JP2525099B2 - Particle measurement method in liquefied gas - Google Patents

Particle measurement method in liquefied gas

Info

Publication number
JP2525099B2
JP2525099B2 JP3328846A JP32884691A JP2525099B2 JP 2525099 B2 JP2525099 B2 JP 2525099B2 JP 3328846 A JP3328846 A JP 3328846A JP 32884691 A JP32884691 A JP 32884691A JP 2525099 B2 JP2525099 B2 JP 2525099B2
Authority
JP
Japan
Prior art keywords
gas
particles
liquefied gas
amount
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3328846A
Other languages
Japanese (ja)
Other versions
JPH05164680A (en
Inventor
晴彦 松重
貞義 白髪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Original Assignee
Osaka Oxygen Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd filed Critical Osaka Oxygen Industries Ltd
Priority to JP3328846A priority Critical patent/JP2525099B2/en
Priority to AU29816/92A priority patent/AU658243B2/en
Publication of JPH05164680A publication Critical patent/JPH05164680A/en
Application granted granted Critical
Publication of JP2525099B2 publication Critical patent/JP2525099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の分野】本発明は液化ガス中のパーティクル量を
測定する方法。
FIELD OF THE INVENTION The present invention is a method for measuring the amount of particles in a liquefied gas.

【0002】[0002]

【発明の背景】最近の半導体工業の技術進歩は目覚まし
く、配線間の間隔がサブミクロン(1μ以下)のICも
開発された。これらのICはパーティクルを減少させる
ため高純度液化窒素ガスが気化した窒素ガスで洗浄す
る。しかしながら、高純度液化N2ガスは製造中、タン
ク又は配管中のパーティクルが混入することがある。こ
のようなパーティクルを含有する液化N2ガスから気化
したN2ガスでICを洗浄すると、間隔がサブミクロン
の配線間にパーティクルが付き、配線が短絡や断線を起
こし、LSI回路の歩留の低下をきたす。このような事
態を回避するために液化N2ガス中のパーティクルは、
できる限り除去しなければならない。液化ガス中のパー
ティクルを除去するためのフィルターも開発されている
(例えば実開昭63−152611号公報参照)現実に
実開昭63−152611号公報に記載されたフィルタ
ーで液化ガス中のパーティクルの除去を行なったとして
も、品質管理上パーティクルが除去されたかどうかを調
べるため、液化ガス中のパーティクル量を測定しなけれ
ばならない。
BACKGROUND OF THE INVENTION Recent technological advances in the semiconductor industry have been remarkable, and ICs with a wiring interval of submicron (1 μm or less) have also been developed. In order to reduce particles in these ICs, the high-purity liquefied nitrogen gas is cleaned with vaporized nitrogen gas. However, the high-purity liquefied N 2 gas may contain particles in the tank or the pipe during the production. When the IC is cleaned with N 2 gas which is vaporized from liquefied N 2 gas containing such particles, particles are attached between wirings with a submicron spacing, and the wirings are short-circuited or broken, which reduces the yield of LSI circuits. Cause In order to avoid such a situation, particles in the liquefied N 2 gas are
It should be removed as much as possible. A filter for removing particles in the liquefied gas has also been developed (see, for example, Japanese Utility Model Application Laid-Open No. 63-152611). Even if the particles are removed, the amount of particles in the liquefied gas must be measured in order to check whether or not the particles have been removed for quality control.

【0003】しかし、現在の技術ではガス中のパーティ
クル量はレーザーパーティクルカウンタで測定できるが
液体中のパーティクルは常温では測定できるが、極低温
の液化ガス中のパーティクルを測定する装置は開発され
ていない。そのため液化ガス中のパーティクル量を測定
するためにその液化ガスを気化して測定しなければなら
ない。液化ガスは融点以上の温度に保持すれば容易に気
化し、その気化ガス中のパーティクル量をレーザーパー
ティクルカウンターで測定すれば良いと思いがちである
が、問題はそのような単純な発想で解決しなかった。
However, in the present technology, the amount of particles in gas can be measured by a laser particle counter, but the particles in liquid can be measured at room temperature, but a device for measuring particles in extremely low temperature liquefied gas has not been developed. . Therefore, in order to measure the amount of particles in the liquefied gas, the liquefied gas must be vaporized and measured. It is easy to think that the liquefied gas vaporizes easily if it is kept at a temperature above its melting point, and the amount of particles in the vaporized gas can be measured with a laser particle counter, but the problem is solved by such a simple idea. There wasn't.

【0004】[0004]

【本発明により解決すべき手段】本発明者は液化ガスを
単純に蒸発させ、その蒸発ガスのパーティクル量を測定
したところ、予想した値よりも非常に異なった値のパー
ティクル量が測定された。本発明者はその原因を探究す
るため幅広い実験を行ない、そのパーティクル量測定値
は、液化ガス中に実在するパーティクル量より、気化し
たガスのパーティクル量が極端に異なった値を示すこと
がわかった。すなわち単純に液化ガスを蒸発させただけ
では液相中のパーティクルが気相に移行しないことがわ
かった。
The present inventor simply vaporized the liquefied gas and measured the amount of particles in the vaporized gas, and it was found that the amount of particles was much different from the expected value. The present inventor has conducted a wide range of experiments in order to investigate the cause, and it was found that the particle amount measurement value shows an extremely different value of the particle amount of the vaporized gas from the actual particle amount in the liquefied gas. . That is, it was found that the particles in the liquid phase did not move to the gas phase simply by evaporating the liquefied gas.

【0005】本発明者は液化ガスを急激に蒸発させるこ
とによって液化ガス(液相)から気化したガス(気相)
にパーティクルが充分に移行することを発見して本発明
に至った。
The inventor of the present invention is a gas (gas phase) vaporized from the liquefied gas (liquid phase) by rapidly evaporating the liquefied gas.
The present invention was accomplished by discovering that particles migrate sufficiently to the surface.

【0006】本発明は、 (1) 液化ガスを気化させないように保冷しながら蒸発
器に導き、 (2) 蒸発器に供給された液化ガスを急激に蒸発器中で
蒸発させ、 (3) 蒸発によりガス化された気化ガスを再度加熱し、
そして (4) その気化ガス中のパーティクルをレーザーパーテ
ィクルカウンターを使用して測定する、各工程を含む液
化ガス中のパーティクル量を測定する方法に関する。
According to the present invention, (1) the liquefied gas is guided to an evaporator while keeping it cool so as not to be vaporized, (2) the liquefied gas supplied to the evaporator is rapidly evaporated in the evaporator, and (3) evaporation is performed. Reheat the vaporized gas that has been gasified by
And (4) relates to a method of measuring the amount of particles in the liquefied gas, including the steps of measuring the particles in the vaporized gas using a laser particle counter.

【0007】工程(1)は液化ガスが蒸発器に入るまで気
化させない措置である。又液化ガスは気化したガスと共
に必ず液化ガス中の水が氷となり、パーティクル量とし
てカウントされ過大に値を示す。工程(3)はそのような
氷を気化させる目的のものである。水は、室温で液相が
主体であるが、本発明で問題としているような極微小な
塊の場合には、液化ガス中に氷塊があるとしても、液化
ガスが蒸発器で気化した後そのガスが実際にICの洗浄
に使用される場所までの長い距離の配管内を移送される
間に気化して気体となり、もはや固体や液体の状態でな
くなるのでパーティクルとしては存在しない。又、仮に
使用場所でのガス中に極微小の氷塊が存在したとしても
液化ガスの使用場所であるクリーンルーム内の温度と湿
度ではすぐに気化して気体となり本発明での定義するパ
ーティクルとはならない。
Step (1) is a measure for preventing the liquefied gas from vaporizing until it enters the evaporator. Further, with the liquefied gas, the water in the liquefied gas always becomes ice together with the vaporized gas, and it is counted as a particle amount and shows an excessive value. The step (3) is intended to vaporize such ice. Water mainly has a liquid phase at room temperature, but in the case of a very small lump like the problem in the present invention, even if there is an ice lump in the liquefied gas, the liquefied gas is vaporized by an evaporator, and The gas does not exist as particles because it vaporizes into a gas while being transported in a long distance pipe to the place where it is actually used for cleaning the IC, and is no longer in a solid or liquid state. Further, even if there is a very small ice block in the gas at the place of use, it is immediately vaporized at the temperature and humidity in the clean room where the liquefied gas is used to become a gas, which does not become particles defined in the present invention. .

【0008】工程(1) の保冷方法として、断熱材真空二
重管、被測定液化と同じ種類の液化ガス等により被測定
液化ガスの気化を防止する。
As a cooling method in the step (1), vaporization of the liquefied gas to be measured is prevented by a heat insulating material vacuum double tube, a liquefied gas of the same type as the liquefied gas to be measured, and the like.

【0009】工程(2) の急激な蒸発を行なう際に1/4″
配管相当を使用する場合、気化後のガス量を20Nリッ
トル/分以上とすることが好ましい。
1/4 ″ when performing rapid evaporation in step (2)
When using a pipe equivalent, the gas amount after vaporization is preferably 20 N liter / min or more.

【0010】急激な気化を行なう際に、その熱媒体とし
て、オイルバス又はウオーターバスを使用する事が好ま
しい。
When performing rapid vaporization, it is preferable to use an oil bath or a water bath as the heat medium.

【0011】工程(3) の再加熱を行なう際に100℃以
上好ましくは200℃以上に加熱する。
When the reheating in the step (3) is performed, it is heated to 100 ° C. or higher, preferably 200 ° C. or higher.

【0012】工程(4) の測定は公知のレーザーパーティ
クルカウンター例えばPMS社のHPGP−101を使
用する。
The measurement in the step (4) uses a known laser particle counter such as HPGP-101 manufactured by PMS.

【0013】本発明では半導体工業に使用するための液
化N2 ガスのパーティクル量について説明したが、他の
用途に使用するための液化N2ガス以外の液化ガス例え
ば空気、Ar,CO2,He,H2,Ne,O2 等中のパー
ティクル量も測定できる。
In the present invention, the amount of particles of liquefied N 2 gas for use in the semiconductor industry has been described, but liquefied gases other than liquefied N 2 gas for use in other applications, such as air, Ar, CO 2 , He. , H 2, Ne, particle amount of O 2 Hitoshichu can also be measured.

【0014】[0014]

【実施例1】工程(1) における液化ガスの保冷を行なっ
た場合と保冷を行なわなかった場合とで測定されたパー
ティクル量を比較した。
Example 1 The amount of particles measured was compared between the case where the liquefied gas was kept cold in the step (1) and the case where it was not kept cold.

【0015】[0015]

【実験条件】[Experimental conditions]

対象;液化N2 流量;100Nリットル/分 配管;1/4″ 水分気化器の温度;200℃ 蒸発器;50℃の温水 その結果は図1に示すが、断熱を良くするほど、高い値
を示した。
Target; Liquefied N 2 flow rate; 100N liter / min Piping; 1/4 ″ water vaporizer temperature; 200 ° C evaporator; 50 ° C hot water The results are shown in Fig. 1, but the better the heat insulation, the higher the value. Indicated.

【0016】[0016]

【実施例2】気化器への流量を変化させ、気化されたガ
ス中のパーティクル量を測定した。
Example 2 The flow rate to the vaporizer was changed and the amount of particles in the vaporized gas was measured.

【0017】[0017]

【実験条件】[Experimental conditions]

対象;液化O2 配管;1/4″ 断熱法;真空二重管 水分気化器の温度;200℃ 蒸発器;50℃の温水 その結果を図2に示す。結果は20Nl/min ないし5
0Nl/min以上でほヾ一定の値となった。
Target: Liquefied O 2 pipe; 1/4 ″ adiabatic method; Vacuum double pipe Water vaporizer temperature; 200 ° C. evaporator; 50 ° C. hot water The result is shown in FIG. 2. The result is 20 Nl / min to 5
The value became almost constant at 0 Nl / min or more.

【0018】[0018]

【実施例3】気化の際の熱源と温度を変え得られた気化
ガス中のパーティクル量を測定した。ウォーターバスで
20℃,50℃,100℃、又は、オイル・バスで10
0℃,180℃の温度で蒸発させた。
Example 3 The amount of particles in the obtained vaporized gas was measured by changing the heat source and the temperature during vaporization. 20 ℃, 50 ℃, 100 ℃ in water bath or 10 in oil bath
Evaporated at temperatures of 0 ° C and 180 ° C.

【0019】[0019]

【実験条件】[Experimental conditions]

対象;流化Ar 流量;100Nリットル/分 配管;1/4″ 断熱法;真空二重管 水分気化器の温度;200℃ その結果を図3に示す。結果は、50℃以上で蒸発させ
れば、ほヾ一定の値を示している。
Target: Flowed Ar flow rate: 100 N liter / min Piping: 1/4 ″ Adiabatic method: Vacuum double tube Moisture vaporizer temperature: 200 ° C. The result is shown in FIG. For example, the value is almost constant.

【0020】[0020]

【実施例4】水分気化器の温度を変えて得られたガス中
のパーティクル量を測定した。
Example 4 The amount of particles in the gas obtained by changing the temperature of the water vaporizer was measured.

【0021】[0021]

【実験条件】[Experimental conditions]

対象;液化N2 流量;100Nリットル/分 配管;1/4″ 断熱法;真空二重管理 蒸発器の温度;50℃温水 その結果を図4に示す。この結果から、200℃以下で
は、氷の細片を数えており、200℃以上の加熱が必要
であることがわかる。
Target; Liquefied N 2 flow rate; 100 N liter / min Piping; 1/4 ″ Adiabatic method; Vacuum double control Evaporator temperature: 50 ° C. Hot water The number of strips is counted and it can be seen that heating at 200 ° C. or higher is necessary.

【0022】[0022]

【発明の効果】本発明に従えば、液化ガスの液相中のパ
ーティクル量が正確に気相に移行し、液化ガス中のパー
ティクル量を正確に測定できる。それがため、液化ガス
中のパーティクルを、液体中のフィルターで除去する場
合、その除去効率を正確に確認し、又、液化ガスタンク
中の液化ガスに含まれるパーティクルを正確に測定する
ことによって、パーティクルの品値管理が可能となっ
た。
According to the present invention, the amount of particles in the liquid phase of the liquefied gas is accurately transferred to the gas phase, and the amount of particles in the liquefied gas can be accurately measured. Therefore, when removing particles in the liquefied gas with a filter in the liquid, the removal efficiency is accurately confirmed, and by accurately measuring the particles contained in the liquefied gas in the liquefied gas tank, the particles are It is now possible to manage product prices.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の蒸発器までの断熱法によるパーティ
クル量の比較を示す。
FIG. 1 shows a comparison of the amount of particles by an adiabatic method up to the evaporator of Example 1.

【図2】実施例2の条件でのサンプルガス量を変えた場
合のパータィクル量の比較を示す。
FIG. 2 shows a comparison of the amount of particles when the amount of sample gas is changed under the conditions of Example 2.

【図3】実施例3の蒸発器の熱媒体の温度によるパーテ
ィクル量の比較を示す。
FIG. 3 shows a comparison of the amount of particles according to the temperature of the heat medium of the evaporator of Example 3.

【図4】実施例4の気体器の加熱温度によるパーティク
ル量の比較を示す。
FIG. 4 shows a comparison of the amount of particles according to the heating temperature of the gasifier of Example 4.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1) 液化ガスを気化させないように保
冷しながら蒸発器に導き、 (2) 蒸発器に供給された液化ガスを急激に蒸発器中で
蒸発させ、 (3) 蒸発によりガス化された気化ガスを再度加熱し、
そして (4) その気化ガス中のパーティクルをレーザーパーテ
ィクルカウンターを使用して測定する、 各工程を含む液化ガス中のパーティクル量を測定する方
法。
1. (1) The liquefied gas is led to an evaporator while keeping it cool so as not to vaporize, (2) the liquefied gas supplied to the evaporator is rapidly evaporated in the evaporator, and (3) the gas is evaporated. The vaporized gas that has been vaporized is heated again,
And (4) A method of measuring the amount of particles in the liquefied gas, including the steps, in which the particles in the vaporized gas are measured using a laser particle counter.
JP3328846A 1991-12-12 1991-12-12 Particle measurement method in liquefied gas Expired - Fee Related JP2525099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3328846A JP2525099B2 (en) 1991-12-12 1991-12-12 Particle measurement method in liquefied gas
AU29816/92A AU658243B2 (en) 1991-12-12 1992-12-01 Method for measuring the particles contained in a liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328846A JP2525099B2 (en) 1991-12-12 1991-12-12 Particle measurement method in liquefied gas

Publications (2)

Publication Number Publication Date
JPH05164680A JPH05164680A (en) 1993-06-29
JP2525099B2 true JP2525099B2 (en) 1996-08-14

Family

ID=18214745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328846A Expired - Fee Related JP2525099B2 (en) 1991-12-12 1991-12-12 Particle measurement method in liquefied gas

Country Status (2)

Country Link
JP (1) JP2525099B2 (en)
AU (1) AU658243B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304273A (en) * 1979-12-31 1981-12-08 International Business Machines Corporation Toner container and toner dispensing apparatus

Also Published As

Publication number Publication date
AU2981692A (en) 1993-06-17
JPH05164680A (en) 1993-06-29
AU658243B2 (en) 1995-04-06

Similar Documents

Publication Publication Date Title
Bigg The supercooling of water
JP2904920B2 (en) Method for providing a balanced steam flow and apparatus for implementing the same
Yamada et al. Formation mechanism of large clusters from vaporized solid material
Kohl et al. Liquid-like relaxation in hyperquenched water at≤ 140 K
US4972677A (en) Method of cleaning wafers or the like
EP0808916A2 (en) Vaporizer apparatus
JP3516819B2 (en) Evaporation system for monomer, vacuum processing chamber provided with the same, and method for forming organic compound film
JP3043408B2 (en) Method and apparatus for cooling and purifying water
Haijie et al. Experimental study of the characteristic of frosting on low-temperature air cooler
JP2525099B2 (en) Particle measurement method in liquefied gas
JPS60218561A (en) Method and device for defrosting evaporator
US20070012419A1 (en) Method and device for cryocondensation
KR20090017551A (en) System and method for delivery of precursor material
Utaka et al. Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface
US3513660A (en) Removal of congealable impurities from gases
Kaufmann et al. Prevention of fog in the condensation of vapour from mixtures with inert gas, by a regenerative thermal process
JP3720415B2 (en) LIQUID CARBONATE MANUFACTURING FILTER, LIQUID CARBONATE MANUFACTURING OPERATION METHOD, AND HEAT EXCHANGER
Dewangan et al. Nucleate pool boiling heat transfer of refrigerants using coated surfaces
JP2000319095A (en) Apparatus and method for vaporizing and supplying trichlorosilane
JP4283911B2 (en) Semiconductor manufacturing apparatus and method for forming polyimide film
JPH11335845A (en) Liquid raw material vaporizer
Bewilogua et al. Heat transfer in liquid hydrogen
Sigel et al. Production of thin solid-hydrogen foils for use as targets in high vacuum
WO1991015721A1 (en) Method of controlling absorption refrigerating machine or absorption water cooler-heater
US1670014A (en) Extraction of krypton and xenon from air

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees