JP2526452B2 - Ultrasonic applicator - Google Patents

Ultrasonic applicator

Info

Publication number
JP2526452B2
JP2526452B2 JP3258422A JP25842291A JP2526452B2 JP 2526452 B2 JP2526452 B2 JP 2526452B2 JP 3258422 A JP3258422 A JP 3258422A JP 25842291 A JP25842291 A JP 25842291A JP 2526452 B2 JP2526452 B2 JP 2526452B2
Authority
JP
Japan
Prior art keywords
acoustic lens
ultrasonic
ridges
heating
ridgeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3258422A
Other languages
Japanese (ja)
Other versions
JPH0566785A (en
Inventor
直彦 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3258422A priority Critical patent/JP2526452B2/en
Publication of JPH0566785A publication Critical patent/JPH0566785A/en
Application granted granted Critical
Publication of JP2526452B2 publication Critical patent/JP2526452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波加温治療器の超
音波アプリケータに関し、とくに超音波振動子と接合さ
れ、超音波を伝播、集束させる音響レンズの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic applicator for an ultrasonic warming therapy device, and more particularly to an improvement of an acoustic lens which is joined to an ultrasonic transducer to propagate and focus ultrasonic waves.

【0002】[0002]

【従来の技術】従来では、図5に示すような円環型振動
子(アニュアルレイ)4aを用いて位相制御により超音
波加温領域7aを生体内に形成し、加温が適用されてい
た。ところが、図5に示すように、加温領域7aの後方
に、不要な加温点(hot spots)が生ずる。
このような加温点を除去するために、図6に示されるよ
うに円環振動子を更に半径方向に分割したもの4bの使
用が、特開昭62−42773号公報により開示され、
加温領域7aを2つに区分し加温領域7aより後方の不
要な加温点7bが生ずる位置で集束超音波の位相が互い
に逆位相となるようにして、そのような不要な加温点を
除去することが提案されている。
2. Description of the Related Art Conventionally, heating is applied by forming an ultrasonic heating region 7a in a living body by phase control using a ring-shaped oscillator (annual ray) 4a as shown in FIG. . However, as shown in FIG. 5, unnecessary heating spots are generated behind the heating region 7a.
In order to remove such a heating point, the use of a circular oscillator 4b further divided in the radial direction as shown in FIG. 6 is disclosed in Japanese Patent Laid-Open No. 62-42773.
The heating area 7a is divided into two, and the phases of the focused ultrasonic waves are opposite to each other at a position where an unnecessary heating point 7b behind the heating area 7a occurs, and such an unnecessary heating point is generated. Is proposed to be removed.

【0003】しかし、この提案された半径方向分割振動
子では、その振動子の構造が非常に複雑になり、また遅
延回路を付加した制御装置が複雑で高価になる欠点があ
る。
However, the proposed radial division oscillator has the drawbacks that the structure of the oscillator becomes very complicated, and the control device to which a delay circuit is added becomes complicated and expensive.

【0004】そこで、本願出願人は特願昭63−141
48号により、超音波振動子を用いてこれより得た超音
波が音響レンズと脱気水を通して生体内に集束され、加
温領域を形成させるハイパーサーミア装置において、音
響レンズの凹面部が方位方向にそれぞれ複数の山の稜線
と谷の稜線とを交互に有し、両稜線間が等間隔な斜平面
ないし曲面により形されたハイパーサーミア装置を開示
し、振動子を分割する必要がなく、そのため振動子なら
びにその駆動回路が簡単となり、不要な加温点も生じな
いものを提案した。
Therefore, the applicant of the present application filed Japanese Patent Application No. 63-141.
According to No. 48, in a hyperthermia device for forming a heating region by focusing ultrasonic waves obtained from this using an ultrasonic transducer through an acoustic lens and deaerated water, the concave portion of the acoustic lens is oriented in the azimuth direction. Disclosed is a hyperthermia device which has a plurality of ridges of ridges and ridges of valleys alternately, and is formed by an oblique plane or a curved surface with equal intervals between the ridges, and it is not necessary to divide the oscillator, and therefore the oscillator We also proposed a drive circuit that is simple and does not cause unnecessary heating points.

【0005】[0005]

【発明が解決しようとする課題】ところが本願出願人に
よる前記先行発明においても、実際には集束の段階で加
温分布にむらが生じており、その原因は音響レンズの超
音波放射の際にそのレンズの厚みにより超音波の分布に
むらが生じているからである。
However, even in the above-mentioned prior invention by the applicant of the present application, there is actually unevenness in the heating distribution at the focusing stage, which is caused by the ultrasonic radiation of the acoustic lens. This is because the ultrasonic wave has uneven distribution due to the thickness of the lens.

【0006】本発明の目的は、前記した先行発明を改良
して、放射の際に超音波の分布にむらが少なく、そのた
めに加温分布のむらが少なくなる、超音波アプリケータ
を提供することである。
It is an object of the present invention to provide an ultrasonic applicator, which is an improvement of the above-mentioned prior invention, in which there is less unevenness in the distribution of ultrasonic waves during radiation, which results in less unevenness in the heating distribution. is there.

【0007】[0007]

【課題を解決するための手段】前記した目的は、超音波
振動子と、音響レンズと、この音響レンズと被照射体体
表面間に介在する伝播媒質とを備え、該音響レンズの凹
面部が方位方向にそれぞれ複数の山の稜線と谷の稜線と
を交互に有し、両稜線間を等間隔な斜平面ないし曲面に
より形成させている超音波アプリケータにおいて、前記
山の稜線と谷の稜線間の厚みの変化幅Lが超音波の波長
λの1/2以内で、かつ前記伝播媒質中の音速VM と該
音響レンズ中の音速VL との間に、3VM <VL となる
関係を成立せしめることにより、達成される。
The above-described object is to provide an ultrasonic transducer, an acoustic lens, and a propagation medium interposed between the acoustic lens and the surface of the body to be irradiated, and the concave portion of the acoustic lens is In an ultrasonic applicator having a plurality of mountain ridges and valley ridges alternately in the azimuth direction, and forming an inclined flat surface or curved surface at equal intervals between both ridges, the mountain ridge and valley ridges The thickness change width L is within 1/2 of the wavelength λ of the ultrasonic wave, and the relationship of 3VM <VL is established between the sound velocity VM in the propagation medium and the sound velocity VL in the acoustic lens. This will be achieved.

【0008】[0008]

【作用】超音波を収束させる手段として、音響レンズを
用い、その凹面部内で少なくとも一波長のずれが生ずる
部分を連続的に与える斜平面ないし曲面を形成する。ま
た、その際、斜平面間に不連続部分が作らない。そし
て、超音波の放射分布むらを前記した条件設定により少
なくすることにより、加温分布のむらが少なくなるの
で、温度上昇が一様になり、患者の負担を軽減できる。
また、このように構成された音響レンズの凹面部は非球
面となるので、回転させることにより、なお一層の均一
な加温領域が得られる。
As a means for converging the ultrasonic waves, an acoustic lens is used, and an inclined plane or a curved surface is continuously formed in the concave surface portion thereof, which continuously gives a portion where at least one wavelength shift occurs. At that time, no discontinuous portion is formed between the inclined planes. By reducing the unevenness of the radiation distribution of ultrasonic waves by setting the above-mentioned conditions, the unevenness of the heating distribution is reduced, so that the temperature rise becomes uniform and the burden on the patient can be reduced.
Further, since the concave surface portion of the acoustic lens configured as described above is an aspherical surface, by rotating the concave surface portion, a more uniform heating region can be obtained.

【0009】[0009]

【実施例】本発明の好適な実施例は、図1から図4につ
いて説明される。図1はその1実施例を示した要部構成
例示図である。この図において、発振器1より得られた
高周波を増幅器2により増幅し、整合回路3を通して超
音波振動子4に送る。超音波振動子4から得られた超音
波は、音響レンズ5と音波伝播媒質としての脱気水6を
通して生体7に送られる。このように、超音波アプリケ
ータは超音波振動子4、音響レンズ5及び脱気水により
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention is described with reference to FIGS. FIG. 1 is an exemplary diagram showing the configuration of a main part of the first embodiment. In this figure, the high frequency obtained from the oscillator 1 is amplified by the amplifier 2 and sent to the ultrasonic transducer 4 through the matching circuit 3. The ultrasonic waves obtained from the ultrasonic transducer 4 are sent to the living body 7 through the acoustic lens 5 and degassed water 6 as a sound wave propagation medium. Thus, the ultrasonic applicator is composed of the ultrasonic transducer 4, the acoustic lens 5, and degassed water.

【0010】 図2は本発明による音響レンズの1例を
示した半断面正面図、図3はその底面図ないし凹面部展
開図である。この図に示すように、音響レンズは凹凸に
よる厚みの変化幅Lを有している。Rは曲率半径。Zは
レンズ底面と曲率中心位置の距離である。5aは中心凹
部、5bは段差部であり、これらの部位は、アルミなど
金属で音響レンズを作る場合に加工上にのみ必要なもの
である。5cは山の稜線、5dは谷の稜線で、それぞれ
等間隔に方位方向に形設され、2つの稜線5c、5d間
に斜平面部5eが形成される。
FIG. 2 is a front view of a half section showing an example of an acoustic lens according to the present invention, and FIG. 3 is a bottom view or a development view of a concave surface portion. As shown in this figure, the acoustic lens has a variation width L of thickness due to unevenness. R is the radius of curvature. Z is the distance between the lens bottom surface and the center of curvature. Reference numeral 5a is a central recessed portion, and 5b is a stepped portion. These portions are necessary only for processing when an acoustic lens is made of metal such as aluminum. Reference numeral 5c is a ridgeline of a mountain, and 5d is a ridgeline of a valley, which are formed at equal intervals in the azimuth direction, and a slant plane portion 5e is formed between the two ridgelines 5c and 5d.

【0011】図3に示すように、1つの斜平面部5eに
ついて、例えば山の稜線5cと斜平面部5eの中間半径
方向線の1点鎖線5fとは、集束の場合、互いに逆位相
となる。また、その山の稜線5cから角度αをなす半径
方向線5gと1点鎖線5fから同一角度α度をなす半径
方向線5hとは、同様に逆位相となる。
As shown in FIG. 3, for one sloping plane portion 5e, for example, the ridge line 5c of the mountain and the one-dot chain line 5f of the intermediate radial direction line of the sloping plane portion 5e are in opposite phase to each other in the case of focusing. . Further, the radial line 5g forming an angle α from the ridgeline 5c of the mountain and the radial line 5h forming the same angle α degrees from the one-dot chain line 5f are also in opposite phases.

【0012】このようにした、全斜平面5eについて、
つまり円周方向に連続して一波長のずれが生じて互いに
逆位相となり、超音波は打消し合う。従って、このよう
な音響レンズを用いれば、集束位置において不要な加温
点が生じない音場が形成される。なお、音響レンズは、
アルミの他にアクリル、ポリスチレンなど、水の音速よ
り高いものが選ばれる。また、音響レンズをアルミによ
り製作する場合には、数値制御により機械加工が効率的
であり、その場合、例えば曲率半径R、曲率中心位置Z
などをパラメータにして、方位方向基準線より円周方向
の角度毎に加工条件を求めて行なわれる。
With respect to the entire inclined plane 5e thus configured,
That is, one wavelength is continuously deviated in the circumferential direction, the phases are opposite to each other, and the ultrasonic waves cancel each other. Therefore, by using such an acoustic lens, a sound field in which an unnecessary heating point does not occur at the focus position is formed. The acoustic lens is
In addition to aluminum, acrylic, polystyrene, and other materials that are higher than the speed of sound of water are selected. Further, when the acoustic lens is made of aluminum, machining is efficient by numerical control. In that case, for example, the radius of curvature R and the center of curvature Z
Is used as a parameter to determine the processing conditions for each angle in the circumferential direction from the azimuth reference line.

【0013】 ここで、脱気水ないし音波伝播媒質6中
の音速VM、音響レンズ5中の音速VLとしたとき、音
響レンズ5の厚みの変化の最大をLとする。理想的には
この厚みの変化により、超音波の打ち消しが生ずるの
は、周波数f、周期Tとすると、 L/VM−L/VL
=T・・式1 であればよい。この式1を変形すると、
L=T/(1/VM−1/VL) ・・式2が得られ、
音響レンズの厚みに対する効率を考慮した限界範囲(厚
みの変化幅)Lでは、L<λ/2とする必要があるの
で、T/(1/VM−1/VL)<λ/2・・式3が成
立し、なお、T=λ/VLよりλ=T・VLを得て、こ
れを式3の右辺に代入して、T/(1/VM−1/V
L)<T・VL/2・・式4 が成立する。この式4の
両辺でTを消去して整理すると、2VL・VM<VL
(VL−VM)が得られ、この両辺をVLで割って、結
局、3VM<VLが成立する。このことは、音響レンズ
5の厚みにより超音波の分布にむらが生じる点は、前記
のような関係式を満たせば、そのむらはあまり目立たな
い範囲に収まることを示している。
Here, when the sound velocity VM in the degassed water or the sound wave propagation medium 6 and the sound velocity VL in the acoustic lens 5 are set, the maximum change in the thickness of the acoustic lens 5 is set to L. Ideally, this change in thickness causes the cancellation of ultrasonic waves, where L is the frequency f and T is the period, L / VM-L / VL
= T ... Equation 1 When this equation 1 is transformed,
L = T / (1 / VM-1 / VL) .. Equation 2 is obtained,
In the limit range (thickness change width) L considering the efficiency with respect to the thickness of the acoustic lens, it is necessary to set L <λ / 2, so T / (1 / VM-1 / VL) <λ / 2 ... 3 holds, λ = T · VL is obtained from T = λ / VL, and this is substituted into the right side of Expression 3 to obtain T / (1 / VM−1 / V
L) <T · VL / 2 ·· Equation 4 holds. Eliminating and rearranging T on both sides of this equation 4, 2VL · VM <VL
(VL-VM) is obtained, and both sides are divided by VL, so that 3VM <VL is established. This means that the point where the ultrasonic wave is unevenly distributed due to the thickness of the acoustic lens 5 is within a range where the unevenness is not so noticeable if the above relational expression is satisfied.

【0014】図4は前示実施例と同様のものを示した要
部断面図である。5は同一構成の音響レンズである。振
動子4で発生した超音波は、音響レンズ5で集束され、
脱気水6、ボーラス9を通して、全体に発射される。1
0は脱気水の出入口である。脱気水6は、冷却循環装置
(図示省略)に脱気水出入口10を通して送られ、一定
温度に変換され、再び別の出入口より、ボーラス9内に
入る。11に示される運動用Oリングにより、振動子
4、音響レンズ5が保持されている部分は、ボーラス9
(被検部に接触する部分)に対して、回転可能とる。こ
のような回転により、加温領域の等温分布は同心円周状
に拡がり、加温領域が均一加温され、加温治療に適用す
るとその効果があがる。従って、前記したような関係式
を満たした上でこのような回転を加えると、加温分布の
むらが少なくなる点で相乗効果が得られる。なお、その
回転手段12はとくに限定されるものではなく、公知の
種々な機構から選択される。
FIG. 4 is a cross-sectional view of an essential part showing the same one as the embodiment shown above. Reference numeral 5 is an acoustic lens having the same configuration. The ultrasonic wave generated by the oscillator 4 is focused by the acoustic lens 5,
It is shot through the degassed water 6 and bolus 9 to the whole. 1
0 is the entrance and exit of degassed water. The degassed water 6 is sent to a cooling circulation device (not shown) through a degassed water inlet / outlet port 10, converted to a constant temperature, and then enters the bolus 9 from another inlet / outlet port again. The portion holding the oscillator 4 and the acoustic lens 5 by the motion O-ring 11 is a bolus 9
It is rotatable relative to (the part that comes into contact with the part to be inspected). By such rotation, the isothermal distribution of the heating region spreads concentrically, the heating region is uniformly heated, and its effect is enhanced when applied to the heating treatment. Therefore, if such rotation is applied after satisfying the relational expression as described above, a synergistic effect is obtained in that the unevenness of the heating distribution is reduced. The rotating means 12 is not particularly limited and can be selected from various known mechanisms.

【0015】[0015]

【効果】本発明によれば、振動子を分割する必要がない
ので、振動子ならびにその駆動回路が簡単となり、本発
明による音響レンズを使うと不要な加温点が生じない、
また超音波の分布がむらなく均一に放射されるので、加
温領域が均一加温により得られる超音波アプリケータを
安価に提供できる。
[Effects] According to the present invention, since it is not necessary to divide the vibrator, the vibrator and its drive circuit are simple, and the acoustic lens according to the present invention does not cause unnecessary heating points.
Further, since the distribution of ultrasonic waves is evenly and uniformly radiated, it is possible to inexpensively provide an ultrasonic applicator whose heating region is obtained by uniform heating.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示した要部構成例示図。FIG. 1 is an exemplary diagram showing a main part configuration showing an embodiment of the present invention.

【図2】本発明による音響レンズの1例を示した正面
図。
FIG. 2 is a front view showing an example of an acoustic lens according to the present invention.

【図3】その底面図ないし凹面部展開図。FIG. 3 is a bottom view or a developed view of a concave portion.

【図4】他の好ましい要部断面図。FIG. 4 is a cross-sectional view of another preferable main part.

【図5】従来例の超音波振動子を用いた加温領域の発生
説明図。
FIG. 5 is an explanatory diagram of generation of a heating region using an ultrasonic transducer of a conventional example.

【図6】他の従来例超音波振動子を用いた同様図。FIG. 6 is a similar view using another conventional ultrasonic transducer.

【符号の説明】[Explanation of symbols]

4 超音波振動子 5 音響レンズ 6 脱気水ないし音波伝播媒質 7 被照射体 5c 山の稜線 5d 谷の稜線 9 ボーラス 10 脱気水出入口 11 運動用Oリング L 凹凸による厚みの変化幅 4 Ultrasonic transducer 5 Acoustic lens 6 Degassed water or sound wave propagation medium 7 Irradiation object 5c Mountain ridgeline 5d Valley ridgeline 9 Bolus 10 Degassed water inlet / outlet 11 Exercise O-ring L Variation range of thickness due to unevenness

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超音波振動子と、音響レンズと、この音
響レンズと被照射体体表面間に介在する伝播媒質とを備
え、該音響レンズの凹面部が方位方向にそれぞれ複数の
山の稜線と谷の稜線とを交互に有し、両稜線間を等間隔
な斜平面ないし曲面により形成させている超音波アプリ
ケータにおいて、前記山の稜線と谷の稜線間の厚みの変
化幅Lが超音波の波長λの1/2以内で、かつ前記伝播
媒質中の音速VM と該音響レンズ中の音速VL との間
に、3VM <VL となる関係が成立していることを特徴
とする、超音波アプリケータ。
1. An ultrasonic transducer, an acoustic lens, and a propagation medium interposed between the acoustic lens and the surface of an object to be irradiated, wherein the concave portion of the acoustic lens has a plurality of ridge lines in the azimuth direction. In an ultrasonic applicator that has alternating ridges and valley ridges and is formed by oblique planes or curved surfaces that are equally spaced between the ridges, the variation width L of the thickness between the ridgeline of the ridge and the ridgeline of the valley is very large. Within the half wavelength λ of the sound wave, and between the sound velocity VM in the propagation medium and the sound velocity VL in the acoustic lens, a relationship of 3VM <VL is established. Sonic applicator.
JP3258422A 1991-09-09 1991-09-09 Ultrasonic applicator Expired - Lifetime JP2526452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258422A JP2526452B2 (en) 1991-09-09 1991-09-09 Ultrasonic applicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258422A JP2526452B2 (en) 1991-09-09 1991-09-09 Ultrasonic applicator

Publications (2)

Publication Number Publication Date
JPH0566785A JPH0566785A (en) 1993-03-19
JP2526452B2 true JP2526452B2 (en) 1996-08-21

Family

ID=17320003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258422A Expired - Lifetime JP2526452B2 (en) 1991-09-09 1991-09-09 Ultrasonic applicator

Country Status (1)

Country Link
JP (1) JP2526452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601942B (en) * 2015-06-17 2022-09-14 Darkvision Tech Inc Ultrasonic imaging device and method for wells

Also Published As

Publication number Publication date
JPH0566785A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
EP0214782B1 (en) Ultrasonic irradiation system
US4622972A (en) Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
Hand et al. A random phased array device for delivery of high intensity focused ultrasound
WO2016134581A1 (en) Dual-frequency confocal superimposed focused ultrasonic spherical splitting array and control method for splitting focus points
CA2141285A1 (en) Control method for hyperthermia treatment apparatus using ultrasound
JPH06285106A (en) Ultrasonic therapeutic device
JP2526452B2 (en) Ultrasonic applicator
JPH0755228B2 (en) Hyperthermia device
Lalonde et al. Variable frequency field conjugate lenses for ultrasound hyperthermia
Rybyanets et al. Theoretical calculations and numerical modeling of high intensity ultrasonic fields for optimization of high intensity focused ultrasound transducers
Benkeser et al. Analysis of a multielement ultrasound hyperthermia applicator
Lin et al. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures
JPS6242773A (en) Ultrasonic irradiating apparatus
Fjield et al. Low-profile lenses for ultrasound surgery
RU2121812C1 (en) Device for forming acoustic waves for lithotriptor
Reibold et al. Radiation of a rectangular strip-like focussing transducer: Part 1: Harmonic excitation
Lalonde et al. Optimizing ultrasound focus distributions for hyperthermia
Ibbini et al. The concentric-ring phased-array hyperthermia applicator: problems associated with directly synthesized annular heating patterns
Mair et al. Intensity fields of continuous‐wave axisymmetric transducers
Hynynen Ultrasound heating technology
JPH0712362B2 (en) Ultrasonic therapy equipment
Rozenberg Ultrasonic focusing radiators
JPH0566784A (en) Acoustic lens
JPH0832110B2 (en) Ultrasonic probe
Bilgen et al. Effects of phase aberration on tissue heat generation and temperature elevation using therapeutic ultrasound