JP2524722B2 - Piezoelectric ceramic powder - Google Patents

Piezoelectric ceramic powder

Info

Publication number
JP2524722B2
JP2524722B2 JP61302081A JP30208186A JP2524722B2 JP 2524722 B2 JP2524722 B2 JP 2524722B2 JP 61302081 A JP61302081 A JP 61302081A JP 30208186 A JP30208186 A JP 30208186A JP 2524722 B2 JP2524722 B2 JP 2524722B2
Authority
JP
Japan
Prior art keywords
piezoelectric
ceramic powder
piezoelectric ceramic
relationship
graph showing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61302081A
Other languages
Japanese (ja)
Other versions
JPS63155503A (en
Inventor
博文 尾関
稔 梶田
勉 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61302081A priority Critical patent/JP2524722B2/en
Publication of JPS63155503A publication Critical patent/JPS63155503A/en
Application granted granted Critical
Publication of JP2524722B2 publication Critical patent/JP2524722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、チタン酸鉛粒子を主成分とする圧電磁器粉
末に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a piezoelectric ceramic powder containing lead titanate particles as a main component.

〈従来技術〉 チタン酸鉛(PbTiO3)はペロブスカイト構造をもつ強
誘電体材料として、種々の圧電材料や焦電材料に広く使
用されているが、特に最近では水中での圧電定数dh(=
d33+2d31)及びgh(=dh/ε)がチタン酸ジルコン酸
鉛(PZT)など他の強誘電体材料に比して大きいため、
送受波器などの水中音響交換器用圧電複合材料として注
目されるようになった。
<Prior Art> Lead titanate (PbTiO 3 ) is widely used as a ferroelectric material having a perovskite structure in various piezoelectric materials and pyroelectric materials. In recent years, in particular, piezoelectric constant dh (=
d 33 + 2d 31 ) and gh (= dh / ε) are larger than other ferroelectric materials such as lead zirconate titanate (PZT),
It has become a focus of attention as a piezoelectric composite material for underwater acoustic exchangers such as transducers.

ここで圧電複合材料とは、チタン酸鉛、チタン酸ジル
コン酸鉛等の強誘電圧電磁器粉末を合成ゴム,合成樹脂
などの高分子材料中に分散、混合化したものをいう。
Here, the piezoelectric composite material refers to a material in which ferroelectric piezoelectric ceramic powder such as lead titanate or lead zirconate titanate is dispersed and mixed in a polymer material such as synthetic rubber or synthetic resin.

本発明は、かかるチタン酸鉛を主成分とするものにあ
って、さらに高い圧電性能を有し、前記要望に対応する
圧電樹脂シートの分散質として最適に適用され得る圧電
磁器粉末の提供を目的とするものである。
An object of the present invention is to provide a piezoelectric ceramic powder containing lead titanate as a main component, which has higher piezoelectric performance and which can be optimally applied as a dispersoid of a piezoelectric resin sheet corresponding to the above demand. It is what

〈問題点を解決するための手段〉 本発明は、 組成式 (1−x)PbTiO3・xBiFeO3 のもとに、 0.1≦x≦0.3 であることを特徴とする圧電磁器粉末である。<Means for Solving Problems> The present invention is a piezoelectric ceramic powder characterized in that 0.1 ≦ x ≦ 0.3 under the composition formula (1-x) PbTiO 3 · xBiFeO 3 .

〈作用〉 この圧電磁器粉末は、従来のチタン酸鉛粉末に比し
て、圧電定数dh(=d33+2d31)及びgh(=dh/ε)が
大きい。従って、圧電複合材料として好適となる。
<Operation> This piezoelectric ceramic powder has larger piezoelectric constants dh (= d 33 + 2d 31 ) and gh (= dh / ε) than the conventional lead titanate powder. Therefore, it is suitable as a piezoelectric composite material.

〈試験例〉 市販の純度98.7%のPbO(平均粒径3μm以下)、純
度99.98%のTiO2、純度99.2%のBi2O3さらに純度99.5%
のFe2O3を組成式(1−x)PbTiO3・xBiFeO3のもとで、
BiFeO3のモル分率xの範囲を種々変えて配合し、さらに
結晶粒の成長を促し、自己崩壊を促進させるためにPbO
を2.0〜2.5重量%過剰となるようにして調合した。そし
てこれを振動ミルでアルミナ玉石にて3時間の乾式混合
を行なった。この際、振動ミルのポットの内面壁はウレ
タン樹脂で内張りし、これにより不純物の混入を防ぐよ
うにした。また粉末:玉石=2.5:3.5(Kg)の割合とな
るようにした。
<Test Example> Commercially available PbO with a purity of 98.7% (average particle size of 3 μm or less), TiO 2 with a purity of 99.98%, Bi 2 O 3 with a purity of 99.2%, and further 99.5% of purity.
Of Fe 2 O 3 of the composition formula (1-x) PbTiO 3 · xBiFeO 3
BiFeO 3 was mixed in various mole fractions x, and PbO was added to promote the growth of crystal grains and self-disintegration.
Was prepared in an amount of 2.0 to 2.5% by weight excess. Then, this was dry-mixed for 3 hours with alumina boulders in a vibration mill. At this time, the inner wall of the pot of the vibrating mill was lined with urethane resin to prevent contamination of impurities. The ratio of powder: boulder = 2.5: 3.5 (Kg) was set.

次に金型を用いて300kg/cm2の加圧により、外径61mm,
厚さ10mmのタブレットを作り、高純度アルミナるつぼに
収容して電気炉で、1100℃,1150℃または1250℃にて2
〜4時間、固相反応による熱処理を行なった。このとき
の加熱及び冷却速度は時間当り200℃とした。そして、
この焼結体を徐冷により自己崩壊させた。
Next, by applying pressure of 300 kg / cm 2 using a mold, outer diameter 61 mm,
Make a tablet with a thickness of 10 mm, store it in a high-purity alumina crucible, and put it in an electric furnace at 1100 ℃, 1150 ℃ or 1250 ℃ for 2
Heat treatment by solid phase reaction was performed for ~ 4 hours. The heating and cooling rates at this time were 200 ° C. per hour. And
This sintered body was self-disintegrated by slow cooling.

この合成条件(BiFeO3のモル分率x,温度)と、生成物
の形状との関係を第一表に示す。
Table 1 shows the relationship between the synthesis conditions (BiFeO 3 mole fraction x, temperature) and the shape of the product.

前記工程により形成した粉末によって、次の方法によ
り圧電樹脂シートを作成した。
A piezoelectric resin sheet was prepared by the following method using the powder formed in the above process.

まず、前記粉末と、エポキシ樹脂とを50/50vol%とな
るように秤量し、プロペラ攪拌器で10〜15分間攪拌し
た。
First, the powder and the epoxy resin were weighed so as to be 50/50 vol% and stirred with a propeller stirrer for 10 to 15 minutes.

そして、乾燥器内で120℃,10分予熱し、これにより粘
度を低下させた。
Then, it was preheated at 120 ° C. for 10 minutes in the dryer, which reduced the viscosity.

次に金型に流し込み、さらに金型を加硫プレス機にセ
ットし、脱泡のため圧力印加をしないで120℃,5分加熱
した。そして120℃,37トンで架橋して所定形状の樹脂シ
ートを得た。これをさらに80℃で12時間乾燥させてか
ら、その表裏面に電極層を形成し、100KV/cm,20℃,60分
の条件で分極してこれを試料とし、その特性を測定し
た。
Then, it was poured into a mold, and the mold was set in a vulcanizing press and heated at 120 ° C. for 5 minutes without applying pressure for defoaming. Then, it was crosslinked at 120 ° C. and 37 tons to obtain a resin sheet having a predetermined shape. This was further dried at 80 ° C. for 12 hours, and then electrode layers were formed on the front and back surfaces thereof, which was polarized under the conditions of 100 KV / cm, 20 ° C. and 60 minutes, and this was used as a sample, and its characteristics were measured.

この試験結果を第二表及び第1〜8図に示す。 The test results are shown in Table 2 and FIGS.

この結果にあって、第1,2図に示すように、0.1≦x≦
0.3の範囲にあって、圧電定数dh(=d33+2d31)及びg
h(=dh/ε)は、x=0.2付近を最大とする向上がみら
れた。
In this result, as shown in FIGS. 1 and 2, 0.1 ≦ x ≦
Within the range of 0.3, the piezoelectric constants dh (= d 33 + 2d 31 ) and g
The improvement of h (= dh / ε) was found to be maximum around x = 0.2.

これをdh×ghを圧電性能の指標とすると、第3図のよ
うに、かかる範囲で顕著な上昇を確認できた。一方、第
4,5図に示すように、誘電率や、誘電損失については、
大きな変化がみられず、問題のないことが解った。
Using dh × gh as an index of piezoelectric performance, a remarkable increase was confirmed in this range as shown in FIG. On the other hand, the
As shown in Figures 4 and 5, the dielectric constant and dielectric loss are
No big change was seen, and it turned out that there was no problem.

さらに、この圧電樹脂シートを水中用ハイドロフォン
として使用する場合に、良好な受波信号を取り出すため
には、船舶の移動に伴って面方向により作用する不当な
応力によって発生する雑音のS/N比が高いことが望まし
く、このため厚み方向の圧電定数d33と面方向の圧電定
数d31の比、d33/d31の絶対値が大きいことが望まし
い。すなわち、圧電定数の異方性が大きいことが期待さ
れる。そこで、異方性を示すd33/d31の絶対値を第8図
のようにプロットしたところ、同じくx=0.2付近を最
大とする上昇がみられた。尚、x=0.3を越えると、み
かけ上、異方性がさらに上昇する。これは第6,7図に示
すように、x=0.3の値からその増加に反比例して圧電
定数d33,d31は夫々下降するが、圧電定数d33の低下よ
りも圧電定数d31の低下が著しいことによってもたらさ
れるものであり、従って特性の改善を示すものではな
い。
Furthermore, when using this piezoelectric resin sheet as an underwater hydrophone, in order to extract a good received signal, the noise S / N generated by the unreasonable stress acting in the plane direction as the ship moves It is desirable that the ratio is high. Therefore, it is desirable that the ratio between the piezoelectric constant d 33 in the thickness direction and the piezoelectric constant d 31 in the plane direction, and the absolute value of d 33 / d 31 are large. That is, it is expected that the piezoelectric constant has a large anisotropy. Then, when the absolute value of d 33 / d 31 showing anisotropy was plotted as shown in FIG. 8, a rise was observed, which was the maximum around x = 0.2. When x exceeds 0.3, the anisotropy is apparently further increased. As shown in FIGS. 6 and 7, the piezoelectric constants d 33 and d 31 decrease in inverse proportion to the increase from the value of x = 0.3, but the piezoelectric constant d 31 decreases more than the decrease of the piezoelectric constant d 33 . It is caused by a significant reduction and therefore does not indicate an improvement in properties.

また0.4≦x≦0.6の領域では、抗電界が大きく、かつ
Feイオンの影響で容易に絶縁破壊を起し、分極しにく
い。
In the region of 0.4 ≦ x ≦ 0.6, the coercive electric field is large, and
Dielectric breakdown easily occurs under the influence of Fe ions and it is difficult to polarize.

従って、前記した組成粉末は、送受波用複合材料とし
て最適であることが確認された。
Therefore, it was confirmed that the above-mentioned composition powder is most suitable as the composite material for wave transmission and reception.

本発明の圧電磁器粉末は、ゴム等の高分子材料中に分
散されてシート状もしくはケーブル状とし、その上下面
または内外面に電極を配設して用いることができる。そ
して、水中音響変換器用のほか人体器管の映像等を写し
出すためや、金属表面の状態を探査する圧電探触子,赤
外線検出素子の焦電材料等に好適に利用される。
The piezoelectric ceramic powder of the present invention can be used by dispersing it in a polymer material such as rubber to form a sheet or a cable, and disposing electrodes on the upper and lower surfaces or the inner and outer surfaces thereof. Further, it is preferably used not only for an underwater acoustic transducer but also for displaying an image of a human body tube, a piezoelectric probe for investigating the state of a metal surface, a pyroelectric material for an infrared detection element, and the like.

〈発明の効果〉 本発明の圧電磁器粉末は、上述のように、圧電定数dh
及びghが大きく、水中音響変換器等の素材として最適に
用いられ得る優れた効果がある。
<Effects of the Invention> As described above, the piezoelectric ceramic powder of the present invention has the piezoelectric constant dh
And has a large gh, and has an excellent effect that can be optimally used as a material for an underwater acoustic transducer or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図はxと圧電定数dhとの関係を示すグラフ、第2図
はxと圧電定数ghとの関係を示すグラフ、第3図はxと
性能指標dh×ghとの関係を示すグラフ、第4図はxと誘
電率との関係を示すグラフ、第5図はxと誘電損失との
関係を示すグラフ、第6図はxと圧電定数d33との関係
を示すグラフ、第7図はxと圧電定数d31との関係を示
すグラフ、第8図はxと異方性d33/d31との関係を示す
グラフである。
1 is a graph showing the relationship between x and the piezoelectric constant dh, FIG. 2 is a graph showing the relationship between x and the piezoelectric constant gh, and FIG. 3 is a graph showing the relationship between x and the performance index dh × gh. 4 is a graph showing the relationship between x and the dielectric constant, FIG. 5 is a graph showing the relationship between x and the dielectric loss, FIG. 6 is a graph showing the relationship between x and the piezoelectric constant d 33 , FIG. Is a graph showing the relationship between x and the piezoelectric constant d 31, and FIG. 8 is a graph showing the relationship between x and the anisotropy d 33 / d 31 .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式 (1−x)PbTiO3・xBiFeO3 のもとに、 0.1≦x≦0.3 であることを特徴とする圧電磁器粉末。1. A piezoelectric ceramic powder, wherein 0.1 ≦ x ≦ 0.3 based on the composition formula (1-x) PbTiO 3 · xBiFeO 3 .
JP61302081A 1986-12-17 1986-12-17 Piezoelectric ceramic powder Expired - Lifetime JP2524722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302081A JP2524722B2 (en) 1986-12-17 1986-12-17 Piezoelectric ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302081A JP2524722B2 (en) 1986-12-17 1986-12-17 Piezoelectric ceramic powder

Publications (2)

Publication Number Publication Date
JPS63155503A JPS63155503A (en) 1988-06-28
JP2524722B2 true JP2524722B2 (en) 1996-08-14

Family

ID=17904692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302081A Expired - Lifetime JP2524722B2 (en) 1986-12-17 1986-12-17 Piezoelectric ceramic powder

Country Status (1)

Country Link
JP (1) JP2524722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562048B2 (en) * 1988-12-21 1996-12-11 大塚化学株式会社 Dielectric or piezoelectric composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1272593A (en) * 1985-06-07 1990-08-14 Robert E. Newnham Piezoelectric-polymer composites with 0-3 connectivity for transducer applications

Also Published As

Publication number Publication date
JPS63155503A (en) 1988-06-28

Similar Documents

Publication Publication Date Title
US4624796A (en) Piezoelectric filler and flexible piezoelectric composites
US3068177A (en) Ferroelectric ceramic materials
JP2000507392A (en) Improved piezoelectric ceramic-polymer composites
US5505870A (en) Piezoelectric ceramic-polymer composite material and method for preparing the same
JP2008258183A (en) Piezoelectric ceramic material including production process and application
US4977547A (en) Method of detecting sound in water using piezoelectric-polymer composites with 0-3 connectivity
JP2524722B2 (en) Piezoelectric ceramic powder
EP0423822B1 (en) Ferroelectric ceramics
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
JP2524722C (en)
JPH09124366A (en) Piezoelectric ceramic
JPS61284977A (en) 0-3 type junction piezo-electric body-polymer composite material for converter
JP3256254B2 (en) Flexible composite piezoelectric material
US4224174A (en) Piezoelectric oxide materials
JP3629285B2 (en) Production method of piezoelectric ceramic
JPS61106454A (en) Ceramic material
JP2884631B2 (en) Piezoelectric ceramics and manufacturing method thereof
CN103964845A (en) Anisotropic piezoelectric material and preparing method thereof
JP3481832B2 (en) Piezoelectric ceramic
JPS6360110A (en) Lead titanate particle and complex utilizing the same
US4743392A (en) Piezoelectric composite material
US3248328A (en) Piezoelectric ceramic composition of lead titanate and 0.1 to 5 mole percent calciumfluoride
EP0698587B1 (en) Piezoelectric porcelain
JP3096919B2 (en) Piezoelectric ceramic composition
JPS63239118A (en) Piezoelectric ceramics powder