JP2526311B2 - Stabilization of graphite intercalation compounds - Google Patents

Stabilization of graphite intercalation compounds

Info

Publication number
JP2526311B2
JP2526311B2 JP2329500A JP32950090A JP2526311B2 JP 2526311 B2 JP2526311 B2 JP 2526311B2 JP 2329500 A JP2329500 A JP 2329500A JP 32950090 A JP32950090 A JP 32950090A JP 2526311 B2 JP2526311 B2 JP 2526311B2
Authority
JP
Japan
Prior art keywords
graphite intercalation
intercalation compound
graphite
compound
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2329500A
Other languages
Japanese (ja)
Other versions
JPH04202006A (en
Inventor
敏明 神野
信 勝亦
均 牛島
秀則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2329500A priority Critical patent/JP2526311B2/en
Publication of JPH04202006A publication Critical patent/JPH04202006A/en
Application granted granted Critical
Publication of JP2526311B2 publication Critical patent/JP2526311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性複合材料などに利用される黒鉛層間化
合物の性質を改良する方法に関する。
The present invention relates to a method for improving the properties of a graphite intercalation compound used in a conductive composite material or the like.

〔従来の技術〕[Conventional technology]

黒鉛は化学的に安定で導電性が高いので、金属やプラ
スチックなどを組合わせて複合材料として各種の応用分
野に利用されている。
Since graphite is chemically stable and has high conductivity, it is used as a composite material in various application fields by combining metals and plastics.

しかし、導電性が高いといっても金属材料には及ばな
いことろから、黒鉛質材料の導電性を改良するために種
々の研究が進められており、黒鉛の結晶の層間に種々の
分子、原子、イオンなどを挿入すると導電性の改善され
た層間化合物が得られることが知られている。ところが
こうした黒鉛層間化合物は、一般に不安定であって大気
中で徐々に分解する傾向があり、実用に当たって大きな
制約となっていた。
However, even if it has high conductivity, it does not reach the metal material, and therefore various studies have been conducted to improve the conductivity of the graphite material. It is known that an intercalation compound with improved conductivity can be obtained by inserting atoms, ions and the like. However, such a graphite intercalation compound is generally unstable and tends to be gradually decomposed in the atmosphere, which has been a major limitation in practical use.

一方、大気中で安定な層間化合物を探索する研究が進
み、臭素、フッ素、塩化銅などを用いて比較的に安定な
層間化合物が得られることや、ある種の金属塩化物を用
いた層間化合物は真空中や不活性ガス中では安定である
ことが判ってきているが、まだ大気中での実用化に耐え
るまでには到っていない。
On the other hand, research is progressing in search of intercalation compounds that are stable in the atmosphere, and it is possible to obtain intercalation compounds that are relatively stable using bromine, fluorine, copper chloride, etc., and intercalation compounds that use certain metal chlorides. Has been found to be stable in vacuum and in inert gas, but it has not yet been put to practical use in the atmosphere.

更に生成した層間化合物を流動パラフィンで濡らした
のち大気中に取り出す方法もあるが、黒鉛配合組成物へ
の流動パラフィンの混入が避けられないために用途が極
めて限定されることとなって一般の複合材料に応用する
目的には適当でなく、実質的には利用できないものであ
った。
There is also a method in which the generated intercalation compound is wetted with liquid paraffin and then taken out into the air, but the use of liquid paraffin in the graphite compound composition is unavoidable, and the application is extremely limited. It was not suitable for the purpose of applying it to materials, and it was practically unusable.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上のように、黒鉛層間化合物は大気中に取り出すと
不安定であり、また大気に触れさせずに取り扱うことは
作業性の面で極めて制約が多い。そしてまた流動パラフ
ィンを用いる方法は用途上の制約がある。
As described above, the graphite intercalation compound is unstable when taken out into the atmosphere, and handling without contact with the atmosphere is extremely limited in terms of workability. And again, the method using liquid paraffin has limitations in use.

そこで本発明は、大気中でも安定に取り扱うことがで
きかつ用途上の制約がない、改良された黒鉛層間化合物
を製造することができる黒鉛層間化合物の安定化法を提
供することを目的とした。
Therefore, an object of the present invention is to provide a method for stabilizing a graphite intercalation compound, which can be stably handled even in the air and has no restrictions in use, and which can produce an improved graphite intercalation compound.

〔課題を解決するための手段〕[Means for solving the problem]

かかる本発明の目的は、黒鉛層間化合物をフッ素含有
物質のガスプラズマと接触させることを特徴とする黒鉛
層間化合物の安定化法によって達成することができる。
The object of the present invention can be achieved by a method for stabilizing a graphite intercalation compound, which is characterized in that the graphite intercalation compound is brought into contact with a gas plasma of a fluorine-containing substance.

本発明の安定化法が適用される黒鉛層間化合物は、繊
維状あるいは粉末状などの黒鉛の層間にハロゲン元素、
金属ハロゲン化物、アルカリ金属などを挿入して得られ
たもので、黒鉛の種類や挿入方法などについては、何等
限定されるものではない。
The graphite intercalation compound to which the stabilization method of the present invention is applied is a halogen element between graphite layers such as fibrous or powdery,
It is obtained by inserting a metal halide, an alkali metal or the like, and the kind of graphite and the inserting method are not particularly limited.

また本発明の安定化法に用いられるフッ素含有物質
は、例えばフルオロフォルム、4フッ化炭素、3フッ化
エチレンなどのフッ素化合物などが用いられ、中でも4
フッ化炭素が特に好ましい。
Further, as the fluorine-containing substance used in the stabilization method of the present invention, for example, a fluorine compound such as fluoroform, carbon tetrafluoride, ethylene trifluoride, or the like is used.
Fluorocarbon is particularly preferred.

このようなフッ素化合物は、例えば高周波放電プラズ
マ発生装置、直流放電プラズマ発生装置、あるいはレー
ザープラズマ発生装置などの適宜のプラズマ処理装置内
にガス状として送入され、プラズマ状態で黒鉛層間化合
物と接触し反応するものである。
Such a fluorine compound is fed as a gas into an appropriate plasma processing apparatus such as a high-frequency discharge plasma generator, a direct-current discharge plasma generator, or a laser plasma generator, and contacts the graphite intercalation compound in a plasma state. It reacts.

〔作 用〕[Work]

本発明の方法によって安定化された黒鉛層間化合物
は、結晶の表面や端面に存在する水素や酸素などを含む
官能基が破壊され、それと同時にプラズマ化されたフッ
素含有原子団、例えばCF,CF2,CF3などが結合しているも
のと考えられ、空気や水分などに触れても容易に劣化を
起こすことがない。
The graphite intercalation compound stabilized by the method of the present invention is a fluorine-containing atomic group, for example, CF, CF 2 in which functional groups containing hydrogen, oxygen, etc. present on the surface or end face of the crystal are destroyed, and at the same time plasmanized. , CF 3 etc. are considered to be bonded, and will not easily deteriorate even if they come into contact with air or moisture.

〔参考例1〕 黒鉛粉末(日本坩堝社、NE−1)と塩化第2鉄とをto
w−bulb法(炭素材料学会編、アドバンスド・カーボン
シリーズ2、「黒鉛層間化合物」第8頁、2.2.1tow−bu
lb法の頁参照)に従って反応させ、黒鉛層間化合物を得
た。
[Reference Example 1] Graphite powder (Nippon Crucible, NE-1) and ferric chloride to
w-bulb method (edited by Japan Society of Carbon Materials, Advanced Carbon Series 2, "graphite intercalation compound", page 8, 2.2.1 tow-bu
reaction (see page of lb method) to obtain a graphite intercalation compound.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第1ステージ構造のものであることが
確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed to have a first stage structure.

〔実施例1〕 グローブボックス内に高周波プラズマ処理用容器を入
れておき、参考例1で得た黒鉛層間化合物を反応容器に
入ったままこのグローブボックス内に入れ、ボックス内
及びプラズマ処理用容器内を充分にアルゴン置換したの
ちに、反応容器から黒鉛層間化合物5gを取り出し、プラ
ズマ処理用容器内に移して密閉した。次いでグローブボ
ックスからプラズマ処理用容器を取り出し、一旦プラズ
マ処理用容器内を真空度10-6Torrとしたのち4フッ化炭
素を1Torrとなるように導入し、高周波プラズマ処理装
置に取り付け、40.68MHzで100Wの電力を印加して常温下
で30分間、黒鉛層間化合物を撹拌しながらプラズマ接触
処理した。
[Example 1] A container for high-frequency plasma treatment was placed in the glove box, and the graphite intercalation compound obtained in Reference Example 1 was placed in this glove box with the reaction vessel kept inside the box and inside the plasma treatment vessel. After sufficiently substituting it with argon, 5 g of the graphite intercalation compound was taken out from the reaction vessel, transferred into a plasma treatment vessel and sealed. Then, take out the plasma processing container from the glove box, once set the vacuum degree in the plasma processing container to 10 -6 Torr, introduce carbon tetrafluoride to 1 Torr, and attach it to the high-frequency plasma processing device at 40.68 MHz. A plasma contact treatment was performed while applying a power of 100 W and stirring the graphite intercalation compound at room temperature for 30 minutes.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第1ステージ構造を維持していること
が確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed that the first stage structure was maintained.

〔参考例2〕 黒鉛粉末(日本坩堝社、NE−1)とカリウムとをtow
−bulb法に従って反応させ、黒鉛層間化合物を得た。
[Reference Example 2] Tow graphite powder (Nippon Crucible, NE-1) and potassium
-According to the bulb method, a graphite intercalation compound was obtained.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第1ステージ構造のものであることが
確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed to have a first stage structure.

〔実施例2〕 参考例2の黒鉛層間化合物5gを実施例1と同様の方法
で処理し、プラズマ処理黒鉛層間化合物を得た。
Example 2 5 g of the graphite intercalation compound of Reference Example 2 was treated in the same manner as in Example 1 to obtain a plasma-treated graphite intercalation compound.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第1ステージ構造を維持していること
が確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed that the first stage structure was maintained.

〔参考例3〕 黒鉛粉末(日本坩堝社、NE−1)を室温下で700Torr
のフッ素ガスと5日間接触させて、3ステージ構造のイ
オン結合型黒鉛層間化合物を得た。
[Reference Example 3] Graphite powder (Nippon Crucible, NE-1) was added at 700 Torr at room temperature.
Was contacted with the above fluorine gas for 5 days to obtain an ionic bond type graphite intercalation compound having a three-stage structure.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第3ステージ構造のものであることが
確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed to have a third stage structure.

〔実施例3〕 参考例3の黒鉛層間化合物5gを実施例1と同様の方法
で処理し、プラズマ処理黒鉛層間化合物を得た。
Example 3 5 g of the graphite intercalation compound of Reference Example 3 was treated in the same manner as in Example 1 to obtain a plasma treated graphite intercalation compound.

この黒鉛層間化合物についてX線回折により結晶構造
を調べたところ、第3ステージ構造を維持していること
が確認された。
When the crystal structure of this graphite intercalation compound was examined by X-ray diffraction, it was confirmed that the third stage structure was maintained.

〔試験例1〕 実施例1ないし3で得たプラズマ処理黒鉛層間化合物
を室内に放置して、1週間後及び3月後にX線回折によ
る構造分析を行なった。これらの結果を、各々参考例の
未処理の黒鉛層間化合物についての結果と対比して第1
表にまとめて示した。なお、表中の数字はステージ数及
びC軸方向の層間距離(IC:Å)を表している。
[Test Example 1] The plasma-treated graphite intercalation compounds obtained in Examples 1 to 3 were left indoors and subjected to structural analysis by X-ray diffraction after 1 week and 3 months. These results are compared with the results for the untreated graphite intercalation compound of the reference example, respectively.
These are summarized in the table. The numbers in the table indicate the number of stages and the interlayer distance (I C : Å) in the C-axis direction.

この結果からわかるように、本発明の方法によって得
たプラズマ処理黒鉛層間化合物は長期間経過したのちで
も初期の構造を維持していたのに対して、未処理の黒鉛
層間化合物は短期間で分解を起こしている。
As can be seen from these results, the plasma-treated graphite intercalation compound obtained by the method of the present invention maintained the initial structure even after a long period of time, whereas the untreated graphite intercalation compound decomposed in a short period of time. Is waking up.

〔参考例4〕 微粒金属鉄を触媒としてベンゼンを気相熱分解して得
た径10〜50μm、長さ1〜10mmの気相成長炭素繊維を、
アルゴン中で2980℃、30分間熱処理して黒鉛化した。こ
の黒鉛繊維を室温下で臭素と48時間接触させて黒鉛層間
化合物繊維を得た。
[Reference Example 4] A vapor-grown carbon fiber having a diameter of 10 to 50 µm and a length of 1 to 10 mm, which was obtained by vapor-phase pyrolyzing benzene using fine metal iron as a catalyst,
It was graphitized by heat treatment at 2980 ° C. for 30 minutes in argon. This graphite fiber was contacted with bromine at room temperature for 48 hours to obtain a graphite intercalation compound fiber.

〔実施例4〕 参考例4の黒鉛層間化合物繊維3gを実施例1と同様の
方法で処理し、プラズマ処理黒鉛層間化合物繊維を得
た。
Example 4 3 g of the graphite intercalation compound fiber of Reference Example 4 was treated in the same manner as in Example 1 to obtain a plasma-treated graphite intercalation compound fiber.

〔試験例2〕 実施例4によるプラズマ処理黒鉛層間化合物を室内に
3月間放置して、その前後の電気抵抗率を4端子法によ
り測定し、電気抵抗の変化率を求めた。また、別途に30
分間水中で煮沸処理して、その前後の電気抵抗率を前記
と同様の方法で測定し、その変化率を求めた。
[Test Example 2] The plasma-treated graphite intercalation compound according to Example 4 was left indoors for 3 months, and the electrical resistivity before and after that was measured by a four-terminal method to determine the rate of change in electrical resistance. Also, 30 separately
The sample was boiled in water for a minute, and the electrical resistivity before and after that was measured by the same method as above, and the rate of change was determined.

これらの結果を、各々参考例の未処理の黒鉛層間化合
物についての結果と対比して第2表に示した。
These results are shown in Table 2 in comparison with the results for the untreated graphite intercalation compound of each reference example.

〔参考例5〕 フェロセンを熱分解して得た超微粒金属鉄を触媒とし
てベンゼンを気相熱分解して得た径0.1〜0.5μm、長さ
1〜10μmの気相成長炭素繊維を、アルゴン中で2300℃
で30分間熱処理して黒鉛化した。この黒鉛繊維を参考例
4と同様に臭素処理して黒鉛層間化合物繊維を得た。
[Reference Example 5] A vapor-grown carbon fiber having a diameter of 0.1 to 0.5 µm and a length of 1 to 10 µm, which was obtained by vapor-decomposing benzene by gas-phase pyrolysis using ultrafine metallic iron obtained by pyrolyzing ferrocene as a catalyst, was charged with argon. In 2300 ℃
Graphitized by heat treatment for 30 minutes. This graphite fiber was brominated in the same manner as in Reference Example 4 to obtain a graphite intercalation compound fiber.

〔実施例5〕 参考例5の黒鉛層間化合物繊維3gを実施例1と同様の
方法で処理し、プラズマ処理黒鉛層間化合物繊維を得
た。
Example 5 3 g of the graphite intercalation compound fiber of Reference Example 5 was treated in the same manner as in Example 1 to obtain a plasma-treated graphite intercalation compound fiber.

〔試験例3〕 実施例5によるプラズマ処理黒鉛層間化合物を室内に
3月間放置して、その前後の電気抵抗率を粉末圧縮法に
より測定して嵩密度1.0g/cm3のときの値を求め、電気抵
抗の変化率を算出した。また別途に30分間水中で煮沸処
理して、その前後の電気抵抗率を前記と同様の方法で測
定し、その変化率を求めた。
[Test Example 3] The plasma-treated graphite intercalation compound according to Example 5 was left indoors for 3 months, and the electrical resistivity before and after that was measured by the powder compression method to obtain a value when the bulk density was 1.0 g / cm 3. The rate of change in electric resistance was calculated. Separately, it was boiled in water for 30 minutes, and the electrical resistivity before and after that was measured by the same method as above, and the rate of change was obtained.

これらの結果を、各々参考例の未処理の黒鉛層間化合
物についての結果と対比して第3表に示した。
These results are shown in Table 3 in comparison with the results for the untreated graphite intercalation compounds of the reference examples.

〔発明の効果〕 本発明の黒鉛層間化合物の安定化によれば、大気中で
不安定な黒鉛層間化合物を、その高電気伝導性を含む物
理特性や化学特性を長期にわたって安定的に発揮させる
ことができる。
[Effect of the Invention] According to the stabilization of the graphite intercalation compound of the present invention, the graphite intercalation compound unstable in the atmosphere can stably exhibit its physical properties and chemical properties including its high electrical conductivity for a long period of time. You can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山梨 秀則 静岡県御殿場市川島田252 矢崎部品株 式会社内 (56)参考文献 特開 昭63−260807(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidenori Yamanashi 252 Kawashimada, Gotemba City, Shizuoka Prefecture Yazaki Parts Co., Ltd. (56) References JP-A-63-260807 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】黒鉛層間化合物をフッ素含有物質のガスプ
ラズマと接触させることを特徴とする黒鉛層間化合物の
安定化法。
1. A method for stabilizing a graphite intercalation compound, which comprises contacting the graphite intercalation compound with a gas plasma of a fluorine-containing substance.
【請求項2】黒鉛層間化合物が黒鉛繊維または黒鉛粉末
と臭素、フッ素、金属ハロゲン化合物またはアルカリ金
属から選ばれた少なくとも1種との化合物である、特許
請求の範囲第(1)項記載の黒鉛層間化合物の安定化
法。
2. The graphite according to claim 1, wherein the graphite intercalation compound is a compound of graphite fiber or graphite powder and at least one selected from bromine, fluorine, metal halogen compounds or alkali metals. Stabilization method for intercalation compounds.
【請求項3】フッ素含有物質がフッ素化炭化水素化合物
である、特許請求の範囲第(1)項記載の黒鉛層間化合
物の安定化法。
3. The method for stabilizing a graphite intercalation compound according to claim 1, wherein the fluorine-containing substance is a fluorinated hydrocarbon compound.
JP2329500A 1990-11-30 1990-11-30 Stabilization of graphite intercalation compounds Expired - Fee Related JP2526311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329500A JP2526311B2 (en) 1990-11-30 1990-11-30 Stabilization of graphite intercalation compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329500A JP2526311B2 (en) 1990-11-30 1990-11-30 Stabilization of graphite intercalation compounds

Publications (2)

Publication Number Publication Date
JPH04202006A JPH04202006A (en) 1992-07-22
JP2526311B2 true JP2526311B2 (en) 1996-08-21

Family

ID=18222068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329500A Expired - Fee Related JP2526311B2 (en) 1990-11-30 1990-11-30 Stabilization of graphite intercalation compounds

Country Status (1)

Country Link
JP (1) JP2526311B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production

Also Published As

Publication number Publication date
JPH04202006A (en) 1992-07-22

Similar Documents

Publication Publication Date Title
Park et al. Surface characteristics of fluorine-modified PAN-based carbon fibers
EP0081004B1 (en) Organic matrix composites reinforced with intercalated graphite
Hamwi et al. Graphite fluorides prepared at room temperature 1. Synthesis and characterization
McIntyre et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of Monel‐400
US5698088A (en) Formic acid-graphite intercalation compound
Mallouk et al. Reversible intercalation of graphite by fluorine: a new bifluoride, C 12 HF 2, and graphite fluorides, C x F (5> x> 2)
US4565649A (en) Graphite intercalation compounds
JPS62297207A (en) Fluorinated carbon and manufacture
Kavan Electrochemical carbonization of fluoropolymers
Kang et al. Electrochemical synthesis and characterization of formic acid-graphite intercalation compound
CN108123112A (en) A kind of N doping porous graphene aggregation and its preparation method and application
US4293450A (en) Process for conducting electricity utilizing a specifically defined graphite intercalation compound
JPH0413289B2 (en)
JP2526311B2 (en) Stabilization of graphite intercalation compounds
US4632775A (en) Process for the intercalation of graphitic carbon employing sulfur trioxide
US6036934A (en) Chemically modified carbonaceous materials made by the defluorination of graphite fluoride and process therefor
Kavan et al. XPS study of carbon in electrochemical reduction products of poly (tetrafluoroethylene)
US4634546A (en) Process for the intercalation of graphitic carbon employing fully halogenated hydrocarbons
JP2543583B2 (en) Graphite flakes manufacturing method
JPH0139965B2 (en)
Ho et al. Carbon fibers brominated by electrochemical intercalation
El’tsov et al. Modification of porous silicon in ultrahigh vacuum and contribution of graphite nanocrystallites to photoluminescence
Hung et al. Graphite intercalation compound with iodine as the major intercalate
Nakajima et al. Discharge characteristics of graphite fluorides prepared via graphite intercalation compounds in nonaqueous lithium cells
Mathur et al. In situ electrical resistivity changes during bromine intercalation in carbon fibers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees