JP2525706Y2 - Remote control type pressure reducing valve - Google Patents

Remote control type pressure reducing valve

Info

Publication number
JP2525706Y2
JP2525706Y2 JP5448990U JP5448990U JP2525706Y2 JP 2525706 Y2 JP2525706 Y2 JP 2525706Y2 JP 5448990 U JP5448990 U JP 5448990U JP 5448990 U JP5448990 U JP 5448990U JP 2525706 Y2 JP2525706 Y2 JP 2525706Y2
Authority
JP
Japan
Prior art keywords
valve
thermo
pressure
control fluid
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5448990U
Other languages
Japanese (ja)
Other versions
JPH0415709U (en
Inventor
正博 中本
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP5448990U priority Critical patent/JP2525706Y2/en
Publication of JPH0415709U publication Critical patent/JPH0415709U/ja
Application granted granted Critical
Publication of JP2525706Y2 publication Critical patent/JP2525706Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、主弁部とパイロツト部と駆動部とからな
り、パイロツト部から制御される供給圧力を駆動部で受
圧し、主弁部の主弁子の開閉を行ない二次側圧力をほぼ
一定に保持し、その設定圧を遠隔操作できる遠隔操作型
減圧弁に関する。
[Detailed description of the invention] <Industrial application field> This invention is composed of a main valve, a pilot section, and a drive section. The drive section receives a supply pressure controlled from the pilot section, The present invention relates to a remotely operated pressure-reducing valve which opens and closes a main valve, maintains a substantially constant secondary pressure, and remotely controls the set pressure.

〈従来技術〉 一般に、パイロツト作動形減圧弁は、機器の上部は背
面に設置されているので、設定圧を変更するには、機器
を操作する人が減圧弁の所まで行き、その操作ハンドル
を回動しなければならず、設定圧変更の操作は非常に面
倒である。特に、ゴム加硫関係のプレス機器では、生産
する品物によって加硫温度を変更するケースが多く、局
部的にでも遠隔操作できれば操作が簡単になり生産性が
向上する。
<Prior art> Generally, the pilot operated pressure reducing valve is installed on the back of the equipment, so to change the set pressure, the person operating the equipment goes to the pressure reducing valve and turns the operating handle. It is necessary to rotate, and the operation of changing the set pressure is very troublesome. In particular, in the case of rubber vulcanization-related press equipment, the vulcanization temperature is often changed depending on the product to be produced, and if remote control can be performed even locally, the operation is simplified and productivity is improved.

上記不具合を解消するために、設定圧を変更する際に
回動する操作ハンドルを電動モーター等を用いて遠隔操
作しようとすれば、高価となりかつ電気配線が必要とな
る。
In order to solve the above-mentioned problem, if an attempt is made to remotely control an operating handle that rotates when the set pressure is changed by using an electric motor or the like, it becomes expensive and requires electric wiring.

そこで、本出願人は、第5図のような、電気を使用せ
ず工場で自由に使用可能なエアー等の制御流体を利用
し、減圧弁本来の機能を生かすと共に遠隔制御を可能と
する減圧弁を開示している(実開平2−14108号参
照)。
Therefore, the present applicant utilizes a control fluid such as air which can be used freely in a factory without using electricity as shown in FIG. 5 to utilize the original function of the pressure reducing valve and reduce the pressure to enable remote control. A valve is disclosed (see Japanese Utility Model Laid-Open No. 2-14108).

図示の如く、上記遠隔操作型減圧弁は、パイロツト部
Bに、パイロツト弁棒17と対向する感圧素子(ベロー
ズ)19と、該感圧素子19の内側空間からなる感圧素子室
20と出口3とを接続する二次圧検出孔21と、前記感圧素
子室20の逆側に感圧素子19と対向する調整スプリング22
を内装し該調整スプリング22と同方向の制御力を作用さ
せる制御流体室Rを形成している。
As shown in the figure, the remote control type pressure reducing valve has a pressure sensitive element chamber including a pressure sensitive element (bellows) 19 facing a pilot valve rod 17 and a space inside the pressure sensitive element 19 in a pilot portion B.
A secondary pressure detecting hole 21 for connecting the pressure sensing element 20 to the outlet 3, and an adjusting spring 22 facing the pressure sensing element 19 on the opposite side of the pressure sensing element chamber 20;
And a control fluid chamber R for applying a control force in the same direction as the adjustment spring 22 is formed.

なお、第5図中、Aは主弁部、Cは駆動部、1はケー
シング、2は入口、4は主弁孔、5は主弁座、6は主弁
子、7は主スプリング、8は主弁棒、9はピストン室、
10はピストン、11は一次圧導入孔、12はパイロツト室、
13はパイロツトケース、14は弁孔、15はパイロツト弁
子、16はパイロツトスプリング、18は導出孔、19aはベ
ローズ受圧面板、23は調整スプリング圧調整ねじ棒、24
はナツト、25は操作ハンドル、26はスクリーン、28はス
プリングステー、31は制御流体供給口である。
5, A is a main valve portion, C is a drive portion, 1 is a casing, 2 is an inlet, 4 is a main valve hole, 5 is a main valve seat, 6 is a main valve, 7 is a main spring, 8 Is the main valve stem, 9 is the piston chamber,
10 is a piston, 11 is a primary pressure introduction hole, 12 is a pilot chamber,
13 is a pilot case, 14 is a valve hole, 15 is a pilot valve, 16 is a pilot spring, 18 is an outlet hole, 19a is a bellows pressure receiving face plate, 23 is an adjusting spring pressure adjusting screw rod, 24
Is a nut, 25 is an operation handle, 26 is a screen, 28 is a spring stay, and 31 is a control fluid supply port.

〈考案が解決しようとする課題〉 第5図の遠隔操作型減圧弁は、制御流体室Rへの流体
圧力をコントロールすることにより二次側圧力を制御
し、なおかつその内部に組み込まれた調整スプリング22
で最低設定圧を保証する。したがって、例えばこの遠隔
操作型減圧弁を二種類の圧力が要求される装置等に使用
する場合、エアーのオン・オフで圧力を簡単に切り替え
ることができるので、設定圧を変更する際の操作性や作
業性を大幅に改善できる。
<Problem to be Solved by the Invention> The remote control type pressure reducing valve shown in FIG. 5 controls the secondary pressure by controlling the fluid pressure to the control fluid chamber R, and further includes an adjusting spring incorporated therein. twenty two
To guarantee the minimum set pressure. Therefore, for example, when this remote control type pressure reducing valve is used in a device that requires two kinds of pressures, the pressure can be easily switched by turning on and off the air. And workability can be greatly improved.

しかしながら、従来遠隔操作型減圧弁において、圧力
感圧素子、本例では制御流体室Rと感圧素子室20とを区
切るベローズ19は、その機構上、非常に薄い金属が用い
られているので、ベローズ19がその圧力により破損した
り、またはベローズ19をシールするガスケツトのシール
不良があると、ベローズ室2内の高温高圧の蒸気が制御
流体室Rへ流れ込み、制御側の空気配管や制御弁を損傷
させる場合がある。なお、当然のことながら、ベローズ
の変わりにダイアフラム等を感圧素子として使用しても
同様な結果を招く。
However, in the conventional remote-operated pressure reducing valve, the bellows 19 that separates the pressure-sensitive element, in this example, the control fluid chamber R and the pressure-sensitive element chamber 20 is made of a very thin metal because of its mechanism. If the bellows 19 is damaged by the pressure or if the gasket that seals the bellows 19 has a bad seal, the high-temperature and high-pressure steam in the bellows chamber 2 flows into the control fluid chamber R, and the control side air piping and the control valve are blocked. May cause damage. It is needless to say that a similar result is obtained even if a diaphragm or the like is used as a pressure-sensitive element instead of the bellows.

本考案は、上記に鑑み、万一、感圧素子が破損し、制
御流体室内に高温流体が逆流した場合にも制御側の流体
配管や制御弁の損傷を最小限にくい止めることができる
遠隔操作型減圧弁の提供を目的とする。
In view of the above, the present invention provides a remote control that can minimize damage to the control-side fluid piping and control valve even if the pressure-sensitive element is damaged and high-temperature fluid flows back into the control fluid chamber. The purpose is to provide a type pressure reducing valve.

〈課題を解決するための手段〉 本考案請求項1による課題解決手段は、第1図ないし
第4図の如く、パイロツト部Bから制御される供給圧力
を駆動部Cで受圧し、主弁部Aの主弁子6の開閉を行な
い二次側圧力をほぼ一定に保持するものであって、前記
パイロツト部Bは、パイロツト弁棒17と対向する感圧素
子19と、該感圧素子19で仕切られた空間とからなる感圧
素子室20と出口3とを接続する二次圧検出孔21と、前記
感圧素子室20と逆側に前記感圧素子19と対向する調整ス
プリング22を内装し該調整スプリング22と同方向の制御
力を作用させる制御流体室Rが形成された遠隔操作型減
圧弁において、前記制御流体室Rの制御流体供給口31に
サーモチヤツキ弁Tが組み込まれたものである。
<Means for Solving the Problem> As shown in FIGS. 1 to 4, the problem solving means according to the first aspect of the present invention receives a supply pressure controlled from a pilot portion B by a driving portion C and a main valve portion. The main valve 6 of A is opened and closed to maintain the pressure on the secondary side substantially constant. The pilot portion B includes a pressure-sensitive element 19 facing the pilot valve stem 17 and a pressure-sensitive element 19. A secondary pressure detecting hole 21 for connecting the pressure-sensitive element chamber 20 composed of a partitioned space to the outlet 3 and an adjustment spring 22 facing the pressure-sensitive element 19 on the side opposite to the pressure-sensitive element chamber 20 are provided. In a remote control type pressure reducing valve having a control fluid chamber R for applying a control force in the same direction as the adjusting spring 22, a thermostatic valve T is incorporated in a control fluid supply port 31 of the control fluid chamber R. is there.

また、請求項2による課題解決手段は、請求項1記載
のサーモチヤツキ弁Tは、サーモチヤツキ弁座45と、該
サーモチヤツキ部座45に離着座するサーモチヤツキ弁子
46と、該サーモチヤツキ弁子46よりも制御流体出口43側
に配され高温流体が流入すると閉弁方向に伸長変態する
感熱応動体47と、前記サーモチヤツキ弁子46を開弁方向
に付勢する付勢手段48と、前記サーモチヤツキ弁子46と
制御流体出口43との間に配されサーモチヤツキ弁子46の
開弁方向への移動を規制する規制体49とが有せしめられ
たものである。
According to a second aspect of the present invention, there is provided a thermo-shake valve T according to the first aspect, wherein a thermo-shake valve seat 45 and a thermo-shake valve element which is detachably seated on the thermo-shake portion seat 45.
46, a heat-sensitive responsive element 47 which is arranged closer to the control fluid outlet 43 than the thermo-shear valve 46 and expands and transforms in the valve-closing direction when a high-temperature fluid flows in, and a biasing member for urging the thermo-shear valve 46 in the valve-opening direction. A biasing means 48 and a regulating body 49 disposed between the thermo-shear valve 46 and the control fluid outlet 43 for restricting the movement of the thermo-shear valve 46 in the valve opening direction are provided.

〈作用〉 上記課題解決手段において、感圧素子19としてベロー
ズを使用した場合、減圧弁の設定圧変更のために、制御
流体を減圧弁に供給すると、制御流体は、制御流体供給
口31から制御流体室R内へ入り、ベローズ19の受圧面板
19aを押す。
<Operation> In the means for solving the above problems, when a bellows is used as the pressure-sensitive element 19, when the control fluid is supplied to the pressure reducing valve for changing the set pressure of the pressure reducing valve, the control fluid is controlled from the control fluid supply port 31. Enters into the fluid chamber R, and receives the pressure receiving face plate of the bellows 19.
Press 19a.

そうすると、ベローズ19の受圧面板19aには、調整ス
プリング22の作用力に制御流体の加圧力が付加されたも
のが作用し、ベローズ19は収縮し、パイロツト弁棒17を
介してパイロツト弁子15を開弁する。
Then, on the pressure receiving face plate 19 a of the bellows 19, a force obtained by adding the pressing force of the control fluid to the acting force of the adjusting spring 22 acts, the bellows 19 contracts, and the pilot valve 15 is moved via the pilot valve rod 17. Open the valve.

その結果、導出孔18を通じて一次圧導出孔11より導び
かれた高圧流体が、ピストン室9へ流入し主弁6を開弁
するので、遠隔操作型減圧弁の二次側である出口3の設
定圧は高い方へ変更される。これにより、二次側圧力に
よるベローズ19を伸長させる力は増加し、制御流体の加
圧力と調整スプリング22の作用力との合力とバランスす
るように弁開度が決定される。
As a result, the high-pressure fluid led from the primary pressure outlet hole 11 through the outlet hole 18 flows into the piston chamber 9 and opens the main valve 6, so that the outlet 3 on the secondary side of the remote control type pressure reducing valve is opened. The set pressure is changed to the higher one. As a result, the force for expanding the bellows 19 due to the secondary pressure increases, and the valve opening is determined so as to balance the resultant force of the control fluid pressure and the acting force of the adjustment spring 22.

このとき、定常時であると、制御流体室Rに組み込ま
れたサーモチヤツキ弁T内では、付勢手段48が感熱応動
体47に打ち勝ちサーモチヤツキ弁子46を開弁方向へ押
す。その際、サーモチヤツキ弁子46は規制体49により開
弁方向の移動が規制されるので、制御流体の通路が確保
される。
At this time, if it is a steady state, in the thermo-shake valve T incorporated in the control fluid chamber R, the urging means 48 overcomes the heat-sensitive responsive body 47 and pushes the thermo-shake valve 46 in the valve opening direction. At that time, since the movement of the thermo-shear valve 46 in the valve opening direction is regulated by the regulating body 49, the passage of the control fluid is secured.

そして、一旦異常が発生し、サーモチヤツキ弁T内に
高温流体が流入するやいなや、感熱応動体47が閉弁方向
に伸張変態し、サーモチヤツキ弁子46をサーモチヤツキ
弁座45に着座させ閉弁へと至る。
Then, as soon as an abnormality occurs and the high-temperature fluid flows into the thermostatic valve T, the thermal responsive element 47 expands and deforms in the valve closing direction, and the thermostatic valve element 46 is seated on the thermostatic valve seat 45 to reach the valve closing. .

〈実施例〉 [第一実施例] 以下、本考案の第一実施例を第1図ないし第3図に基
づき説明する。
<First Embodiment> A first embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG.

第1図は本考案第一実施例の遠隔操作型減圧弁の断面
図、第2図は同じくそのサーモチヤツキ弁の拡大断面
図、第3図は本考案遠隔操作型減圧弁を用いたシステム
の配管図である。なお、第5図に示した従来技術と同一
機能部品については同一符号を付している。
FIG. 1 is a cross-sectional view of the remote control type pressure reducing valve of the first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the thermostatic valve, and FIG. 3 is a piping of a system using the remote control type pressure reducing valve of the present invention. FIG. The same functional components as those of the prior art shown in FIG. 5 are denoted by the same reference numerals.

図示の如く、本実施例の遠隔操作型減圧弁は、主弁部
Aとパイロツト部Bと駆動部Cとからなり、パイロツト
部Bから制御される供給圧力を駆動部Cで受圧し、主弁
部Aの主弁子6の開閉を行ない二次側圧力をほぼ一定に
保持するよう構成されている。
As shown in the figure, the remote control type pressure reducing valve of the present embodiment comprises a main valve portion A, a pilot portion B and a driving portion C. The supply pressure controlled by the pilot portion B is received by the driving portion C. The main valve 6 of the section A is opened and closed to maintain the secondary pressure substantially constant.

前記主弁部Aは、第1図の如く、ケーシング1に形成
された入口2と出口3との中間位置に主弁孔4を有する
主弁座5と、該主弁孔4を開閉する主弁子6と、該主弁
子6を閉側に付勢する主スプリング7とから構成されて
いる。
As shown in FIG. 1, the main valve portion A includes a main valve seat 5 having a main valve hole 4 at an intermediate position between an inlet 2 and an outlet 3 formed in a casing 1, and a main valve opening and closing the main valve hole 4. It comprises a valve 6 and a main spring 7 for urging the main valve 6 to the closing side.

前記駆動部Cは、主弁子6を開側に移動する主弁棒8
と、これに一体成形されピストン室9に内装されたピス
トン10とから構成されている。
The drive section C includes a main valve rod 8 that moves the main valve element 6 to the open side.
And a piston 10 integrally formed therewith and housed in the piston chamber 9.

前記パイロツト部Bは、入口2と接続された一次圧導
入孔11と、これに連なるパイロツト室12と、パイロツト
ケース13に形成されたパイロツト弁孔14と、該弁孔14を
開閉するパイロツト弁子15と、該弁子15を閉方向へ付勢
するパイロツトスプリング16と、前記弁子15と別体成形
されたパイロツト弁棒17と、前記弁孔14とピストン室9
を接続する導出孔18と、前記パイロツト弁棒17と連動す
る感圧素子(金属製ベローズ)19と、該ベローズ19の内
側空間から感圧素子室(ベローズ室)20と出口3とを接
続する二次圧検出孔21と、前記ベローズ19に内装された
調整スプリング(ベローズスプリング)22と、調整スプ
リング圧調整ねじ棒23と、ケース13の内側で回転不能で
直線移動可能に内嵌されかつねじ棒23に螺嵌されたナツ
ト24と、前記ねじ棒23と一体的に固定された操作ハンド
ル25とから構成されている。
The pilot portion B includes a primary pressure introducing hole 11 connected to the inlet 2, a pilot chamber 12 connected thereto, a pilot valve hole 14 formed in a pilot case 13, and a pilot valve for opening and closing the valve hole 14. 15, a pilot spring 16 for urging the valve element 15 in the closing direction, a pilot valve stem 17 formed separately from the valve element 15, the valve hole 14, and the piston chamber 9.
, A pressure-sensitive element (metal bellows) 19 interlocked with the pilot valve stem 17, and a pressure-sensitive element chamber (bellows chamber) 20 and the outlet 3 connected from the inner space of the bellows 19. A secondary pressure detecting hole 21, an adjusting spring (bellows spring) 22 provided in the bellows 19, an adjusting spring pressure adjusting screw rod 23, and a screw which is fitted inside the case 13 so as to be non-rotatable and linearly movable inside the case 13. It comprises a nut 24 screwed to the rod 23 and an operation handle 25 fixed integrally with the screw rod 23.

前記パイロツト弁棒17の円柱形摺動部は、パイロツト
ケース13に微小間隙をもって内嵌されている。
The cylindrical sliding portion of the pilot valve stem 17 is fitted inside the pilot case 13 with a small gap.

さらに、前記ベローズ19に関してベローズ室20と逆
側、すなわちベローズ19の外側空間にベローズ19の受圧
面板19aに前記ベローズスプリング22と同方向の制御力
を作用させる制御流体室Rが形成され、前記制御流体室
Rの制御流体供給口31にサーモチヤツキ弁Tが組み込ま
れている。
Further, a control fluid chamber R for applying a control force in the same direction as the bellows spring 22 to the pressure receiving face plate 19a of the bellows 19 is formed in a side opposite to the bellows chamber 20 with respect to the bellows 19, that is, in a space outside the bellows 19, A thermocheck valve T is incorporated in the control fluid supply port 31 of the fluid chamber R.

そして、該サーモチヤツキ弁Tは、第2図の如く、制
御流体入口41が形成されたボデー42と、制御流体出口43
が形成されたカバー44との組み合せからなる空間(弁
孔)内に、前記ボデー42の制御流体入口41の終端位置に
設けられたサーモチヤツキ弁座45と、該サーモチチヤツ
キ弁座45に離着座するサーモチヤツキ弁子46と、該サー
モチヤツキ弁子46よりも制御流体出口43側に配され通常
の空気などの通過では何等作用をせず、高温流体(高温
蒸気)が流入すると閉弁方向(制御流体入口41側)へ伸
長変態する感熱応動体(形状記憶合金ばね)47と、前記
制御流体入口41に内装されサーモチヤツキ弁子46を開弁
方向(制御流体出口43側)に付勢する付勢手段(バイア
ススプリング)48と、前記制御流体出口43とサーモチヤ
ツキ弁子46の間、すなわち前記カバー44の制御流体出口
43の終端位置からサーモチヤツキ弁子46側に向って突出
形成されサーモチヤツキ弁子46の開弁方向への移動を規
制する規制体(ストツパ)49とが有せしめられている。
前記感熱応動体47は、規制体49に外嵌されている。な
お、第2図中、50が導通孔である。
As shown in FIG. 2, the thermo-tick valve T includes a body 42 having a control fluid inlet 41 formed therein and a control fluid outlet 43
In a space (valve hole) formed by a combination with a cover 44 formed with a cover, a thermo-check valve seat 45 provided at a terminal position of the control fluid inlet 41 of the body 42, and a thermo-check valve which detaches and seats on the thermo-check valve seat 45. The valve 46 and the control valve outlet 43 are located closer to the control fluid outlet 43 than the thermo-shear valve 46 and have no effect when normal air or the like passes therethrough. When a high-temperature fluid (high-temperature steam) flows in, the valve closes (control fluid inlet 41). Side), and a biasing means (bias) for biasing the thermo-check valve 46 mounted in the control fluid inlet 41 in the valve opening direction (the control fluid outlet 43 side). Spring) 48, between the control fluid outlet 43 and the thermostatic valve 46, that is, the control fluid outlet of the cover 44.
A regulating body (stopper) 49 is formed so as to protrude from the terminal position of 43 toward the thermo-shear valve 46 side and to restrict the movement of the thermo-shear valve 46 in the valve opening direction.
The heat-sensitive responsive body 47 is externally fitted to the regulating body 49. In FIG. 2, reference numeral 50 denotes a conduction hole.

また、制御流体室Rの制御流体供給口31は、サーモチ
ヤツキ弁Tを介して第3図の如く、遠隔制御流体の供給
排出装置32が接続されている。
The control fluid supply port 31 of the control fluid chamber R is connected to a remote control fluid supply / discharge device 32 via a thermocheck valve T as shown in FIG.

そして、一例として該供給排出装置32は、工場の制御
流体配管(圧縮空気配管)36と、これに付設されたレリ
ーフ弁付制御流体用減圧弁33と、安全弁34とからなり、
その出口配管35は、制御流体室Rの入口31に接続されて
いる。前記制御流体用減圧弁33の出口側圧力は、手動に
より設定され、またその減圧弁33の良否にかかわらず、
配管の安全のために前記安全弁34が使用されている。ま
た、前記制御流体配管36の出口側には、制御流体を供
給、停止、排出できる切換弁38が設けられる。なお、第
3図中、37は遠隔操作型減圧弁の出口側に接続された蒸
気消費機器、Vは遠隔操作型減圧弁である。
As an example, the supply / discharge device 32 includes a control fluid pipe (compressed air pipe) 36 of a factory, a control fluid pressure reducing valve 33 with a relief valve attached thereto, and a safety valve 34,
The outlet pipe 35 is connected to the inlet 31 of the control fluid chamber R. The outlet side pressure of the control fluid pressure reducing valve 33 is manually set, and regardless of the quality of the pressure reducing valve 33,
The safety valve 34 is used for pipe safety. On the outlet side of the control fluid pipe 36, a switching valve 38 capable of supplying, stopping and discharging the control fluid is provided. In FIG. 3, reference numeral 37 denotes a steam consuming device connected to the outlet side of the remote control type pressure reducing valve, and V denotes a remote control type pressure reducing valve.

上記構成において、減圧弁の設定圧変更のために、制
御流体の供給排出装置32により制御流体を減圧弁に供給
すると、制御流体は供給口31から制御流体室R内へ入
り、感圧素子であるベローズ19の受圧面板19aを押す。
このとき、制御流体室Rを所定の圧力に維持するため、
供給排出装置32より制御流体が供給され続ける。
In the above configuration, when the control fluid is supplied to the pressure reducing valve by the control fluid supply / discharge device 32 for changing the set pressure of the pressure reducing valve, the control fluid enters the control fluid chamber R from the supply port 31 and is controlled by the pressure sensitive element. A pressure receiving face plate 19a of a bellows 19 is pressed.
At this time, in order to maintain the control fluid chamber R at a predetermined pressure,
The control fluid is continuously supplied from the supply / discharge device 32.

そうすると、ベローズ19の受圧面板19aには、調整ス
プリング22の作用力に制御流体の加圧力が付加されたも
のが作用し、ベローズ19は収縮し、パイロツト弁棒17を
介してパイロツト弁子15を開弁する。
Then, on the pressure receiving face plate 19 a of the bellows 19, a force obtained by adding the pressing force of the control fluid to the acting force of the adjusting spring 22 acts, the bellows 19 contracts, and the pilot valve 15 is moved via the pilot valve rod 17. Open the valve.

その結果、導出孔18を通じて一次圧導出孔11より導び
かれた高圧流体(蒸気)が、ピストン室9へ流入し主弁
6を開弁するので、遠隔操作型減圧弁の二次側である出
口3の設定圧は高い方へ変更される。これにより、二次
側圧力によるベローズ19を伸長させる力は増加し、制御
流体の加圧力と調整スプリング22の作用力の合力とバラ
ンスするように弁開度が決定される。
As a result, the high-pressure fluid (steam) led from the primary pressure outlet hole 11 through the outlet hole 18 flows into the piston chamber 9 and opens the main valve 6, so that it is on the secondary side of the remote control type pressure reducing valve. The set pressure at the outlet 3 is changed to a higher pressure. As a result, the force for extending the bellows 19 due to the secondary pressure increases, and the valve opening is determined so as to balance the resultant force of the control fluid pressure and the acting force of the adjustment spring 22.

また、切換弁38を設けなくても、減圧弁33の設定圧を
下げる方向に再設定すれば、その内部に組み込まれたレ
リーフ弁が自動的に働き制御流体室Rの制御流体を排出
する。
In addition, even if the switching valve 38 is not provided, if the setting pressure of the pressure reducing valve 33 is reset in a lowering direction, the relief valve incorporated therein automatically operates to discharge the control fluid in the control fluid chamber R.

このとき、定常時であると、制御流体室Rに組み込ま
れたサーモチヤツキ弁T内では、付勢手段48が感熱応動
体47に打ち勝ちサーモチヤツキ弁子46を開弁方向(制御
流体出口43側)へ押す。その際、サーモチヤツキ弁子46
は規制体49により開弁方向の移動が規制され、その周辺
部に設けられた導通孔50により制御流体の通路が確保さ
れる。
At this time, in a steady state, in the thermo-tick valve T incorporated in the control fluid chamber R, the urging means 48 overcomes the heat-sensitive responsive element 47 and moves the thermo-tick valve element 46 in the valve opening direction (the control fluid outlet 43 side). Push. At that time, the thermo-chuckle valve 46
The movement of the valve in the valve opening direction is regulated by the regulating body 49, and the passage of the control fluid is secured by the conduction hole 50 provided in the periphery thereof.

そして、一旦異常が発生し、サーモチヤツキ弁T内に
高温流体(高温の蒸気)が流入するやいなや、感熱応動
体47が閉弁方向(制御流体入口41側)に伸張変態し、サ
ーモチヤツキ弁子46をサーモチヤツキ弁座45に当接させ
閉弁へと至る。
Then, as soon as an abnormality occurs and the high-temperature fluid (high-temperature steam) flows into the thermo-check valve T, the heat-sensitive responsive element 47 expands and deforms in the valve closing direction (the control fluid inlet 41 side), causing the thermo-check valve 46 to move. The valve is brought into contact with the thermoshear valve seat 45 and the valve is closed.

このように、サーモチヤツキ弁座45と、サーモチヤツ
キ弁座45に離着座するサーモチヤツキ弁子46と、高温流
体が流入すると閉弁方向に伸長変態する感熱応動体47
と、サーモチヤツキ弁子46を開弁方向に付勢する付勢手
段48と、サーモチヤツキ弁子46の開弁方向への移動を規
制する規制体49とを有するサーモチヤツキ弁Tを、制御
流体室Rの制御流体供給口31に組み込むことにより、万
一、圧力感知部材であるベローズ等が破損し、高温流体
がサーモチヤツキ弁T内に逆流した場合には、サーモチ
ヤツキ弁Tを閉弁状態とすることができるので、制御側
の流体配管や制御弁の被害を最小限にくいとめることが
でき、しかも、装置に大幅な改良を加えずとも配管が可
能となる。
As described above, the thermo-shake valve seat 45, the thermo-shake valve element 46 which is detachably seated on the thermo-shake valve seat 45, and the heat-sensitive responsive element 47 which elongates and transforms in the valve closing direction when a high-temperature fluid flows in.
A thermo-shake valve T having a biasing means 48 for biasing the thermo-shear valve 46 in the valve opening direction and a regulating body 49 for restricting the movement of the thermo-shear valve 46 in the valve opening direction. By incorporating the control fluid supply port 31, the bellows or the like, which is a pressure sensing member, is broken, and if the high-temperature fluid flows back into the thermo-check valve T, the thermo-check valve T can be closed. Therefore, it is possible to minimize damage to the fluid piping and the control valve on the control side, and it is possible to perform piping without making significant improvements to the device.

なお、ここでいう遠隔操作の構成は、減圧弁そのもの
の機能を生かすため、初期に減圧弁の操作ハンドルで設
定した値以上の圧力が制御できるものである。換言すれ
ば、供給排出装置32に三気圧の設定を行ない、制御流体
の供給圧力を制御流体室Rに与え圧力を上昇させる。そ
れにより、制御流体室Rは三気圧となり、操作ハンドル
の操作なしに使用できるようにしてある。勿論、切換弁
38を排出位置に切換え、制御流体を制御流体室Rから排
出すれば、調整スプリングのみの設定へ二次圧は復帰す
る。
Note that the configuration of the remote operation referred to here can control a pressure equal to or higher than a value initially set by an operation handle of the pressure reducing valve in order to utilize the function of the pressure reducing valve itself. In other words, three atmospheres are set in the supply / discharge device 32, and the supply pressure of the control fluid is given to the control fluid chamber R to increase the pressure. As a result, the control fluid chamber R becomes three atmospheres, and can be used without operating the operation handle. Of course, switching valve
By switching 38 to the discharge position and discharging the control fluid from the control fluid chamber R, the secondary pressure returns to the setting of only the adjustment spring.

[第二実施例] 次に、本考案の第二実施例を第4図に基づき説明す
る。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG.

第4図は本考案第二実施例の遠隔操作型減圧弁のサー
モチヤツキ弁の拡大断面図である。
FIG. 4 is an enlarged sectional view of a thermo-check valve of the remote control type pressure reducing valve according to the second embodiment of the present invention.

図示の如く、本実施例の遠隔操作型減圧弁は、サーモ
チヤツキ弁子46にピストン51付き弁子を、感熱応動体47
にサーモワツクスを、規制体49にサーモワツクスを支持
し付勢手段48と比べ圧倒的に大きいばね定数を持つ過応
力防止スプリングを使用した点が第一実施例と異なる
が、その他の構成は第一実施例と同様である。
As shown in the figure, the remote control type pressure reducing valve of the present embodiment is configured such that a thermostatic valve element 46 is provided with a valve element having a piston 51, and a thermosensitive element 47 is provided.
The first embodiment differs from the first embodiment in that a thermowax is used, and the thermowax is supported on the regulating body 49 and an overstress prevention spring having an overwhelmingly large spring constant is used as compared with the biasing means 48. Same as the example.

したがって、作用および効果も第一実施例と同様にな
る。
Therefore, the operation and effect are the same as those of the first embodiment.

なお、本考案は、上記実施例に限定されるものではな
く、本考案の範囲内で上記実施例に多くの修正および変
更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above embodiment, and it is needless to say that many modifications and changes can be made to the above embodiment within the scope of the present invention.

〈考案の効果〉 以上の説明から明らかな通り、本考案によると、サー
モチヤツキ弁座と、サーモチヤツキ弁座に離着座するサ
ーモチヤツキ弁子と、高温流体が流入すると閉弁方向に
伸長変態する感熱応動体と、サーモチヤツキ弁子を開弁
方向に付勢する付勢手段と、サーモチヤツキ弁子の開弁
方向への移動を規制する規制体とを有するサーモチヤツ
キ弁を、制御流体室の制御流体供給口に組み込んでいる
ので、定常時には、付勢手段により開弁方向に押された
サーモチヤツキ弁子を規制体でその開弁方向の移動を規
制して制御流体の通路を確保し、高温流体が流入する
と、感熱応動体が閉弁方向に伸長変態しサーモチヤツキ
弁座をサーモチヤツキ弁座に着座させ閉弁とすることが
できる。
<Effects of the Invention> As is apparent from the above description, according to the present invention, a thermo-shearing valve seat, a thermo-shearing valve element that is detachably seated on the thermo-shearing valve seat, and a heat-sensitive responsive element that elongates and transforms in the valve closing direction when a high-temperature fluid flows in. A thermo-shake valve having a biasing means for biasing the thermo-shear valve in the valve opening direction, and a regulating body for restricting the movement of the thermo-shear valve in the valve opening direction, into the control fluid supply port of the control fluid chamber. In a steady state, the thermo-shear valve pushed in the valve opening direction by the urging means is regulated by the regulating body to restrict the movement in the valve opening direction to secure a passage for the control fluid. The responsive element extends and transforms in the valve closing direction, and the thermo-shake valve seat is seated on the thermo-shake valve seat to close the valve.

したがって、万一、圧力感圧素子が破損し、高温流体
がサーモチヤツキ弁内に逆流した場合に、サーモチヤツ
キ弁を閉弁状態とすることができるので、制御側の流体
配管や制御弁の被害を最小限にくいとめることができ、
しかも、装置に大幅な改良を加えずとも配管が可能とな
るといった優れた効果がある。
Therefore, if the pressure sensing element is damaged and the high-temperature fluid flows back into the thermo-check valve, the thermo-check valve can be closed, minimizing damage to the control-side fluid piping and control valve. It is difficult to limit,
In addition, there is an excellent effect that piping can be performed without making significant improvements to the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案第一実施例の遠隔操作型減圧弁の断面
図、第2図は同じくそのサーモチヤツキ弁の拡大断面
図、第3図は同じく本考案遠隔操作型減圧弁を用いた蒸
気消費システムの配管図、第4図は本考案第二実施例の
遠隔操作型減圧弁に係るサーモチヤツキ弁の拡大断面
図、第5図は従来の遠隔操作型減圧弁の断面図である。 3:出口、6:主弁子、18:パイロツト弁棒、19:ベローズ
(感圧素子)、19a:受圧面板、20:ベローズ室(感圧素
子室)、21:二次圧検出孔、22:ベローズスプリング(調
整スプリング)、31:制御流体供給口、41:制御流体入
口、43:制御流体出口、45:サーモチヤツキ弁座、46:サ
ーモチヤツキ弁子、47:感熱応動体、48:付勢手段、49:
規制体、A:主弁部、B:パイロツト部、C:駆動部、R:制御
流体室、T:サーモチヤツキ弁。
FIG. 1 is a cross-sectional view of the remote control type pressure reducing valve of the first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the thermostatic valve, and FIG. 3 is a steam consumption using the remote control type pressure reducing valve of the present invention. FIG. 4 is an enlarged sectional view of a thermo-check valve according to a second embodiment of the present invention, and FIG. 5 is a sectional view of a conventional remote-operated pressure reducing valve. 3: Outlet, 6: Main valve, 18: Pilot valve stem, 19: Bellows (pressure sensing element), 19a: Pressure receiving face plate, 20: Bellows chamber (pressure sensing element chamber), 21: Secondary pressure detection hole, 22 : Bellows spring (adjusting spring), 31: control fluid supply port, 41: control fluid inlet, 43: control fluid outlet, 45: thermo-shear valve seat, 46: thermo-shear valve, 47: thermosensitive element, 48: biasing means , 49:
Regulator: A: main valve, B: pilot, C: drive, R: control fluid chamber, T: thermostatic valve.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】パイロツト部から制御される供給圧力を駆
動部で受圧し、主弁部の主弁子の開閉を行ない二次側圧
力をほぼ一定に保持するものであつて、前記パイロツト
部は、パイロツト弁棒と対向する感圧素子と、該感圧素
子で仕切られた空間とからなる感圧素子室と出口とを接
続する二次圧検出孔と、前記感圧素子室と逆側に前記感
圧素子と対向する調整スプリングを内装し該調整スプリ
ングと同方向の制御力を作用させる制御流体室が形成さ
れた遠隔操作型減圧弁において、前記制御流体室の制御
流体供給口にサーモチヤツキ弁が組み込まれたことを特
徴とする遠隔操作型減圧弁。
A driving unit receives a supply pressure controlled from a pilot unit, opens and closes a main valve element of a main valve unit, and keeps a secondary pressure substantially constant. A pressure sensing element facing the pilot valve stem, a pressure sensing element chamber formed of a space partitioned by the pressure sensing element, and a secondary pressure detection hole connecting the outlet, and a pressure sensing element opposite to the pressure sensing element chamber. In a remote control type pressure reducing valve having a control fluid chamber in which an adjustment spring opposed to the pressure sensing element is provided and in which a control force acting in the same direction as the adjustment spring is formed, a thermo-check valve is provided at a control fluid supply port of the control fluid chamber. A remote control type pressure reducing valve characterized by incorporating therein.
【請求項2】請求項1記載のサーモチヤツキ弁は、サー
モチヤツキ弁座と、該サーモチヤツキ弁座に離着座する
サーモチヤツキ弁子と、該サーモチヤツキ弁子よりも制
御流体出口側に配され高温流体が流入すると閉弁方向に
伸長変態する感熱応動体と、前記サーモチヤツキ弁子を
開弁方向に付勢する付勢手段と、前記サーモチヤツキ弁
子と制御流体出口との間に配されサーモチヤツキ弁子の
開弁方向への移動を規制する規制体とが有せしめられた
ことを特徴とする遠隔操作型減圧弁。
2. The thermo-tick valve according to claim 1, wherein the thermo-tick valve seat, a thermo-tick valve valve which is detachably seated on the thermo-tick valve valve seat, and a control fluid outlet which is disposed closer to the control fluid outlet than the thermo-tick valve valve. A heat-sensitive responsive element that elongates and transforms in the valve-closing direction, biasing means that urges the thermo-shear valve in the valve-opening direction, and a valve-opening direction of the thermo-shear valve disposed between the thermo-shear valve and the control fluid outlet. A remote-control pressure reducing valve, characterized in that it has a regulating body that regulates movement to the air conditioner.
JP5448990U 1990-05-23 1990-05-23 Remote control type pressure reducing valve Expired - Lifetime JP2525706Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5448990U JP2525706Y2 (en) 1990-05-23 1990-05-23 Remote control type pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5448990U JP2525706Y2 (en) 1990-05-23 1990-05-23 Remote control type pressure reducing valve

Publications (2)

Publication Number Publication Date
JPH0415709U JPH0415709U (en) 1992-02-07
JP2525706Y2 true JP2525706Y2 (en) 1997-02-12

Family

ID=31576600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5448990U Expired - Lifetime JP2525706Y2 (en) 1990-05-23 1990-05-23 Remote control type pressure reducing valve

Country Status (1)

Country Link
JP (1) JP2525706Y2 (en)

Also Published As

Publication number Publication date
JPH0415709U (en) 1992-02-07

Similar Documents

Publication Publication Date Title
US5944257A (en) Bulb-operated modulating gas valve with minimum bypass
EP2279366B1 (en) Valve body with dual sense mechanism
EP2577119B1 (en) Fluid regulator
US20050253100A1 (en) Flow control valve
RU2009147677A (en) HIGH PRESSURE REGULATOR
US3561468A (en) Universal control valve
US5056550A (en) Pilot regulator for valves
CA1039145A (en) Valve assembly having leak detection apparatus
US6382243B2 (en) Pressure-reducing valve
JP2525706Y2 (en) Remote control type pressure reducing valve
US5163471A (en) Low-pressure pilot valve
US3685732A (en) Thermostatic control device with heat motor operated step open diaphragm valve
US4722361A (en) Modulating pressure operated pilot relief valve
US3227370A (en) Temperature responsive control device
JPH0530171Y2 (en)
JP3298669B2 (en) Equipment for safety and automatic shut-off, especially at gas expansion stations
US4632143A (en) Pressure boost attachment for pilot valves
US4692574A (en) Differential pressure responsive switch
US4044792A (en) Diaphragm operated pressure regulator
JP3568602B2 (en) Gas pressure operated valve
CA2051816A1 (en) Self-relieving fluid regulator
US2965128A (en) Pressure regulator
WO1997017641A1 (en) Fluid regulator over-pressure protection device
US4325427A (en) Dual thermostat control apparatus with dead band response
RU2239862C2 (en) Gas pressure adjuster