Number Publication Date
JPS61258043A JPS61258043A (en) 1986-11-15
JP2527304B2 true JP2527304B2 (en) 1996-08-21

Family

ID=14140451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095542A Expired - Lifetime JP2527304B2 (en) 1985-04-23 1985-05-07 Printed circuit board

Country Status (1)

Country Link
JP (1) JP2527304B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953875B2 (en) * 2006-03-30 2012-06-13 京セラ株式会社 Wiring board and mounting structure
WO2007114392A1 (en) * 2006-03-30 2007-10-11 Kyocera Corporation Wiring board and mounting structure
JP5505597B2 (en) * 2008-03-28 2014-05-28 日本電気硝子株式会社 Modified cross section glass fiber
JP2009263219A (en) * 2008-03-31 2009-11-12 Nippon Electric Glass Co Ltd Deformed cross-section glass fiber and producing method of deformed cross-section glass fiber
JP5288949B2 (en) * 2008-08-29 2013-09-11 京セラ株式会社 Pre-preg sheet, wiring board and mounting structure
JP6466788B2 (en) 2015-06-15 2019-02-06 信越石英株式会社 Quartz glass fiber, quartz glass yarn, and quartz glass cloth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219734A (en) * 1985-03-23 1986-09-30 Nitto Boseki Co Ltd Glass fiber
JPH0783078B2 (en) * 1987-09-11 1995-09-06 株式会社日立製作所 Semiconductor cooling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
英一太著「プリント配線基板」株式会社シーエムシー昭和51年11月10日発行第10.11頁

Also Published As

Publication number Publication date
JPS61258043A (en) 1986-11-15

Similar Documents

Publication Publication Date Title
Wallenberger et al. Glass fibers
US10647610B2 (en) Low density and high strength fiber glass for reinforcement applications
US5569629A (en) High temperature stable continuous filament glass ceramic fibers
US4103102A (en) Reinforced flexible printed wiring board
JP5655293B2 (en) Glass composition for glass fiber, glass fiber and glass sheet
EP0050855B1 (en) Laminates
TW201908260A (en) Glass composition, glass fiber, glass cloth and glass fiber manufacturing method
US20110236684A1 (en) Thermally resistant glass fibers
JP5915929B2 (en) Manufacturing method of carbon fiber reinforced plastic molded product
US4981753A (en) Fabric for printed circuit substrate and printed circuit substrate
JP2013542904A (en) Low density, high strength fiber glass for reinforcement applications
WO2017187471A1 (en) Glass composition, glass fiber, glass cloth, and method for manufacturing glass fiber
JP2003171143A (en) Glass composition for glass fiber
US5792713A (en) Glass fabric produced with zero-twist yarn
WO2013084897A1 (en) Glass fabric and glass fiber sheet material using same
JP2527304B2 (en) Printed circuit board
KR20220024493A (en) Glass composition, glass fiber, glass cloth, and method of making glass fiber
EP0719353A1 (en) Glass fabric produced with zero-twist yarn
JP3896636B2 (en) Glass cloth and laminate
JP4200595B2 (en) Glass fiber fabric
JPH0571156B2 (en)
Knox Fiberglass reinforcement
JPS62282055A (en) Nonwoven fabric for printed circuit board and said board
JP3638635B2 (en) Printed circuit board
JPH10226941A (en) Glass fiber woven fabric and fiber-reinforced resin molded product