JP2524697B2 - Ironless core induction melting furnace heating device - Google Patents

Ironless core induction melting furnace heating device

Info

Publication number
JP2524697B2
JP2524697B2 JP60167516A JP16751685A JP2524697B2 JP 2524697 B2 JP2524697 B2 JP 2524697B2 JP 60167516 A JP60167516 A JP 60167516A JP 16751685 A JP16751685 A JP 16751685A JP 2524697 B2 JP2524697 B2 JP 2524697B2
Authority
JP
Japan
Prior art keywords
furnace
melting
power supply
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60167516A
Other languages
Japanese (ja)
Other versions
JPS6229086A (en
Inventor
忠之 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AJATSUKUSU MAGUNESAAMITSUKU KK
Original Assignee
NIPPON AJATSUKUSU MAGUNESAAMITSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AJATSUKUSU MAGUNESAAMITSUKU KK filed Critical NIPPON AJATSUKUSU MAGUNESAAMITSUKU KK
Priority to JP60167516A priority Critical patent/JP2524697B2/en
Publication of JPS6229086A publication Critical patent/JPS6229086A/en
Application granted granted Critical
Publication of JP2524697B2 publication Critical patent/JP2524697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は鉄系、非鉄系を問わない無鉄芯誘導溶解炉の
加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a heating device for an iron-free core induction melting furnace regardless of whether it is iron-based or non-ferrous.

<従来の技術> 無鉄芯誘導溶解炉による金属の溶解は従来次のような
各種加熱装置が採用されている。
<Prior Art> The following various heating devices have been conventionally used for melting metals in an iron-free core induction melting furnace.

第1の加熱装置は第5図に示すように、高周波電源設
備1に炉の加熱用コイル2が接続されている所謂1電源
1炉の装置である。ここで高周波とは商用周波数を超え
る周波数、例えば100Hz以上を云う、以下同じ。この装
置においては第6図の如く、t0−t1の時間帯で加熱用コ
イル2に高い電力Pbを印加して炉内の金属を溶解した
後、t1−t2の時間帯で上記炉内の溶湯を出湯する。この
出湯は溶湯の使用目的により数分から数十分の時間を要
し、その間保温しながら行われる。この保温のための電
力は電源設備1の電力レベルを保温に必要な低電力レベ
ルPcにして確保する。
As shown in FIG. 5, the first heating device is a so-called 1 power source 1 furnace device in which a heating coil 2 of the furnace is connected to a high frequency power source equipment 1. Here, a high frequency means a frequency exceeding a commercial frequency, for example, 100 Hz or higher, and the same applies hereinafter. In this apparatus, as shown in FIG. 6, high electric power Pb is applied to the heating coil 2 in the time period of t 0 -t 1 to melt the metal in the furnace, and then in the time period of t 1 -t 2 Discharge the molten metal in the furnace. This tapping takes several minutes to several tens of minutes depending on the purpose of use of the molten metal, and is performed while keeping the temperature warm during that time. The electric power for this heat retention is secured by setting the power level of the power supply equipment 1 to the low power level Pc required for heat retention.

第2の加熱装置は、第7図に示すように、溶解電源設
備3と、保温電源設備4とを併用する装置である。上記
電源設備3及び4はそれぞれ切換器5及び6を介して第
1及び第2の炉の加熱用コイル7,8に接続するととも
に、この第1及び第2の炉の加熱用コイルはそれぞれ切
換器6及び5へも接続している。このような装置におけ
る無鉄芯炉による溶解はいままでの商用周波(低周波)
に対し、電力密度の高い高速溶解炉による利点−省エネ
ルギー,冶金的優位性等−を生かすため、高周波炉を用
いることが多く、また、保温電源設備4としては電力密
度の低い保温電力を使用するため、特に高周波電源とす
る必要のないことから商用周波電源設備が用いられる。
As shown in FIG. 7, the second heating device is a device that uses the melting power supply equipment 3 and the heat insulation power supply equipment 4 together. The power supply facilities 3 and 4 are connected to the heating coils 7 and 8 of the first and second furnaces through the switches 5 and 6, respectively, and the heating coils of the first and second furnaces are switched respectively. It is also connected to the devices 6 and 5. In such equipment, the melting by the ironless core furnace is the conventional commercial frequency (low frequency)
On the other hand, in order to take advantage of the advantages of the fast melting furnace with high power density-energy saving, metallurgical superiority, etc., a high-frequency furnace is often used, and as the heat insulation power supply equipment 4, heat insulation power with low power density is used. Therefore, a commercial frequency power supply facility is used because it is not necessary to use a high frequency power supply.

しかして、切換器5及び6を切り換えることによって
加熱用コイル7、及び8は電源設備3と4に交互に接続
するようになり、溶解用となったり、保温用となったり
し、例えば第8図に示すように作動する。第8図の
(イ)は加熱用コイル7を有する第1の炉の作動状態
を、(ロ)は加熱用コイル8を有する第2の炉の作動状
態をそれぞれ示す。
Then, by switching the switches 5 and 6, the heating coils 7 and 8 are alternately connected to the power supply equipments 3 and 4, and are used for melting or for keeping heat, for example, the eighth coil. It operates as shown. FIG. 8A shows the operating state of the first furnace having the heating coil 7, and FIG. 8B shows the operating state of the second furnace having the heating coil 8.

第8図においてt0−t1の時間帯では第7図の装置の切
換器5,6は実線で示す状態で接続されており、第1の炉
は溶解炉として、第2の炉は保温炉としてそれぞれ機能
する。即ち、t0−t1の時間帯内で第1の炉内の金属は高
い電力レベルPbで溶解されるとともに第2の炉内の溶湯
は低い電力レベルPcで保温されながら出湯される。次い
で、t1−t2の時間帯では第7図の装置の切換器5,6は破
線で示す状態で接続されており、第1の炉はその加熱用
コイル7が電源設備4と、第2の炉はその加熱用コイル
8が電源設備3とそれぞれ接続して、それぞれ保温炉及
び溶解炉として機能する。即ち、t1−t2の時間内で第1
の炉内の溶湯は電力レベルPcで保温されながら出湯さ
れ、第2の炉内に新たに充填された金属は電力レベルPb
で溶解される。このように第1の炉及び第2の炉は切換
器5,6の切換操作によって溶解炉になったり、保温炉と
なったりする。いずれにしろ高周波電源設備3は溶解用
として、商用周波電源設備4は保温用として、それぞれ
専用されるものである。
In FIG. 8, the switches 5 and 6 of the apparatus shown in FIG. 7 are connected in the state shown by the solid line in the time period from t 0 to t 1 , the first furnace serves as a melting furnace, and the second furnace is kept warm. Each functions as a furnace. That is, in the time period from t 0 to t 1 , the metal in the first furnace is melted at the high power level Pb, and the molten metal in the second furnace is discharged while being kept warm at the low power level Pc. Next, in the time period from t 1 to t 2, the switches 5 and 6 of the apparatus of FIG. 7 are connected in the state shown by the broken line, and the heating coil 7 of the first furnace is connected to the power supply equipment 4 and the The heating coil 8 of the furnace No. 2 is connected to the power supply equipment 3 to function as a heat-retaining furnace and a melting furnace, respectively. That is, within the time of t 1 −t 2 , the first
The molten metal in the furnace is discharged while being kept warm at the power level Pc, and the metal newly filled in the second furnace is at the power level Pb.
Is dissolved in. In this way, the first furnace and the second furnace become a melting furnace or a heat-retaining furnace by the switching operation of the switching devices 5 and 6. In any case, the high frequency power supply equipment 3 is dedicated for melting, and the commercial frequency power supply equipment 4 is dedicated for heat retention.

第3の加熱装置は溶解電力と保温電力を加えた能力を
有する高周波電源設備9を電源としたものである。電源
設備9と第1及び第2の炉の加熱用コイル7,8とは第9
図に示すように1個の切換器10を介して接続されてお
り、切換器10で交互に各炉に電力(Pa)を印加するよう
になっている。ここで電力Paは溶解電力Pb+保温電力Pc
である。
The third heating device uses a high-frequency power supply facility 9 having a capability of adding melting power and heat retention power as a power source. The power supply equipment 9 and the heating coils 7, 8 of the first and second furnaces are the ninth
As shown in the figure, they are connected through one switch 10, and the switch 10 alternately applies electric power (Pa) to each furnace. Here, electric power Pa is melting electric power Pb + thermal insulation electric power Pc
Is.

即ち、第9図において切換器10が実線状態で接続した
ときは電源設備9と第1の炉の加熱用コイル7とが接続
し、切換器10が破線状態に接続したときは電源設備9と
第2の炉の加熱用コイル8とが接続する。このようにこ
の第3の加熱装置は一方の炉に電力を印加しているとき
は他方の炉はOFF状態に置かれるが、通常このOFF間隔の
短い方を溶解炉として用い、長い方を保温炉として用い
る。例えば第10図に示すようにt0−t1の時間帯では炉を
溶解炉として用い、第2の炉を保温炉として用いられ、
t1−t2の時間帯ではその逆で第1の炉を保温炉として用
い第2の炉を溶解炉として用いることができる。
That is, in FIG. 9, when the switch 10 is connected in the solid line state, the power supply facility 9 is connected to the heating coil 7 of the first furnace, and when the switch 10 is connected in the broken line state, the power supply facility 9 is connected. The heating coil 8 of the second furnace is connected. In this way, this third heating device keeps the other furnace in the OFF state when power is being applied to one furnace, but normally the one with the shorter OFF interval is used as the melting furnace and the one with the longer one is used for heat insulation. Used as a furnace. For example, as shown in FIG. 10, the furnace is used as a melting furnace and the second furnace is used as a heat-retaining furnace in a time period of t 0 -t 1 ,
In the time period from t 1 to t 2 , on the contrary, the first furnace can be used as the heat retaining furnace and the second furnace can be used as the melting furnace.

<発明が解決しようとする問題点> しかしながら、これら従来の加熱装置においては次の
ような多くの問題点がある。
<Problems to be Solved by the Invention> However, these conventional heating devices have many problems as described below.

第1の加熱装置は高電力の電源設備1をわざわざ保温
に必要な低電力レベルまで低下させて使用するものであ
るから、設備の稼動率が低く、又生産量に比し設備電力
が大きいため電力基本料金が高く不経済な設備となって
いるという問題点を有していた。
Since the first heating device is used by lowering the power supply facility 1 of high power to the low power level necessary for keeping heat, the operating rate of the facility is low and the facility power is large compared to the production amount. There was a problem that the basic electricity charge was high and the equipment was uneconomical.

第2の加熱装置は電源設備3,4をそれぞれ溶解用及び
保温用に専用されるので設備稼動率は理想的高さとな
り、かつ生産性が非常に高くなるという利点を有する
が、保温用として商用周波数電源設備を用いるため下記
の理由により高価な設備となるという問題点を有してい
た。
Since the second heating device is dedicated to melting and keeping the power supply facilities 3 and 4 respectively, it has the advantage that the facility operation rate is ideal and the productivity is very high. Since the commercial frequency power supply equipment is used, there is a problem that the equipment is expensive due to the following reasons.

炉の加熱用コイルは高価な商用周波用コイルとする
必要がある。
The heating coil of the furnace must be an expensive commercial frequency coil.

高周波コイルに対し、商用周波の低電力を印加する
ためコイルインピーダンスが非常に低くなり、力率改善
コンデンサ、整合変圧器等の回路構成機器が高価とな
る。
Since low power of commercial frequency is applied to the high frequency coil, the coil impedance becomes very low, and the circuit components such as the power factor correction capacitor and the matching transformer become expensive.

商用周波電源のため3相平衡装置が必要となる。 Since it is a commercial frequency power source, a three-phase balancing device is required.

また、第3の加熱装置においては保温炉における温度
(△θ)を、例えば±5℃程度以内に制御しようとする
と約1分程度の短時間で極めて頻繁に切換えを行う必要
があるが、約1分間隔の切換えは切換器の寿命の点、並
びに操作上不可能である。
Further, in the third heating device, if it is attempted to control the temperature (Δθ) in the heat-retaining furnace within ± 5 ° C., for example, it is necessary to switch it very frequently in a short time of about 1 minute. Switching at 1-minute intervals is impossible in terms of the life of the switch and in operation.

尚、上記切換えの間隔を10分間程度とすると温度精度
(△θ)が約±50℃位となり温度面より実用的ではなく
なる。
If the switching interval is set to about 10 minutes, the temperature accuracy (Δθ) will be about ± 50 ° C, which is not practical in terms of temperature.

従って、第3の加熱装置は切換器の寿命を犠牲とし、
かつ複雑な操作を行わなければならないという問題点を
有していた。
Therefore, the third heating device sacrifices switch life,
In addition, there is a problem that complicated operations must be performed.

このように従来は、単一の電源設備から溶解炉と保温
炉とに給電して、これら2基の炉を効率よく、かつ経済
的に並列運転できる加速装置はなかったし、このような
加熱装置を開発しようとする発想もなかった。
As described above, conventionally, there has been no accelerator which can efficiently and economically operate these two furnaces in parallel by supplying power to the melting furnace and the heat retaining furnace from a single power supply facility. I had no idea to develop a device.

これは従来では加熱過程において負荷インピーダンス
が激しく変動する溶解炉と、負荷インピーダンスが基本
的に一定の保温炉とは電気的にはまったく別異の炉とし
て考えられており、これら2基の炉を単一電源設備で並
列運転することは困難であると考えられていたからであ
る。
Conventionally, this is considered as a completely different furnace electrically from the melting furnace in which the load impedance fluctuates drastically in the heating process and the heat-retaining furnace in which the load impedance is basically constant. It was considered difficult to operate in parallel with a single power supply facility.

<問題点を解決するための手段> 本発明者は上記した従来装置の問題点を改善し、1個
の高周波電源設備で溶解炉と保温炉を並列運転するにも
拘らず、溶解炉並びに保温炉に各々専用の電源設備を設
けた場合と同一の性能を発揮する経済的な設備を提供す
ることを目的として種々検討した結果、単一高周波電源
設備より、溶解、及び保温の別々の目的に対し、各々に
電力を印加する場合は比較的安価な炉用コイルが溶解
炉、保温炉の各々に適用できる利点があることを見出し
本発明を完成した。
<Means for Solving Problems> The present inventor has improved the problems of the conventional device described above, and despite the parallel operation of the melting furnace and the heat retaining furnace with one high-frequency power source equipment, the melting furnace and the heat retaining As a result of various studies aimed at providing economical equipment that exhibits the same performance as when a dedicated power supply equipment was installed in each furnace, as a result, it was decided to use separate high-frequency power supply equipment for different purposes of melting and heat retention. On the other hand, the present invention has been completed by finding that a relatively inexpensive furnace coil can be applied to each of the melting furnace and the heat retaining furnace when electric power is applied to each.

本発明に係る無鉄芯誘導溶解炉の加熱装置は、高周波
電源設備と第1の切換器を介して接続する第1の炉の加
熱用コイルと、この第1の加熱用コイルと同一設計とな
っており、上記電源設備より分岐されて保温電源スイッ
チを経由してタップ切換器を経て接続された保温電力イ
ンピーダンスに対応し得る整合変圧器と第2の切換器を
介して接続する第2の炉の加熱用コイルと、上記第1及
び第2の炉の加熱用コイルをそれぞれ上記第2及び第1
の切換器に接続する切換系統とからなり、上記両切換器
の操作により上記第1及び第2の炉を交互に溶解炉及び
保温炉に切換えることを特徴としている。
A heating device for an iron-free core induction melting furnace according to the present invention has a heating coil for a first furnace connected to a high-frequency power supply facility via a first switching device, and the same design as the first heating coil. The second transformer connected via the second switching unit and the matching transformer capable of dealing with the warming power impedance branched from the power supply facility and connected via the heat insulation power switch via the tap changer. The furnace heating coil and the first and second furnace heating coils are respectively the second and first
And a switching system connected to the switching device, and the first and second furnaces are alternately switched to the melting furnace and the heat-retaining furnace by operating the both switching devices.

<実施例> 以下、本発明を図示した実施例に基づいて具体的に説
明する。
<Examples> Hereinafter, the present invention will be specifically described based on illustrated examples.

第1図は本発明の実施例(以下、本装置Aと略称す
る)を示すもので、符号20は溶解、保温兼用能力を有す
る高周波電源設備である。この電源設備20は第1の切換
器21を介して第1の炉の加熱用コイル22に接続されると
ともに、上記電源設備20より分岐されて保温電源スイッ
チ23を経由してタップ切換器24を経て接続された保温電
力インピーダンスに対応し得る整合変圧器25と第2の切
換器26を介して第2の炉の加熱用コイル27に接続されて
いる。この本装置Aにおいては第1図に示すように切換
器21,26が実線の接続状態の場合は、加熱用コイル22に
は溶解電力Pbが印加されるとともに、加熱用コイル27に
はタップ切換器24、整合変圧器25によって電源設備20の
電力レベルが低下されて保温電力Pcが印加される。しか
して第1の炉は溶解炉として、第2の炉は保温炉として
それぞれ機能する。
FIG. 1 shows an embodiment of the present invention (hereinafter abbreviated as the present apparatus A), and reference numeral 20 is a high frequency power supply facility having both melting and heat retaining capabilities. This power supply equipment 20 is connected to the heating coil 22 of the first furnace via the first switching device 21, and is branched from the power supply equipment 20 to pass the tap switching device 24 via the heat insulation power supply switch 23. It is connected to the heating coil 27 of the second furnace via a matching transformer 25 and a second switching device 26, which can correspond to the heat insulation power impedance connected via the above. In this device A, as shown in FIG. 1, when the switches 21, 26 are connected in solid lines, the melting power Pb is applied to the heating coil 22 and tap switching is applied to the heating coil 27. The power level of the power supply equipment 20 is lowered by the transformer 24 and the matching transformer 25, and the heat insulation power Pc is applied. Thus, the first furnace functions as a melting furnace and the second furnace functions as a heat retaining furnace.

また、切換器の操作により第1図に示すよに切換器2
1,26を破線の接続状態にした場合は上記したと逆に第1
の炉は保温炉として第2の炉は溶解炉としてそれぞれ機
能する。
In addition, by operating the switch, as shown in FIG.
When connecting 1,26 to the broken line, the first
The second furnace functions as a heat retaining furnace and the second furnace functions as a melting furnace.

このように本装置Aは切換器21,26の操作により第1
の炉及び第2の炉を溶解及び保温の両機能に交互に変換
させることができる。これをもう少し詳しく述べると第
2図のようになる。第2図は加熱用コイルへの印加電力
Pと炉内温度Tを縦軸に、時間を横軸にとったグラフで
あり、(イ)は加熱用コイル22が具備された第1の炉の
状態を、(ロ)は加熱コイル27が具備された第2の炉の
状態をそれぞれ示す。
In this way, this device A can be operated by operating the switching devices 21 and 26 so that the first
The furnace and the second furnace can be alternately converted to both melting and heat retaining functions. A more detailed description of this is shown in FIG. FIG. 2 is a graph in which the applied power P to the heating coil and the temperature T in the furnace are plotted on the ordinate and the time is plotted on the abscissa, and (a) is the graph of the first furnace equipped with the heating coil 22. The state (b) shows the state of the second furnace provided with the heating coil 27.

第2図においてt0−t1の時間帯では第1の炉及び第2
の炉はそれぞれ溶解炉及び保温炉として機能し、t1−t2
の時間帯では第1の炉及び第2の炉はそれぞれ保温炉及
び溶解炉として機能していることを示している。
In the time zone t 0 -t 1 in FIG. 2 the first furnace and a second
The furnace respectively function as a melting furnace and kept furnace, t 1 -t 2
In the time zone of, the first furnace and the second furnace are functioning as a heat retaining furnace and a melting furnace, respectively.

即ち、本装置Aはt0−t1の時間帯で一方の第1の炉内
の金属は溶解され、他方の第2の炉内の溶湯は保温され
ながら出湯され、次のt1−t2の時間帯では前時間帯で溶
解された第1の炉内の溶湯は保温されながら出湯され、
空になった第2の炉には新たに金属が入れられて溶解さ
れる。これは第7図に示す溶解電源設備3と保温電源設
備4とを併用する従来の加熱装置が示すグラフと同一で
ある。このように本装置Aは溶解用及び保温用として別
々の電源設備を有する加熱装置と同様な作用を奏するこ
とが理解できる。
That is, in the present apparatus A, the metal in one of the first furnaces is melted in the time period of t 0 -t 1 , the molten metal in the other second furnace is discharged while being kept warm, and the next t 1 -t In the time zone of 2 , the molten metal in the first furnace that was melted in the previous time zone is discharged while keeping the temperature
New metal is put into the empty second furnace and melted. This is the same as the graph shown by the conventional heating device which uses the melting power supply equipment 3 and the heat insulation power supply equipment 4 together shown in FIG. As described above, it can be understood that the present device A has the same operation as a heating device having separate power supply facilities for melting and keeping heat.

このときの電気設備の価格は次のように考えられる。
本実施例は溶解電力を100%とし、保温電力を10%とし
た例であるが、このときの電気設備の価格は、例えば容
量を110%とした場合、そのコストは110%とはならず、
例えば105%以下程度であるが、一方10%容量の設備コ
ストは10%コストでできることはなくかなり高価にな
る。従って、溶解と保温にそれぞれ専用の電源設備を設
置するよりも本実施例のように溶解と保温の両能力を兼
ね備えた電源設備を設置することの方が設備コスト的に
有利である。
The price of electric equipment at this time is considered as follows.
The present example is an example in which the melting power is 100% and the heat retention power is 10%, but the price of the electric equipment at this time is 110%, for example, when the capacity is 110%. ,
For example, it is about 105% or less, but on the other hand, the equipment cost of 10% capacity cannot be done at 10% cost, and it becomes quite expensive. Therefore, it is more advantageous in terms of equipment cost to install the power supply equipment having both the ability of melting and the heat retention as in the present embodiment than the installation of the power supply equipment dedicated to the melting and the heat insulation.

また、本実施例のように単一高周波電源設備より溶解
及び保温の別々の目的に対し、各々に電力を印加するよ
うにしたので炉に用いる加熱用コイル22,27を比較的安
価な炉用コイルを用いることができるという利点もあ
る。
Further, as in this embodiment, the heating coils 22 and 27 used in the furnace are used for a relatively inexpensive furnace because the power is applied to each of them for the purpose of melting and keeping heat from a single high frequency power source equipment. There is also the advantage that a coil can be used.

尚、第2図においては保温温度を一定に制御したが、
これを若干上下させたい場合はタップ切換器24を変動さ
せることによってその調整が可能となり、また溶解電力
Pbを一定とせず、段階的に上げる必要のある場合はその
パターンに応じて、タップ切換器24を連動的に操作すれ
ばよい。
In addition, although the heat retention temperature is controlled to be constant in FIG.
If you want to raise or lower this slightly, you can adjust it by changing the tap changer 24.
If it is necessary to raise Pb in a stepwise manner instead of keeping it constant, the tap changer 24 may be operated in an interlocking manner according to the pattern.

また、本装置Aは溶解時間に対し保温時間がそれ以内
の時間で済むとき、即ち溶解時間より短い時間で出湯が
完了するときはその完了時に保温電源スイッチ23をOFF
にすればよい。この場合、保温炉は出湯完了時から溶解
炉として機能するまでの短時間遊ぶことになるが、この
ようにしても本装置Aは十分に機能するものである。
Further, in the present apparatus A, when the heat retention time is shorter than the melting time, that is, when hot water is completed in a time shorter than the melting time, the heat insulation power switch 23 is turned off at the time of completion.
What should I do? In this case, the heat-retaining furnace is played for a short time from the completion of tapping until it functions as a melting furnace, but even in this case, the present apparatus A can sufficiently function.

また、上記短時間の遊び時間を有効に利用しようとす
る場合には本装置Aに他の高周波電源設備系統を組み合
わせることによって可能となる。
Further, in order to effectively utilize the above-mentioned short play time, it becomes possible by combining the present apparatus A with another high frequency power supply equipment system.

以下、この応用例(以下、本装置Bと略称する)につ
いて説明する。以下に示す応用例は保温時間が溶解時間
の半分の場合である。尚、本装置Aと同一のものは同一
の記号を付してその説明を省略する。
Hereinafter, this application example (hereinafter, simply referred to as the present device B) will be described. The application example shown below is the case where the heat retention time is half the dissolution time. The same components as those of the present device A are designated by the same reference numerals and the description thereof will be omitted.

第3図は本装置Bの単線結線図であり、本装置Bは他
の高周波電源設備28と切換器29を介して接続する第3の
炉の加熱用コイル30の接続系統と、前述した本装置Aと
を接続させて構成されている。即ち、一方の高周波電源
設備20は切換器21、及び26を介して第3の炉の加熱用コ
イル30に接続しており、他の高周波電源設備28は切換器
29を介して第1及び第2の加熱用コイル22及び27に接続
している。
FIG. 3 is a single-line connection diagram of the present device B. The present device B is a system for connecting the heating coil 30 of the third furnace, which is connected to another high-frequency power supply equipment 28 via a switch 29, and the above-mentioned book. It is configured to be connected to the device A. That is, one high-frequency power equipment 20 is connected to the heating coil 30 of the third furnace via the switches 21 and 26, and the other high-frequency power equipment 28 is a switch.
It is connected via 29 to the first and second heating coils 22 and 27.

そして本装置Bは、例えば第4図(イ)、(ロ)、
(ハ)に示すように作動する。第4図は加熱用コイルへ
の印加電力Pと炉内温度Tを縦軸に、時間を横軸にとっ
たグラフであり、(イ)は加熱コイル22が具備された第
1の炉の状態を、(ロ)は加熱コイル27を具備した第2
の炉の状態を、(ハ)は加熱用コイル30を具備した第3
の炉の状態をそれぞれ示す。
The device B is, for example, as shown in FIGS.
It operates as shown in (c). FIG. 4 is a graph in which the vertical axis represents the electric power P applied to the heating coil and the furnace temperature T, and the horizontal axis represents time. (B) is the second equipped with the heating coil 27
The state of the furnace of (3) is equipped with a heating coil 30
The furnace conditions are shown below.

第4図においてt0−t2の時間帯では、切換器21はa接
続にし、切換器26はt0−t1間をe接続にした後、t1−t2
間をf接続にし、切換器29はt0−t1間をi接続にした後
t1−t2間をh接続にする。このとき、第1の炉はt0−t2
の時間帯の全部を溶解炉として機能し、第2の炉はt0
t1間を保温炉として機能した後t1−t2間を溶解炉として
機能し、第3の炉はt0−t1間を溶解炉として機能した後
t1−t2間を保温炉として機能する。
In FIG. 4, in the time zone of t 0 -t 2 , the switch 21 is set to a connection and the switch 26 is set to e connection between t 0 -t 1 , and then t 1 -t 2
After making the f connection between the switches, and the switch 29 after making the i connection between t 0 and t 1,
Connect h between t 1 and t 2 . At this time, the first furnace is t 0 −t 2
The entire time zone of T functions as a melting furnace, and the second furnace is t 0
t 1 between acts as a melting furnace between t 1 -t 2 after to function as thermal insulation furnace, after the third furnace to function as a dissolution furnace between t 0 -t 1
It functions as a heat insulation furnace between t 1 and t 2 .

t2−t4の時間帯では、切換器21はこの時間帯全部をc
接続にし、切換器26はt2−t3をd接続した後t3−t4間を
e接続にし、切換器29はt2−t3間を前時間帯のh接続を
維持した後t3−t4間をg接続にする。このとき第1の炉
はt2−t3間を保温炉として機能した後t3−t4間を溶解炉
として機能し、第2の炉はt2−t3間を前時間帯に引き続
いて溶解炉として機能した後t3−t4間を保温炉として機
能し、第3の炉はt2−t4の時間帯の全部を溶解炉として
機能する。
During the time period from t 2 to t 4 , the switching device 21 uses c during the entire time period.
Then, the switch 26 connects t 2 -t 3 to d and then connects t 3 to t 4 to e, and the switch 29 connects t 2 to t 3 to h connection in the previous time period and then t. Connect g between 3 and t 4 . At this time, the first furnace functions as a heat insulation furnace between t 2 and t 3 and then functions as a melting furnace between t 3 and t 4 , and the second furnace continues between t 2 and t 3 in the previous time period. Functioning as a melting furnace after that, it functions as a heat-retaining furnace between t 3 and t 4 , and the third furnace functions as a melting furnace for the entire time period of t 2 -t 4 .

t4−t6の時間帯では、切換器21はこの時間帯全部をb
接続にし、切換器26はt4−t5間をf接続した後t5−t6
をd接続にし、切換器29はt4−t5間を前時間帯のg接続
を維持した後t5−t6間をi接続にする。このとき第1の
炉はt4−t5間を溶解炉として機能した後t5−t6を保温炉
として機能し、第2の炉はt4−t6の時間帯の全部を溶解
炉として機能し、第3の炉はt4−t5間を保温炉として機
能した後t5−t6間を溶解炉として機能する。
t 4 in the time zone of -t 6, the switching device 21 is all this time zone b
After connecting the switching device 26 to the f connection between t 4 and t 5 and then connecting the d connection between t 5 and t 6 , the switching device 29 maintains the connection between t 4 and t 5 for the previous time period g. between t 5 -t 6 to i connection. At this time, the first furnace functions as a melting furnace between t 4 and t 5 and then functions as a heat retaining furnace between t 5 and t 6 , and the second furnace functions as a melting furnace for the entire time period from t 4 to t 6. The third furnace functions as a heat-retaining furnace between t 4 and t 5 , and then functions as a melting furnace between t 5 and t 6 .

このように本装置Bの切換器21はa→c→b→…の順
に2t時間の間隔で切り換わり、切換器26はe→f→d→
e→f→d→…の順にt時間の間隔で切り換わり、切換
器29はi→h→g→i→…の順に2t時間の間隔で切り換
わることになる。この2tは溶解時間で、tは保温時間
(あるいは出湯時間)に相当する。
In this way, the switching device 21 of the device B is switched in the order of a → c → b → ... at intervals of 2t time, and the switching device 26 is e → f → d →.
The order is e → f → d → ... At intervals of t time, and the switch 29 is switched at i → h → g → i → ... At intervals of 2t time. This 2t is the dissolution time, and t corresponds to the heat retention time (or tapping time).

この本装置Bによれば、保温時間が溶解時間の半分の
場合であっても各炉を休ませることなく有効に利用し得
るものである。
According to the present apparatus B, even if the heat retention time is half the melting time, each furnace can be effectively used without rest.

<発明の効果> 本発明は、以上述べたように、電気的にまったく別異
のものとされている、加熱過程において負荷インピーダ
ンスが激しく変動する溶解炉と、負荷インピーダンスが
基本的に一定の保温炉とを、単一の高周波電源設備で並
列運転可能な加熱装置を提供することができた。
<Effects of the Invention> As described above, the present invention is a completely different electrically electrically melting furnace in which the load impedance fluctuates drastically in the heating process, and a heat insulation in which the load impedance is basically constant. It was possible to provide a heating device capable of operating the furnace and the furnace in parallel with a single high-frequency power supply facility.

このため、本発明は全体の設備コストが溶解炉及び保
温炉にそれぞれ専用の電源設備を用いるよりも安価とな
り、かつ溶解炉と保温炉の並列運転により設備の稼働率
も高く、生産性も高いという実操業上の利点をも有す
る。
Therefore, in the present invention, the total equipment cost is lower than the power source equipment dedicated to the melting furnace and the heat-retaining furnace, and the operation rate of the equipment is high and the productivity is high due to the parallel operation of the melting furnace and the heat-retaining furnace. It also has the advantage in actual operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る加熱装置の結線図、第2図は同上
装置における炉内の状態の電力(P)・温度(T)−時
間の関係を示すグラフで、(イ)は第1の炉に関するグ
ラフ、(ロ)は第2の炉に関するグラフ、第3図は同上
装置を応用した加熱装置の単線結線図、第4図は同上装
置における炉内の状態の電力(P)・温度(T)−時間
の関係を示すグラフで、(イ)は第1の炉のグラフ、
(ロ)は第2の炉のグラフ、(ハ)は第3の炉のグラ
フ、第5図、第7図、及び第9図は従来の加熱装置の結
線図、第6図、第8図(イ)、(ロ)、及び第10図
(イ)、(ロ)はそれぞれ上記従来の加熱装置に対応す
る炉内の状態の電力(P)・温度(T)−時間の関係を
示すグラフである。 A……本装置、20……高周波電源設備、 21……第1の切換器、 22……第1の炉の加熱用コイル、 23……保温電源スイッチ、 24……タップ切換器、25……整合変圧器、 26……第2の切換器、 27……第2の炉の加熱用コイル
FIG. 1 is a connection diagram of a heating apparatus according to the present invention, and FIG. 2 is a graph showing a relationship between electric power (P) / temperature (T) -time in a furnace in the same apparatus. Of the furnace, (b) is the graph of the second furnace, Fig. 3 is a single wire connection diagram of the heating device to which the same device is applied, and Fig. 4 is the electric power (P) / temperature in the furnace in the same device. (T) is a graph showing a time relationship, (a) is a graph of the first furnace,
(B) is a graph of the second furnace, (C) is a graph of the third furnace, and FIG. 5, FIG. 7, and FIG. 9 are wiring diagrams of conventional heating devices, FIG. 6, and FIG. (A), (b), and FIG. 10 (a), (b) are graphs showing the relationship between the electric power (P), temperature (T), and time in the state of the furnace corresponding to the conventional heating device. Is. A ... This device, 20 ... High frequency power equipment, 21 ... First switching device, 22 ... First furnace heating coil, 23 ... Insulation power switch, 24 ... Tap switching device, 25 ... … Matching transformer, 26 …… Second switch, 27 …… Second furnace heating coil

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高周波電源設備と第1の切換器を介して接
続する第1の炉の加熱用コイルと、 この第1の炉の加熱用コイルと同一設計となっており、
上記電源設備より分岐されて保温電源スイッチを経由し
てタップ切換器を経て接続された保温電力インピーダン
スに対応し得る整合変圧器と第2の切換器を介して接続
する第2の炉の加熱用コイルと、 上記第1及び第2の炉の加熱用コイルをそれぞれ上記第
2及び第1の切換器に接続する切換系統とからなり、上
記両切換器の操作により上記第1及び第2の炉を交互に
溶解炉、及び保温炉に切換えることを特徴とする無鉄芯
誘導溶解炉の加熱装置。
Claim: What is claimed is: 1. A heating coil for a first furnace, which is connected to a high-frequency power supply facility via a first switch, and a heating coil for the first furnace, which have the same design.
For heating the second furnace connected via the matching transformer and the second switching device that can correspond to the warming power impedance branched from the above power supply facility and connected through the warming power source switch through the tap changer A coil and a switching system that connects the heating coils of the first and second furnaces to the second and first switching devices, respectively, and the first and second furnaces are operated by operating both switching devices. A heating device for an iron-free core induction melting furnace, characterized by alternately switching between the melting furnace and the heat-retaining furnace.
JP60167516A 1985-07-31 1985-07-31 Ironless core induction melting furnace heating device Expired - Fee Related JP2524697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167516A JP2524697B2 (en) 1985-07-31 1985-07-31 Ironless core induction melting furnace heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167516A JP2524697B2 (en) 1985-07-31 1985-07-31 Ironless core induction melting furnace heating device

Publications (2)

Publication Number Publication Date
JPS6229086A JPS6229086A (en) 1987-02-07
JP2524697B2 true JP2524697B2 (en) 1996-08-14

Family

ID=15851134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167516A Expired - Fee Related JP2524697B2 (en) 1985-07-31 1985-07-31 Ironless core induction melting furnace heating device

Country Status (1)

Country Link
JP (1) JP2524697B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465611U (en) * 1990-10-12 1992-06-08

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52118253U (en) * 1976-03-05 1977-09-07
JPS5810835B2 (en) * 1978-02-03 1983-02-28 高周波熱錬株式会社 Induction heating device with double resonant circuit
JPS5519720A (en) * 1978-07-27 1980-02-12 Tokyo Shibaura Electric Co Induction heater
JPS5553998U (en) * 1978-10-03 1980-04-11
JPS5758297U (en) * 1980-09-24 1982-04-06

Also Published As

Publication number Publication date
JPS6229086A (en) 1987-02-07

Similar Documents

Publication Publication Date Title
US3949151A (en) Arc furnaces
JP2524697B2 (en) Ironless core induction melting furnace heating device
US4695316A (en) Multiple induction furnace system using single power supply
US2570311A (en) Electric induction furnace
US4388108A (en) Method and apparatus for smelting charge materials in electric arc furnace
US2018885A (en) Method and apparatus for mixing and discharging the contents of an electric glass furnace
US1244415A (en) Electric furnace and method of operation.
JP3485167B2 (en) Multiple induction furnace melting system
JP3094035B2 (en) DC electric furnace
US1206057A (en) Electric-arc furnace.
CN1712871A (en) DC arc induction furnace
US3395238A (en) Power coupling and electrode arrangement for electric furnace
JP3300080B2 (en) Electric furnace equipment
US3131246A (en) Electric furnace
JP2509411B2 (en) Arc furnace equipment for steelmaking
JPS6142293Y2 (en)
US3383450A (en) Electric melt vessel having means for reducing cold spot areas therein
JP2940148B2 (en) DC graphitization furnace electrical equipment
JPH0956059A (en) High-frequency power unit for dual system high-frequency induction furnace
US1584763A (en) System and method for operating electric furnaces
KR100520874B1 (en) Power supply of induction heating system for improved circulation and control method for the same
JP2002372379A (en) Opening/closing device of delivery gate employing conductive refractories
CN1164015A (en) DC arc furnace capable of smelting Si-Al-Fe alloy
RU1814197C (en) Induction crucible furnace
US1718172A (en) Electric furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees