JP2525831B2 - Load characteristic constant measuring device - Google Patents

Load characteristic constant measuring device

Info

Publication number
JP2525831B2
JP2525831B2 JP62253532A JP25353287A JP2525831B2 JP 2525831 B2 JP2525831 B2 JP 2525831B2 JP 62253532 A JP62253532 A JP 62253532A JP 25353287 A JP25353287 A JP 25353287A JP 2525831 B2 JP2525831 B2 JP 2525831B2
Authority
JP
Japan
Prior art keywords
load
signal
measuring device
circuit
characteristic constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62253532A
Other languages
Japanese (ja)
Other versions
JPH0196570A (en
Inventor
忠雄 杉田
智 東田
厚生 藤原
裕親 小野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP62253532A priority Critical patent/JP2525831B2/en
Publication of JPH0196570A publication Critical patent/JPH0196570A/en
Application granted granted Critical
Publication of JP2525831B2 publication Critical patent/JP2525831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大電力の中波ラジオ放送用や短波ラジオ放
送用の送信アンテナなど負荷回路のインピーダンスや送
信電力などの特性定数を測定する負荷特性定数測定装置
に関し、特に、放送機が動作している状態など負荷駆動
回路の動作状態のままでリアルタイムに特性定数の測定
を行ない得るようにしたものである。
The present invention relates to a load for measuring characteristic constants such as impedance and transmission power of a load circuit such as a transmission antenna for high-power medium-wave radio broadcasting or short-wave radio broadcasting. The present invention relates to a characteristic constant measuring device, in particular, a characteristic constant measuring device capable of measuring a characteristic constant in real time while the load driving circuit is in an operating state such as an operating state of a broadcaster.

(発明の概要) 本発明は、負荷回路の諸特性定数を負荷駆動回路の動
作状態のままで測定し得るようにするために、負荷回路
乃至負荷駆動回路に介挿したトランスから負荷電流およ
び負荷電圧にそれぞれ比例した電圧信号を取出し、それ
らの電圧信号をハイブリッドトランスに供給して両者の
和信号および差信号を形成し、それらの電圧信号並びに
和信号および差信号をそれぞれ整流した各整流出力直流
信号に基づき、負荷回路のインピーダンス、入力位相
角、入力電力等の諸特性定数を算出するようにしたもの
であり、本発明により、例えば、100W級乃至500kW級の
大電力放送機の動作中にアンテナ負荷の動作状態を測定
して、放送機の安定運用、予知保全等に大きく貢献し得
る。
(Summary of the Invention) In order to be able to measure various characteristic constants of a load circuit in the operating state of the load drive circuit, the present invention uses a load circuit and a load current and load from a transformer inserted in the load drive circuit. Each rectified output DC that takes out the voltage signal proportional to the voltage, supplies those voltage signals to the hybrid transformer, forms the sum signal and the difference signal of both, and rectifies the voltage signal and the sum signal and the difference signal, respectively. Based on the signal, the impedance of the load circuit, the input phase angle, is to calculate various characteristic constants such as input power, the present invention, for example, during operation of 100W class to 500kW class high power broadcasting By measuring the operating state of the antenna load, it can greatly contribute to stable operation of the broadcaster, predictive maintenance, and the like.

(従来の技術) この種負荷回路乃至負荷駆動回路の諸特性定数、すな
わち、特性インピーダンス、入力電力等を測定する従来
の測定装置としては、CM型電力計、CC型電力計、三電流
計法、三電圧計法等がある。CC型電力計は、それぞれコ
ンデンサ(C)を介して取出した負荷電圧および負荷電
流に比例した電流をそれぞれ熱電対に加え、その直流出
力電流を相乗して負荷電力を求めるものであり、CM型電
力計は、同様の電力計において負荷電流に比例した電流
を相互インダクタンス(M)を介して取出すものであ
る。また、三電流計法は、負荷回路に並列に接続した抵
抗に流れる電流を含めた3電流ベクトルの絶対値から負
荷電流ベクトルおよび負荷電圧に比例した電流ベクトル
のスカラ積として負荷電力を算出するものであり、三電
圧計法は、負荷回路に直列に接続した抵抗に生ずる電圧
を含めた3電圧ベクトルの絶対値から負荷電圧ベクトル
および負荷電流に比例した電圧ベクトルのスカラ積とし
て負荷電力を算出するものである。
(Prior Art) As a conventional measuring device for measuring various characteristic constants of this kind of load circuit or load driving circuit, that is, characteristic impedance, input power, etc., there are a CM type power meter, a CC type power meter, and a three ammeter method , There are three voltmeter methods. The CC type power meter adds a current proportional to the load voltage and load current extracted via the capacitor (C) to the thermocouple, and calculates the load power by synergizing the DC output current. The power meter takes out a current proportional to the load current in the same power meter through the mutual inductance (M). Further, the three-ampere meter method calculates the load power as a scalar product of the load current vector and the current vector proportional to the load voltage from the absolute value of the three current vectors including the currents flowing in the resistors connected in parallel to the load circuit. The three voltmeter method calculates the load power as a scalar product of the load voltage vector and the voltage vector proportional to the load current from the absolute value of the three voltage vector including the voltage generated in the resistor connected in series to the load circuit. It is a thing.

(発明が解決しようとする問題点) しかして、上述した従来の負荷特性定数測定装置は、
いずれも、つぎのような問題点のいずれかを有してい
た。
(Problems to be Solved by the Invention) The conventional load characteristic constant measuring device described above,
Each of them had one of the following problems.

(1)従来装置を使用して負荷特性定数を測定し得る周
波数の範囲が狭い。
(1) The frequency range in which the load characteristic constant can be measured using the conventional device is narrow.

(2)従来装置を使用して測定し得る負荷電力のレベル
が低過ぎる。
(2) The level of load power that can be measured using the conventional device is too low.

(3)従来装置は構成が複雑で大規模、高価である。(3) The conventional device has a complicated configuration, is large-scale, and is expensive.

(問題点を解決するための手段) 本発明の目的は、上述した従来の問題点を解決し、簡
単な構成の低廉な装置を用いた単純な動作原理により、
広い周波数範囲に亘って、低電力から高電力に至る広い
電力レベル範囲など、広いレベル範囲の負荷特性定数を
測定し得るようにした負荷特性定数測定装置を提供する
ことにある。
(Means for Solving Problems) An object of the present invention is to solve the above-mentioned conventional problems and to provide a simple operation principle using an inexpensive device having a simple structure,
An object of the present invention is to provide a load characteristic constant measuring device capable of measuring a load characteristic constant in a wide level range such as a wide power level range from low power to high power over a wide frequency range.

本発明は、上述した目的を達成するために、ハイブリ
ッドトランスを用いて負荷特性定数を測定することが要
点であり、ハイブリッドトランスの使用によってつぎの
ような利点が得られるようにしたものである。
In order to achieve the above-mentioned object, the present invention is to measure the load characteristic constant using a hybrid transformer, and the following advantages are obtained by using the hybrid transformer.

〔1〕ハイブリッドトランスはフエライトコアを用いて
構成するが、そのフエライトコアの材質、形状等を適切
に選定すれば、広い周波数範囲に亘って負荷特性定数の
測定が可能となる。
[1] The hybrid transformer is constructed by using a ferrite core, but the load characteristic constant can be measured over a wide frequency range by appropriately selecting the material and shape of the ferrite core.

〔2〕ハイブリッドトランスにおいては、入出力各信号
相互間のアイソレーションを充分大きくし得るので、負
荷回路乃至負荷駆動回路の動作状態を乱さずに高精度の
特性定数測定が可能となる。
[2] In the hybrid transformer, since the isolation between the input and output signals can be made sufficiently large, highly accurate characteristic constant measurement can be performed without disturbing the operating state of the load circuit or the load drive circuit.

〔3〕ハイブリッドトランスは低抵抗の熱電対に対して
容易に整合をとり得るので、負荷特性定数の測定に熱電
対を有効に使用することができる。
[3] Since the hybrid transformer can easily match the low resistance thermocouple, the thermocouple can be effectively used for measuring the load characteristic constant.

すなわち、本発明負荷特性定数測定装置は、負荷回路
に介挿したトランスを介して取出した負荷電流信号と負
荷電圧信号との和信号および差信号をそれぞれハイブリ
ッドトランスを介し取出して整流し、各整流出力直流信
号に基づいて前記負荷回路の特性定数を算出するように
したことを特徴とするものである。
That is, the load characteristic constant measuring device of the present invention is configured to extract and rectify the sum signal and the difference signal of the load current signal and the load voltage signal, which are extracted via the transformer inserted in the load circuit, via the hybrid transformer, respectively. The characteristic constant of the load circuit is calculated based on the output DC signal.

(作用) したがって、本発明によれば、例えば、中波帯や短波
帯の大電力放送機の動作中においても、放送機により駆
動するアンテナ負荷回路のインピーダンスやアンテナ負
荷に供給される高周波数電力を回路状態に乱すことなく
測定することができ、また、負荷特性定数の測定可能な
周波数範囲を電力用周波数や音声周波数帯の数十Hzから
数百MHzに及ぶVHF帯まで拡げることができ、さらに、負
荷電力の測定可能なレベル範囲を1Wから例えば500kMま
で拡げることができる。
(Operation) Therefore, according to the present invention, for example, even during operation of a high-power broadcaster in the medium-wave band or short-wave band, high-frequency power supplied to the impedance of the antenna load circuit driven by the broadcaster or the antenna load. Can be measured without disturbing the circuit state, and the measurable frequency range of the load characteristic constant can be expanded to the VHF band ranging from several tens Hz of the power frequency and voice frequency band to several hundred MHz. Furthermore, the measurable level range of the load power can be expanded from 1 W to, for example, 500 kM.

(実施例) 以下に図面を参照して実施例につき本発明を詳細に説
明する。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

まず、負荷回路のインピーダンスを測定する場合にお
ける本発明測定装置の基本的構成の例を第1図(a),
(b)に示す。
First, an example of the basic configuration of the measuring device of the present invention in the case of measuring the impedance of a load circuit is shown in FIG.
It shows in (b).

この場合、同図(a)に示すように、放送機等の駆動
回路Dにより駆動するアンテナなどの負荷回路Lに直列
に接続した電流トランスCTおよびコンデンサCを介して
負荷回路Lに並列に接続した電圧トランスPTから負荷電
流および負荷電圧にそれぞれ対応した電圧信号viおよび
veをそれぞれ取出す。ついで、同図(b)に示すよう
に、それらの電圧信号viおよびveをトランスTiおよびTe
並びにハイブリッドトランスHsおよびHdに図示のように
供給し、それらのトランスの出力電圧を整流器Riおよび
Re並びにRsおよびRdにより整流して負荷電流および負荷
電圧並びにそれらの和および差にそれぞれ対応した直流
電圧|vi|,|ve|,|vi+ve|,|vi−ve|をそれぞれ取出
し、それらの直流電圧に後述するような演算を施して負
荷回路Lのインピーダンスを算出する。
In this case, as shown in FIG. 4A, the load circuit L is connected in parallel via a current transformer CT and a capacitor C which are connected in series to a load circuit L such as an antenna driven by a drive circuit D of a broadcasting machine or the like. From the selected voltage transformer PT to the voltage signals v i and
v Take out e respectively. Then, as shown in FIG. 7B, those voltage signals v i and v e are transferred to transformers T i and T e.
And hybrid transformers H s and H d as shown and the output voltage of those transformers rectifiers R i and
DC voltage rectified by R e and R s and R d and corresponding to the load current and load voltage and their sum and difference, respectively | v i |, | v e |, | v i + v e |, | v i − v e | is taken out respectively, and the DC voltage is subjected to an operation as described later to calculate the impedance of the load circuit L.

つぎに、負荷回路の方向性結合特性を測定する場合に
おける本発明測定装置の基本的構成の例を第2図
(a),(b)に示す。
Next, an example of the basic configuration of the measuring device of the present invention in the case of measuring the directional coupling characteristic of the load circuit is shown in FIGS. 2 (a) and 2 (b).

同図(a)に示すように、インピーダンス測定の場合
とほぼ同様にして取出した負荷電流および負荷電圧にそ
れぞれ対応した電圧信号viおよびveを、同図(b)に示
すように、ハイブリッドトランスHsおよびHdに供給し、
それらのトランスの出力電圧を整流器RsおよびRdにより
整流して負荷回路Lに向う進行波および負荷回路Lから
の反射波にそれぞれ対応した直流電圧を取出す。
As shown in FIG. 7A, the voltage signals v i and v e corresponding to the load current and the load voltage, which are extracted in substantially the same manner as in the impedance measurement, are converted into hybrid signals as shown in FIG. Supply to transformers H s and H d ,
The output voltages of these transformers are rectified by the rectifiers R s and R d to extract DC voltages corresponding to the traveling wave toward the load circuit L and the reflected wave from the load circuit L, respectively.

つぎに、負荷回路の入力電力を測定する場合における
本発明測定装置の基本的構成の例を第3図(a),
(b)に示す。
Next, an example of the basic configuration of the measuring device of the present invention in the case of measuring the input power of the load circuit is shown in FIG.
It shows in (b).

同図(a)に示すように、前述の各場合と同様にして
取出した負荷電流および負荷電圧にそれぞれ対応した電
圧信号viおよびveを、同図(b)に示すように、ハイブ
リッドトランスHsおよびHdに供給し、それらのトランス
の出力電圧を熱電対THsおよびTHdに印加して負荷電流お
よび負荷電圧にそれぞれ対応した出力直流電流を直列に
して直流電流計Pに供給し、入力電力を指示させる。
As shown in FIG. 7A, the voltage signals v i and v e respectively corresponding to the load current and the load voltage extracted in the same manner as in the above-mentioned cases are converted into the hybrid transformer as shown in FIG. H s and H d , and the output voltages of those transformers are applied to the thermocouples TH s and TH d to supply a load current and an output DC current corresponding to the load voltage in series to the DC ammeter P. , Instruct the input power.

つぎに、負荷回路の入力位相角を測定する場合におけ
る本発明測定装置の基本的構成の例を第4図(a)〜
(c)に示す。
Next, an example of the basic configuration of the measuring device of the present invention in the case of measuring the input phase angle of the load circuit is shown in FIG.
It is shown in (c).

同図(a)に示すように、インピーダンス測定の場合
と同様にして取出した負荷電流および負荷電圧にそれぞ
れ対応した電圧信号viおよびveを、同図(b)に示すよ
うに、ハイブリッドトランスHsおよびHdに供給し、それ
らのトランスの出力電圧を整流器RsおよびRdにより整流
して負荷電流と負荷電圧との和および差にそれぞれ対応
した直流電圧|vi+ve|および|vi−ve|をそれぞれ取
出し、同図(c)に示すようなベクトル関係に基づき、
後述するようにして負荷回路Lの入力位相角を算出す
る。
As shown in FIG. 7A, the voltage signals v i and v e respectively corresponding to the load current and the load voltage extracted in the same manner as in the impedance measurement are converted into the hybrid transformer as shown in FIG. H s and H d , and the output voltage of those transformers is rectified by rectifiers R s and R d to generate DC voltage │v i + v e │ and │ corresponding to the sum and difference between load current and load voltage, respectively. v i −v e | are respectively taken out, and based on the vector relationship as shown in FIG.
The input phase angle of the load circuit L is calculated as described below.

つぎに、さきに述べた負荷回路の各特性定数を測定す
る場合について、本発明測定装置の全体構成の例を第5
図につき説明する。
Next, in the case of measuring each characteristic constant of the load circuit described above, the fifth example of the overall configuration of the measuring apparatus of the present invention will be described.
The figure will be described.

図示の全体構成中、センサ回路1においては、第1図
(a)に示したと同様に、負荷回路Lに直列に接続した
電流トランスCTおよびコンデンサCを介して負荷回路L
に並列に接続した電圧トランスPTから負荷電流および90
°移相した負荷電圧にそれぞれ比例した電圧信号viおよ
びveを取出す。ついで、信号変換回路2においては、第
1図(b)に示したと全く同様にして、トランスTi,Te
およびハイブリッドトランスHs,Hdと整流器Ri,Re
Rs,Rdとにより、負荷電流および負荷電圧並びにそれら
の和および差にそれぞれ比例した直流電圧|vi|,|ve|,|
vi+ve|,|vi−ve|をそれぞれ取出す。ついで、演算回
路3においては、それらの直流電圧に対してつぎの式
(1)〜(4)による演算を施す。
In the sensor circuit 1 in the entire configuration shown in the figure, as in the case shown in FIG. 1A, the load circuit L is connected via the current transformer CT and the capacitor C connected in series to the load circuit L.
Voltage transformer PT connected in parallel to the load current and 90
° Extract voltage signals v i and v e , which are proportional to the phase-shifted load voltage. Then, in the signal conversion circuit 2, the transformers T i and T e are exactly the same as those shown in FIG. 1 (b).
And hybrid transformers H s and H d and rectifiers R i and R e ,
R s , R d and the direct current voltage proportional to the load current and load voltage and their sum and difference, respectively | v i |, | v e |, |
Take out v i + v e |, | v i −v e | respectively. Next, in the arithmetic circuit 3, the arithmetic operations according to the following equations (1) to (4) are applied to the DC voltages.

|vi|=a|I| (1) |ve|=b|E| (2) ここに、Iは負荷電流、Eは負荷の端子電圧、aおよ
びbは電流トランスCTおよび電圧トランスPTによってそ
れぞれ決まる比例定数、θは負荷電流Iと負荷端子電圧
Eとの位相差であり、 |vi+ve2−|vi−ve2=4vi・ve・sinθ (5) となる。
| v i | = a | I | (1) | v e | = b | E | (2) Where I is the load current, E is the terminal voltage of the load, a and b are proportional constants determined by the current transformer CT and the voltage transformer PT, θ is the phase difference between the load current I and the load terminal voltage E, and | v i + v e | 2 − | v i −v e | 2 = 4 v i · v e · sin θ (5).

演算回路3においては、上述の式(1)〜(4)によ
って表わされる負荷電流および負荷電圧並びにそれらの
和および差にそれぞれ比例した各直流電流値から、つぎ
の(6)〜(13)式により負荷回路Lの各種の特性定数
をそれぞれ算出する。
In the arithmetic circuit 3, the following formulas (6) to (13) are calculated from the load current and load voltage represented by the above formulas (1) to (4) and the respective direct current values proportional to the sum and difference thereof. According to, various characteristic constants of the load circuit L are calculated respectively.

抵抗: R=|Z|cosθ (9) リアクタンス:X=|Z|sinθ (10) ここに、Roは規定負荷インピーダンスである。 Resistance: R = | Z | cosθ (9) Reactance: X = | Z | sinθ (10) Where R o is the specified load impedance.

ついで、表示回路4においては、演算回路3により上
述のようにして算出した負荷回路の各特性定数をそれぞ
れ数値表示する。
Then, the display circuit 4 numerically displays each characteristic constant of the load circuit calculated by the arithmetic circuit 3 as described above.

したがって、本発明測定装置においては、放送機等の
負荷駆動回路が動作している状態のままで、その動作を
乱すことなく、アンテナ等の負荷回路の諸特性定数を測
定し、表示することが可能となる。
Therefore, in the measuring device of the present invention, it is possible to measure and display various characteristic constants of the load circuit such as the antenna without disturbing the operation of the load driving circuit such as the broadcasting machine. It will be possible.

(発明の効果) 以上の説明から明らかなように、本発明によればつぎ
のような顕著な効果を挙げることができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the following remarkable effects can be achieved.

(1)ハイブリッドトランスを使用することにより、負
荷回路から負荷電流および負荷電圧に比例した電圧信号
を充分なアイソレーションをもって充分な整合状態のも
とに取出し、それらの電圧信号に基づき、動作中の負荷
回路の各種特性定数をリアルタイムに測定することがで
きる。
(1) By using the hybrid transformer, the voltage signal proportional to the load current and the load voltage is taken out from the load circuit with sufficient isolation under a sufficient matching state, and the operation is performed based on these voltage signals. Various characteristic constants of the load circuit can be measured in real time.

(2)フエライトコアを用いたトランスとダイオードや
熱電対とを組合わせた簡単を構成の回路装置により、ロ
ーコストで負荷特性定数の測定を行なうことができる。
(2) The load characteristic constant can be measured at low cost by a circuit device having a simple structure in which a transformer using a ferrite core is combined with a diode or a thermocouple.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は負荷特性インピーダンスを測定
する場合における本発明測定装置の基本的構成例をそれ
ぞれ示すブロック線図、 第2図(a),(b)は負荷反射係数を測定する場合に
おける本発明測定装置の基本的構成例をそれぞれ示すブ
ロック線図、 第3図(a),(b)は負荷電力を測定する場合におけ
る本発明測定装置の基本的構成例をそれぞれ示すブロッ
ク線図、 第4図(a),(b)および(c)は負荷位相情報を測
定する場合における本発明測定装置の基本的構成例をそ
れぞれ示すブロック線図およびベクトル図、 第5図は本発明負荷特性定数測定装置の全体構成の例を
示すブロック線図である。 1…センサ回路、2…信号変換回路 3…演算回路、4…表示回路 L…負荷回路、D…負荷駆動回路 CT…電流トランス、PT…電圧トランス TiTe…トランス Hs,Hd…ハイブリッドトランス Ri,Re,Rs,Rd…整流器 THs,THd…熱電対、P…直流電力計
1 (a) and 1 (b) are block diagrams each showing a basic configuration example of the measuring device of the present invention in the case of measuring a load characteristic impedance, and FIGS. 2 (a) and 2 (b) show a load reflection coefficient. Block diagrams showing respective basic configuration examples of the measuring device of the present invention in the case of measurement, and FIGS. 3 (a) and 3 (b) respectively show basic configuration examples of the measuring device of the present invention in the case of measuring load power. Block diagrams, FIGS. 4 (a), (b) and (c) are block diagrams and vector diagrams respectively showing a basic configuration example of the measuring device of the present invention in the case of measuring load phase information, and FIG. It is a block diagram showing an example of the whole composition of the load characteristic constant measuring device of the present invention. 1 ... Sensor circuit, 2 ... Signal conversion circuit 3 ... Operation circuit, 4 ... Display circuit L ... Load circuit, D ... Load drive circuit CT ... Current transformer, PT ... Voltage transformer T i T e ... Transformer H s , H d ... Hybrid transformers R i , R e , R s , R d ... Rectifier TH s , TH d ... Thermocouple, P ... DC wattmeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野沢 裕親 東京都渋谷区神南2丁目2番1号 日本 放送協会放送センター内 (56)参考文献 特開 昭51−113673(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hirochika Onozawa 2-2-1 Jinnan, Shibuya-ku, Tokyo Inside the Japan Broadcasting Corporation Broadcasting Center (56) Reference JP-A-51-113673 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負荷回路に介挿したトランスを介して取出
した負荷電流信号と負荷電圧信号との和信号および差信
号をそれぞれハイブリッドトランスを介し取出して整流
し、各整流出力直流信号に基づいて前記負荷回路の特性
定数を算出するようにしたことを特徴とする負荷特性定
数測定装置。
1. A sum signal and a difference signal of a load current signal and a load voltage signal taken out via a transformer inserted in a load circuit are taken out via a hybrid transformer and rectified, respectively, and based on each rectified output DC signal. A load characteristic constant measuring device, characterized in that a characteristic constant of the load circuit is calculated.
【請求項2】前記負荷電流信号、前記負荷電圧信号、前
記和信号および前記差信号をそれぞれ整流して得た各整
流出力直流信号に基づいて前記負荷回路のインピーダン
スを算出するようにしたことを特徴とする特許請求の範
囲第1項記載の負荷特性定数測定装置。
2. The impedance of the load circuit is calculated based on each rectified output DC signal obtained by rectifying the load current signal, the load voltage signal, the sum signal and the difference signal. The load characteristic constant measuring device according to claim 1, which is characterized.
【請求項3】前記和信号および前記差信号をそれぞれ整
流して得た各整流出力直流信号に基づいて前記負荷回路
の入力位相角を算出するようにしたことを特徴とする特
許請求の範囲第1項記載の負荷特性定数測定装置。
3. The input phase angle of the load circuit is calculated based on each rectified output DC signal obtained by rectifying the sum signal and the difference signal. The load characteristic constant measuring device according to item 1.
【請求項4】前記和信号および前記差信号をそれぞれ熱
電対に供給して得た各出力熱電流に基づいて前記負荷回
路の入力電力を算出するようにしたことを特徴とする特
許請求の範囲第1項記載の負荷特性定数測定装置。
4. The input power of the load circuit is calculated based on the respective output heat currents obtained by supplying the sum signal and the difference signal to a thermocouple, respectively. The load characteristic constant measuring device according to the first item.
【請求項5】前記和信号および前記差信号をそれぞれ整
流して得た各整流出力直流信号から前記負荷回路への進
行波成分および前記負荷回路からの反射波成分を得るよ
うにしたことを特徴とする特許請求の範囲第1項記載の
負荷特性定数測定装置。
5. A traveling wave component to the load circuit and a reflected wave component from the load circuit are obtained from each rectified output DC signal obtained by rectifying the sum signal and the difference signal. The load characteristic constant measuring device according to claim 1.
JP62253532A 1987-10-09 1987-10-09 Load characteristic constant measuring device Expired - Lifetime JP2525831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253532A JP2525831B2 (en) 1987-10-09 1987-10-09 Load characteristic constant measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253532A JP2525831B2 (en) 1987-10-09 1987-10-09 Load characteristic constant measuring device

Publications (2)

Publication Number Publication Date
JPH0196570A JPH0196570A (en) 1989-04-14
JP2525831B2 true JP2525831B2 (en) 1996-08-21

Family

ID=17252675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253532A Expired - Lifetime JP2525831B2 (en) 1987-10-09 1987-10-09 Load characteristic constant measuring device

Country Status (1)

Country Link
JP (1) JP2525831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258763A (en) * 2005-03-18 2006-09-28 Toshiba Corp Reflection measuring circuit, and transmission protecting device using reflection measuring circuit
JP5342033B2 (en) 2012-03-13 2013-11-13 株式会社東芝 Digital amplitude modulation device and control method of digital amplitude modulation device
CN112578184B (en) * 2020-12-16 2022-12-06 中国科学院电工研究所 Multi-load parameter identification method and system for wireless charging system

Also Published As

Publication number Publication date
JPH0196570A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US10193400B2 (en) Method of and apparatus for detecting coil alignment error in wireless inductive power transmission
US5194812A (en) Device for determining depth and direction of buried objects
US4810954A (en) Poynting vector probe for measuring electrical power
US6023160A (en) Electrical metering system having an electrical meter and an external current sensor
US4234846A (en) Methods of eliminating conversion factor drift effects in a clip-on hall-effect ammeter
JP2525831B2 (en) Load characteristic constant measuring device
US2752564A (en) Apparatus for detecting a magnetic field
US2680226A (en) Location of conducting and/or magnetic bodies
US6566895B2 (en) Unbalanced three phase delta power measurement apparatus and method
US2983866A (en) Automatic impedance plotting device
US2527568A (en) Apparatus for testing transformer turn ratios
JP2598991Y2 (en) Insulation leakage current measuring device
US2285211A (en) Radio frequency wattmeter
US4196387A (en) Apparatus for measuring output DC current of rectifier devices
GB886265A (en) Improvements in or relating to multiplying devices
US3293497A (en) Ground fault detector
US3944919A (en) Direct current measuring system for rectifiers
US2140364A (en) Radio frequency wattmeter
US2585001A (en) Apparatus for the measurement of high-frequency power
Spencer et al. Artificial representation of power systems
US2087995A (en) Arrangement for measuring direct current
JPH0798337A (en) Current detector
JPS628737U (en)
Kennelly et al. A rectangular-component two-dimensional alternating-current potentiometer
Rogal et al. Precision resistance-comparison bridge using current transformers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12