JP2522410B2 - Solid electrolyte assembled battery - Google Patents

Solid electrolyte assembled battery

Info

Publication number
JP2522410B2
JP2522410B2 JP1254230A JP25423089A JP2522410B2 JP 2522410 B2 JP2522410 B2 JP 2522410B2 JP 1254230 A JP1254230 A JP 1254230A JP 25423089 A JP25423089 A JP 25423089A JP 2522410 B2 JP2522410 B2 JP 2522410B2
Authority
JP
Japan
Prior art keywords
conductive film
agent
assembled battery
solid electrolyte
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1254230A
Other languages
Japanese (ja)
Other versions
JPH03116661A (en
Inventor
洋一 野村
利明 小貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP1254230A priority Critical patent/JP2522410B2/en
Publication of JPH03116661A publication Critical patent/JPH03116661A/en
Application granted granted Critical
Publication of JP2522410B2 publication Critical patent/JP2522410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質集合電池に関するものである。TECHNICAL FIELD The present invention relates to a solid electrolyte assembled battery.

[従来の技術] 従来提案されている集合電池には、次のようなものが
ある。
[Prior Art] The following have been proposed as an assembled battery.

単独に作られた電池を複数個電気的に接続した集合電
池(例えば、積層形乾電池やNi−Cd組電池)。
An assembled battery (for example, a laminated dry battery or a Ni-Cd assembled battery) in which a plurality of individually made batteries are electrically connected.

複数組の発電要素を電槽に設けた複数個の収納室内に
配置し、各発電要素を電気的に接続した後電槽に蓋をし
て製造した集合電池(例えば自動車用鉛蓄電池)。
An assembled battery (for example, a lead-acid battery for automobiles) manufactured by placing a plurality of sets of power generating elements in a plurality of storage chambers provided in a battery case, electrically connecting the power generating elements, and then covering the battery case.

バイポーラプレートにより複数組の発電要素を接続し
た集合電池(例えば積層形燃料電池やレドックスフロー
電池)。
An assembled battery in which a plurality of sets of power generating elements are connected by a bipolar plate (for example, a stacked fuel cell or a redox flow battery).

固体電解質を用いた高温固体電解質型燃料電池。A high temperature solid oxide fuel cell using a solid electrolyte.

高分子固体電解質を用いた単独の発電要素(セル)を
複数個積層して電池容器内に収納した集合電池(例えば
リチウム電池)。
An assembled battery (for example, a lithium battery) in which a plurality of individual power generating elements (cells) using a polymer solid electrolyte are stacked and housed in a battery container.

ポリマーフィルムにアニオンが固定され、発電要素が
個別のセル室に収納され、イオン伝導度を高めるために
セル室に水が注入されてなるイオン交換膜を用いたSPE
燃料電池。
SPE using an ion exchange membrane, in which anions are fixed on a polymer film, power generating elements are housed in individual cell chambers, and water is injected into the cell chambers to enhance ionic conductivity.
Fuel cell.

上記〜の集合電池のうち、〜及びの集合電
池は、個々の発電要素がそれぞれ独立したセル室または
容器内に収納されている。しがって複数のセル室または
容器を必要とするために、集合電池のエネルギ密度が小
さく、しかも部品点数及び製造工程が増える。この種の
電池で、エネルギ密度を大きくし且つ製造工程を少なく
するために、複数の発電要素を1つのセル室または容器
に入れると、電解液が共通となって、各発電要素間で液
短絡が発生し、十分な電池性能を発揮できない。
Among the above-mentioned assembled batteries, the assembled batteries (1) and (2) have individual power generation elements housed in independent cell chambers or containers. Therefore, since a plurality of cell chambers or containers are required, the energy density of the assembled battery is low, and the number of parts and the manufacturing process are increased. In this type of battery, when a plurality of power generating elements are placed in one cell chamber or container in order to increase the energy density and reduce the number of manufacturing processes, the electrolytic solution becomes common and a liquid short circuit occurs between the power generating elements. Occurs, and sufficient battery performance cannot be exhibited.

上記及びの集合電池は、固体電解質を用いた集合
電池であり、本発明が改良の対象とする集合電池であ
る。
The above-mentioned and assembled batteries are assembled batteries using a solid electrolyte, and are the assembled batteries to be improved by the present invention.

[発明が解決しようとする課題] 上記の高温固体電解質型燃料電池は、常温における
イオン伝導度が小さいために、高温で作動させており、
設備に費用がかかり一般的ではない。そこで一般的には
上記の高分子固体電解質を用いた集合電池が用いられ
る。公知のリチウム電池を例にとると、単独の発電要素
が複数個積層されて電池容器内に収納されており、高エ
ネルギ密度化はある程度達成されている。しかしながら
単独に製造した発電要素を複数個積層して電池容器に収
納する作業は、積層状態を崩さずに収納する必要がある
ために作業が面倒且つ繁雑になるという問題がある。
[Problems to be Solved by the Invention] The above high temperature solid oxide fuel cell is operated at high temperature because of its low ionic conductivity at room temperature,
Equipment is expensive and uncommon. Therefore, generally, an assembled battery using the above-mentioned polymer solid electrolyte is used. Taking a known lithium battery as an example, a plurality of individual power generating elements are stacked and housed in a battery container, and high energy density has been achieved to some extent. However, there is a problem in that the work of stacking a plurality of independently-produced power generating elements and storing them in a battery container is troublesome and complicated because it is necessary to store them without breaking the stacked state.

実際には固体電解質だけでは、イオン伝導度が小さ
い。そのために各発電要素を個別の電池容器に収納し、
電解質(塩化リチウム)と有機溶媒(プロピレンカーボ
ネート)とを電池容器内に注入して単独のセルを作り、
単独のセルを複数個電気的接続しているものが多い。も
し1つの電池容器内に積層した複数個の発電要素を入れ
て、電解質と有機溶媒とを入れると、液短絡が発生して
自己放電が大きくなる問題が発生する。
In fact, the solid electrolyte alone has a low ionic conductivity. For that purpose, each power generating element is stored in a separate battery container,
An electrolyte (lithium chloride) and an organic solvent (propylene carbonate) are injected into the battery container to make a single cell,
In many cases, a plurality of individual cells are electrically connected. If a plurality of power generation elements stacked in one battery container are placed, and an electrolyte and an organic solvent are placed, a liquid short circuit occurs and self-discharge becomes large.

本発明の目的は、複数個の発電要素を一つの電池容器
内に収納しても組立が簡単で、しかも自己放電を少なく
することができる固体電解質集合電池を提供することに
ある。
An object of the present invention is to provide a solid electrolyte assembled battery which can be easily assembled even when a plurality of power generating elements are housed in a single battery container and can reduce self-discharge.

[課題を解決するための手段] 本発明の固体電解質集合電池では、イオン導電性フィ
ルムの一方の面上に正極剤と負極剤とを間隔をあけて交
互に配置する。またイオン導電性フィルムの他方の面上
に、前記一方の面上に配置した正極剤または負極剤と該
イオン導電性フィルムを間に介して異なる極性の極剤が
対向して複数個の発電要素を構成するように正極剤と負
極剤とを間隔をあけて交互に配置する。そして複数個の
発電要素を電気的に直列接続する。
[Means for Solving the Problem] In the solid electrolyte assembled battery of the present invention, the positive electrode agent and the negative electrode agent are alternately arranged at intervals on one surface of the ion conductive film. Further, on the other surface of the ion conductive film, a positive electrode agent or a negative electrode agent arranged on the one surface and a polar agent having different polarities face each other with the ion conductive film interposed therebetween, and a plurality of power generating elements are provided. The positive electrode agent and the negative electrode agent are alternately arranged at intervals so as to form the above. Then, the plurality of power generating elements are electrically connected in series.

[発明の作用] 本発明によれば一枚のイオン導電性フィルムに複数個
の発電要素を形成するため、各発電要素が分離しておら
ず、製造組立が容易である。
[Operation of the Invention] According to the present invention, since a plurality of power generating elements are formed on one sheet of ion conductive film, each power generating element is not separated and the manufacturing and assembling are easy.

複数個の発電要素を電気的に接続する場合には、導電
コネクタを用いることもできるが、導電コネクタを用い
ずに、複数個の発電要素間に位置するイオン導電性フィ
ルムの連結部分を交互に異なる向きに折返して、イオン
導電性フィルムの同一面側に位置する隣接する陽極剤と
陰極剤とを直接接触させることにより各発電要素を直列
接続すれば、導電コネクタが不要になる。
When electrically connecting a plurality of power generating elements, a conductive connector may be used, but without using a conductive connector, the connecting portions of the ion conductive film located between the plurality of power generating elements are alternately arranged. When the power generating elements are connected in series by folding back in different directions and directly contacting the adjacent anodic agent and cathodic agent located on the same surface side of the ion conductive film, the conductive connector becomes unnecessary.

電池容器への収納態様は、任意であり、前述のように
導電コネクタを用いないタイプでは、複数個の発電要素
を積層した状態で電池容器に収納できるので、電池をコ
ンパクトにすることができる。導電コネクタを用いる場
合でも、絶縁性フィルムを重ねて巻回して巻回型の集合
電池とすることでき、このようにすれば導電コネクタを
用いても電池をコンパクトに構成することができる。ま
た固体電解質として、イオン伝導が起きるイオン導電性
フィルムを用いると、該フィルムは電解質溶液と比べて
イオン伝導度が小さく厚み方向の断面積が小さいため
に、一枚の固体電解質の上に複数個の発電要素を構成し
ても、各発電要素間にある固体電解質によって各発電要
素間に生じる液短絡は極めて小さく、その結果生じる自
己放電も極めて小さい。
The storage mode in the battery container is arbitrary, and in the type that does not use the conductive connector as described above, the plurality of power generating elements can be stored in the battery container in a stacked state, so that the battery can be made compact. Even when the conductive connector is used, the insulating films can be overlapped and wound to form a wound type assembled battery. In this way, the battery can be made compact even if the conductive connector is used. When an ion conductive film that causes ionic conduction is used as the solid electrolyte, the film has a small ionic conductivity and a small cross-sectional area in the thickness direction as compared with an electrolyte solution. Even if the power generating element is configured, the liquid short circuit generated between the power generating elements due to the solid electrolyte between the power generating elements is extremely small, and the resulting self-discharge is also extremely small.

特にイオン導電性フィルムとして、アニオンまたはカ
チオンの一方が固定されたイオン解離基を有するポリマ
ーフィルムを用いると、系の電気的中性を保つために移
動可能なイオン種もイオン導電性フィルム外に移動する
ことがない。またこのようにすると、集合電池を単一の
電池容器に収納してイオン伝導度を増加させるために可
動イオンを溶媒和し得る溶媒を電池容器内に注入して
も、該溶媒を注液しない場合と同様に、個々の発電要素
間の液短絡はイオン導電性フィルムのフィルム面に沿っ
た方向にだけにしか発生せず、それも極めて小さなもの
となる。第4図は、カチオン導電性フィルムを用いた場
合における電池のメカニズムを示している。同図におい
て「e→」は電子の流れであり、「A→」は正規の電池
反応に伴なうカチオンの流れであり、「B→」はフィル
ム内を通る液短絡に伴うカチオンの流れであり、「C
→」は液中を通る液短絡に伴なうカチオンの流れであ
る。正規のカチオン「A→」の流れは、フィルム面に垂
直な方向(厚み方向)の流れであり、フィルムは厚みが
薄いために抵抗が小さく、カチオンの流れる量は大き
い。またカチオン「B→」の流れはフィルム面に平行な
方向への流れであり、フィルムが薄いためにこの方向へ
の抵抗は大きく、したがってカチオンの流れる量は小さ
い。発電要素間の距離が長くなる程「B→」の流れは小
さくなる。また液中を通る液短絡に伴なうカチオンの流
れ「C→」は、もし電解質溶液があればカチオンだけで
なくアニオンも流れ(カチオンの流れと反対方向に)、
しかもその流れの量は極めて大きくなる。しかしながら
溶媒だけの場合には、電気的中性が保たれないため、一
方のイオンだけでは溶媒内に存在できない。したがって
「C→」の流れは無いものとみなせる。
In particular, when a polymer film having an ionic dissociation group to which either an anion or a cation is fixed is used as the ion conductive film, the ionic species that can be moved to maintain the electrical neutrality of the system also move out of the ion conductive film. There is nothing to do. Further, in this way, even if the assembled battery is housed in a single battery container and a solvent capable of solvating mobile ions to increase ionic conductivity is injected into the battery container, the solvent is not injected. As in the case, the liquid short circuit between the individual power generating elements occurs only in the direction along the film surface of the ion conductive film, which is also extremely small. FIG. 4 shows the mechanism of the battery when the cation conductive film is used. In the figure, “e →” is a flow of electrons, “A →” is a flow of cations associated with a normal battery reaction, and “B →” is a flow of cations associated with a liquid short circuit through the film. Yes, "C
→ is the flow of cations that accompanies a liquid short circuit through the liquid. The flow of the regular cation “A →” is a flow in the direction perpendicular to the film surface (thickness direction). Since the film is thin, the resistance is small and the amount of cations flowing is large. Further, the flow of the cation “B →” is a flow in a direction parallel to the film surface, and since the film is thin, the resistance in this direction is large, and thus the amount of cation flow is small. The longer the distance between the power generating elements, the smaller the flow of “B →”. Also, the flow of cations “C →” due to a liquid short circuit through the liquid is caused by the flow of not only cations but also anions (in the direction opposite to the flow of cations) if there is an electrolyte solution.
Moreover, the amount of the flow becomes extremely large. However, in the case of only the solvent, the electrical neutrality cannot be maintained, so that only one ion cannot exist in the solvent. Therefore, it can be considered that there is no flow of “C →”.

特にイオン導電性フィルムの厚み方向にのみイオン伝
導性を有する異方性のイオン導電性フィルムを用いる
と、上述の液短絡は全く無く、その結果自己放電も全く
生じない。
In particular, when an anisotropic ion conductive film having ion conductivity only in the thickness direction of the ion conductive film is used, the above liquid short circuit does not occur at all, and as a result, self-discharge does not occur at all.

本発明によれば、上記理由により、集合電池の製造が
容易であり、しかも発電要素間で電解質による短絡や溶
媒による液短絡が実質的に発生しないため、複数の発電
要素を一つの電池容器に収納することが可能となり、電
池容器が電池全体の重量及び体積に占める割合を低減さ
せることができ、集合電池のエネルギ効率を飛躍的に向
上させることができる。
According to the present invention, for the above reason, it is easy to manufacture an assembled battery, and since a short circuit due to an electrolyte or a liquid short circuit due to a solvent does not substantially occur between the power generating elements, a plurality of power generating elements can be formed in one battery container. It becomes possible to store the battery, the ratio of the battery container to the weight and volume of the entire battery can be reduced, and the energy efficiency of the assembled battery can be dramatically improved.

[実施例] 以下図面を参照して、本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、シート状集合電池に本発明を適用した一実
施例の断面図を示している。同図において、1は、イオ
ン導電性フィルムである。本実施例ではこのイオン導電
性フィルム1として、イオン解離基を有するポリマーフ
ィルムで、イオン解離した状態でアニオンまたはカチオ
ンの一方がポリマーに固定されており、実質的なイオン
伝導が固定されていないイオン種のみによって起こるも
のを用いる。
FIG. 1 shows a sectional view of an embodiment in which the present invention is applied to a sheet-shaped assembled battery. In the figure, 1 is an ion conductive film. In this example, as the ion conductive film 1, a polymer film having an ion dissociation group, in which one of anions or cations is fixed to the polymer in an ion dissociated state, and an ion whose substantial ion conduction is not fixed Use the one that occurs only by the seed.

イオン導電性フィルム1の一方の面上1aには正極剤2
0,22,24と負極剤31,33とが所定の間隔Lをあけて長手方
向に交互に配置されている。またイオン導電性フィルム
1の他方の面上には、負極剤30,32,34と正極剤21,23と
が所定の間隔Lをあけて長手方向に交互に配置されてい
る。イオン導電性フィルム1を介して対向する極剤は、
極性が異なっており、対向する正極剤と負極剤とによっ
て5つの単電池すわち発電要素が構成されている。そし
てこれらの発電要素は、導電コネクタ40〜43によって電
気的に直列接続され、一方の端部に位置する正極剤20に
は正極端子5が接続され、他方の端部に位置する負極剤
34には負極端子6が接続されている。このようにして形
成された集合電池は、2つ割りの絶縁性の電池容器7に
収納されている。尚各発電要素はケース7によって積層
方向に加圧されている。
On one surface 1a of the ion conductive film 1, the positive electrode agent 2
0, 22, 24 and the negative electrodes 31, 33 are alternately arranged in the longitudinal direction with a predetermined interval L. Further, on the other surface of the ion conductive film 1, the negative electrode agents 30, 32, 34 and the positive electrode agents 21, 23 are alternately arranged in the longitudinal direction with a predetermined interval L. The polar agent facing through the ion conductive film 1 is
The polarities are different, and the positive electrode agent and the negative electrode agent facing each other form five unit cells, that is, power generating elements. These power generating elements are electrically connected in series by the conductive connectors 40 to 43, the positive electrode agent 20 located at one end is connected to the positive electrode terminal 5, and the negative electrode agent located at the other end.
The negative electrode terminal 6 is connected to 34. The assembled battery formed in this way is housed in an insulative battery container 7 divided into two parts. Each power generation element is pressed by the case 7 in the stacking direction.

集合電池の各発電要素と電池ケース7との間には、空
間80〜85が形成されており、この空間内には溶媒が注入
されている。溶媒としてはイオン種を含まない例えばプ
ロピオンカーボネート等のリチウムイオンを溶媒和し得
る溶媒が注入される。この溶媒はイオン導電性フィルム
1に浸透してリチウムイオンを溶媒和することによりイ
オン導電性フィルム1のイオン導電性を高める。なお陽
イオン解離基がポリマーに固定されているので、電気的
中性を保つために、リチウムイオンが空間80〜85内に存
在する必要は無い。したがって各発電要素間の液短絡経
路はイオン導電性フィルムだけである。
Spaces 80 to 85 are formed between each power generation element of the assembled battery and the battery case 7, and a solvent is injected into this space. As the solvent, a solvent which does not contain ionic species and which can solvate lithium ions such as propion carbonate is injected. This solvent permeates the ion conductive film 1 and solvates lithium ions, thereby increasing the ion conductivity of the ion conductive film 1. Since the cation dissociative group is fixed to the polymer, it is not necessary for lithium ions to be present in the spaces 80 to 85 in order to maintain electrical neutrality. Therefore, the liquid short circuit path between the power generating elements is only the ion conductive film.

イオン導電性フィルム1としては、例えば、リチウム
電池のようのように電解液中の電荷移動の担い手がリチ
ウムイオンであれば、スルホン酸基やカルボン酸基等の
陽イオン解離基と、該解離基とイオン結合したリチウム
イオンとを有するポリマーフィルムを用いる。また負極
剤が水素吸蔵合金または酸化カドミウムからなる場合や
正極剤が水酸化ニッケルからなる場合には、電解質中の
電荷移動の担い手は水産イオンであるからアンモニウム
基やアルキルアンモニウム基のような、陰イオン解離基
と、該イオン解離基と結合した水酸イオンとを有するポ
リマーからなるイオン導電性フィルムを用いる。そして
空間80〜85に注入する溶媒としては、前者の場合にはプ
ロピレンカーボネートやジメチルスルフォキシドのよう
なリチウム電池に普通に用いられている有機溶媒でよ
く、後者の場合には水を用いればよい。なおイオン導電
性フィルムに用いるポリマーとしては、具体的にはポリ
エチレンオキサイド系、ポリスチレン系、ポリジビニル
ベンゼン系、パーフルオロカーボン系等の中から、溶媒
との相互作用を考慮して選択し、必要であれば適当に架
橋して三次元ポリマーとして用いる。
Examples of the ion conductive film 1 include a cation dissociative group such as a sulfonic acid group and a carboxylic acid group, and the dissociative group when the charge carrier in the electrolytic solution is a lithium ion such as a lithium battery. A polymer film having lithium ions ionically bonded to is used. When the negative electrode agent is made of hydrogen storage alloy or cadmium oxide, or when the positive electrode agent is made of nickel hydroxide, the carrier responsible for the charge transfer in the electrolyte is marine ions, so an anion group such as an ammonium group or an alkylammonium group is used. An ion conductive film made of a polymer having an ion dissociative group and a hydroxyl ion bonded to the ion dissociative group is used. Then, as the solvent to be injected into the spaces 80 to 85, in the former case, an organic solvent such as propylene carbonate or dimethyl sulfoxide that is commonly used in lithium batteries may be used, and in the latter case, water may be used. Good. The polymer used for the ion conductive film is specifically selected from polyethylene oxide-based, polystyrene-based, polydivinylbenzene-based, perfluorocarbon-based, etc. in consideration of the interaction with the solvent, and it is necessary. If appropriately crosslinked, it is used as a three-dimensional polymer.

ここでリチウム電池を例に取って具体的に説明する。
イオン導電性フィルムとして例えばポリエチレンオキサ
イド系の固体電解質フィルムを用いると、イオン伝導度
の高いもので1/100,000S/cmである。したがって厚みが1
00μのイオン導電性フィルムを用いた場合に、幅寸法が
3cmで、フィルムの一方の面上に配置された隣接する正
極剤と負極剤との距離Lが3mmであるとすると、隣接す
る正極剤と負極剤との間の抵抗は10MΩであり、この抵
抗値では電圧3Vで1年間に流れる自己放電電気量は2〜
3mAh程度である。電池容量が数百mAhであれば、この程
度の自己放電率は1年間で電池容量の1%程度であり、
現行のリチウム電池の自己放電率とほぼ同程度である。
隣接した正極剤と負極剤との間の距離Lを2倍にすれ
ば、自己放電率は半分になり、殆ど問題にならない。
Here, a lithium battery will be specifically described as an example.
When, for example, a polyethylene oxide-based solid electrolyte film is used as the ion conductive film, it has a high ion conductivity of 1 / 100,000 S / cm. Therefore the thickness is 1
When using an ion conductive film of 00μ, the width dimension
Assuming that the distance L between the positive electrode agent and the negative electrode agent that are 3 cm and adjacent to each other on one surface of the film is 3 mm, the resistance between the adjacent positive electrode agent and the negative electrode agent is 10 MΩ. As for the value, the amount of self-discharge electricity that flows at a voltage of 3 V in one year is 2
It is about 3 mAh. If the battery capacity is several hundred mAh, the self-discharge rate of this level is about 1% of the battery capacity in one year,
It is almost the same as the self-discharge rate of current lithium batteries.
If the distance L between the adjacent positive electrode agent and negative electrode agent is doubled, the self-discharge rate will be halved, which is almost no problem.

上記実施例では、イオン導電性フィルムとして高分子
固体電解質膜を用いたが、イオン導電性フィルムとして
はイオン交換膜、固体電解質をマトリックス中に分散さ
せてフィルム状に成形したもの、多孔質フィルム中に有
機電解質モノマーまたはオリゴマーを含浸・固定したも
の、その他イオン導電性を有する膜を用いることができ
る。特に、ナフィオン(商標)と呼ばれるイー・アイ・
デュポン社製のイオン交換膜のように、フィルムの厚み
方向にのみイオン伝導性を有する異方性のイオン導電性
フィルムを用いると、上記例よりも更に優れた効果が得
られる。
In the above examples, a polymer solid electrolyte membrane was used as the ion conductive film, but as the ion conductive film, an ion exchange membrane, a solid electrolyte dispersed in a matrix and formed into a film, in a porous film. It is possible to use a film obtained by impregnating and fixing an organic electrolyte monomer or oligomer, or other film having ion conductivity. In particular, an e-eye called Nafion (trademark)
When an anisotropic ion conductive film having ion conductivity only in the thickness direction of the film, such as an ion exchange membrane manufactured by DuPont, is used, a more excellent effect than the above example can be obtained.

第2図は本発明の集合電池の異なる実施例の断面図を
示している。本実施例では、各発電要素を積層して積層
型の集合電池を構成している。イオン導電性フィルム10
1の両面には第1図の実施例と同様に5つの発電要素を
形成するように、正極剤120〜124と負極剤130〜134とが
配置されている。本実施例では、イオン導電性フィルム
101の各発電要素を連結する連結部分101A〜101Dを交互
に異なる向きに折返し、イオン導電性フィルム101の同
一面側に位置する隣接する陽極剤(例えば121,123)と
陰極剤(例えば130,132)とを直接接触させて、隣り合
った発電要素を直列接続している。
FIG. 2 shows a sectional view of a different embodiment of the assembled battery of the present invention. In this embodiment, the power generating elements are stacked to form a stacked type assembled battery. Ion conductive film 10
Positive electrode agents 120 to 124 and negative electrode agents 130 to 134 are arranged on both surfaces of 1 so as to form five power generating elements as in the embodiment of FIG. In this example, an ion conductive film
The connecting portions 101A to 101D connecting the respective power generating elements of 101 are alternately folded back in different directions, and the adjacent anodic agent (for example, 121,123) and cathodic agent (for example, 130,132) located on the same surface side of the ion conductive film 101 are connected to each other. Adjacent power generating elements are connected in series by making direct contact.

このようにして積層した積層体を電池容器107内に積
層方向に圧縮した状態で収納して集合電池が完成する。
電池容器107の底壁部は負極剤134と接触しており、電池
容器107が陰極端子を構成している。また電池容器107の
開口部には絶縁パッキング109を介して導電性の蓋板110
が嵌合されており、該蓋板110は正極剤120と接触して正
極端子を構成している。また電池容器107と積層体との
間に形成された空間108内には溶媒が注液されるが、第
1図の実施例の説明と同様に液短絡による自己放電の問
題は生じない。
The stacked body thus stacked is housed in the battery container 107 in a compressed state in the stacking direction to complete the assembled battery.
The bottom wall portion of the battery container 107 is in contact with the negative electrode agent 134, and the battery container 107 constitutes a cathode terminal. Further, a conductive lid plate 110 is provided in the opening of the battery container 107 via an insulating packing 109.
Are fitted, and the lid plate 110 contacts the positive electrode agent 120 to form a positive electrode terminal. Although the solvent is injected into the space 108 formed between the battery container 107 and the laminated body, the problem of self-discharge due to the liquid short circuit does not occur as in the case of the description of the embodiment shown in FIG.

第2図の実施例では、各発電要素を積層して電池のコ
ンパクト化を図っているが、既存の円筒型電池と同様
に、巻回型の電池とすることにより電池のコンパクト化
を図ることもできる。例えば、第1図に示す実施例と同
様にイオン導電性フィルムに所定の間隔をあけて発電要
素を構成し、イオン導電性フィルムの一方の面上に配置
された陽極剤、陰極剤及び導電コネクタの上に絶縁性フ
ィルムを配置して重合体を作り、この重合体を巻回する
ようにしてもよく、巻回の方法は任意である。
In the embodiment shown in FIG. 2, the power generating elements are stacked to reduce the size of the battery. However, similar to the existing cylindrical type battery, a wound type battery can be used to reduce the size of the battery. You can also For example, similarly to the embodiment shown in FIG. 1, an anodic agent, a cathodic agent, and a conductive connector which are arranged on one surface of the ionic conductive film to form a power generating element with a predetermined interval in the ionic conductive film. The insulating film may be placed on the above to make a polymer, and the polymer may be wound, and the winding method is arbitrary.

第3図には、巻回の方法を説明するための一例が示し
てある。この例ではイオン導電性フィルム201の一方の
面上に、正極剤220,負極剤230,正極剤221が交互に配置
されており、正極剤220と負極剤230とが導電コネクタ20
4によって接続され、正極剤221には図示していないが正
極端子が接続されている。また絶縁性フィルム111の上
に負極剤231,正極剤222,負極剤232が交互に配置されて
おり、負極剤231と正極剤222とが図示しない導電コネク
タによって接続され、負極剤232には図示しない負極端
子が接続されている。このように正極剤と負極剤とが配
置されたイオン導電性フィルム201と絶縁性フィルム111
とを、イオン導電性フィルム201を間に介して正極剤と
負極剤とが対向して発電要素を形成するように公知の巻
回型で巻回する。そして巻回したものを円筒型電池容器
内に収納する。電池容器に溶媒を注入しても、第1図の
実施例と同様に液短絡の影響は殆ど無い。第3図に示し
た例のようにして巻回型の集合電池を構成する場合に、
細長いリボン状の絶縁性フィルムとイオン導電性フィル
ムとの上にそれぞれ正極剤と負極剤とを順次配置した連
続体を予め用意しておき、公知の巻回型でこれらを巻回
し、必要な発電要素(セル)の数に応じて連続体を切断
するようにすれば、所望のセル数の集合電池を連続生産
することが可能になる。その結果電池部品の製造条件の
コントロールが容易になる。
FIG. 3 shows an example for explaining the winding method. In this example, the positive electrode agent 220, the negative electrode agent 230, and the positive electrode agent 221 are alternately arranged on one surface of the ion conductive film 201, and the positive electrode agent 220 and the negative electrode agent 230 are electrically conductive connectors 20.
Although not shown, a positive electrode terminal is connected to the positive electrode agent 221. Further, the negative electrode agent 231, the positive electrode agent 222, and the negative electrode agent 232 are alternately arranged on the insulating film 111, and the negative electrode agent 231 and the positive electrode agent 222 are connected by a conductive connector (not shown). Not the negative terminal is connected. In this manner, the ion conductive film 201 and the insulating film 111 in which the positive electrode agent and the negative electrode agent are arranged
Are wound by a known winding type so that the positive electrode agent and the negative electrode agent face each other with the ion conductive film 201 interposed therebetween to form a power generation element. Then, the wound one is housed in a cylindrical battery container. Even if the solvent is injected into the battery container, there is almost no influence of the liquid short circuit as in the embodiment shown in FIG. When a winding type assembled battery is constructed as in the example shown in FIG.
Prepare a continuous body in which a positive electrode agent and a negative electrode agent are sequentially arranged on an elongated ribbon-shaped insulating film and an ion conductive film, respectively, and wind these in a known winding type to generate the required power generation. By cutting the continuous body according to the number of elements (cells), it becomes possible to continuously produce an assembled battery having a desired number of cells. As a result, it becomes easy to control the manufacturing conditions of the battery parts.

[発明の効果] 本発明によれば、集合電池の製造が容易であり、しか
も発電要素間で電解質による短絡や溶媒による液短絡が
実質的に発生しないため、複数の発電要素を一つの電池
容器に収納することが可能となり、電池容器が電池全体
の重量及び体積に占める割合を低減させることができ、
集合電池のエネルギ効率を飛躍的に向上させることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, an assembled battery can be easily manufactured, and a short circuit due to an electrolyte or a liquid short circuit due to a solvent does not substantially occur between the power generating elements. It is possible to store the battery in the battery container, and it is possible to reduce the ratio of the battery container to the weight and volume of the entire battery.
It is possible to dramatically improve the energy efficiency of the assembled battery.

特に複数個の発電要素を電気的に接続する場合に、導
電コネクタを用いることもできるが、導電コネクタを用
いずに、複数個のセル間に位置するイオン導電性フィル
ムの連結部分を交互に異なる向きに折返し、イオン導電
性フィルムの同一面側に位置する隣接する陽極剤と陰極
剤とを直接接触させて各発電要素を直列接続すれば、導
電コネクタが不要になる利点がある。
In particular, when electrically connecting a plurality of power generating elements, a conductive connector can be used, but the connecting portions of the ion conductive films located between the plurality of cells are alternately different without using a conductive connector. If the electric power generating elements are connected in series by folding back in a direction and directly contacting the adjacent anodic agent and cathodic agent located on the same surface side of the ion conductive film, there is an advantage that a conductive connector is not required.

また電池容器への収納態様は、任意であり、積層型ま
たは巻回型とすれば電池の寸法をコンパクトにすること
ができる利点がある。
Further, the storage mode in the battery container is arbitrary, and there is an advantage that the size of the battery can be made compact if it is a laminated type or a wound type.

イオン導電性フィルムとして、アニオンまたはカチオ
ンの一方が固定されたイオン解離基を有するポリマーフ
ィルムを用いると、系の電気的中性を保つために移動可
能なイオン種もイオン導電性フィルム外に移動すること
がなく、集合電池を単一の電池容器に収納してイオン伝
導度を増加させるために可動イオンを溶媒和し得る溶媒
を電池容器内に注入しても、個々の発電要素間の液短絡
はイオン導電性フィルムのフィルム面に沿った方向にだ
けにしか発生せず、それも極めて小さいため、液短絡は
問題となることがない。
When a polymer film having an ionic dissociation group to which either an anion or a cation is fixed is used as the ion conductive film, the ionic species that can be moved to maintain the electrical neutrality of the system also move out of the ion conductive film. Even if the assembled battery is housed in a single battery container and a solvent capable of solvating mobile ions to increase ionic conductivity is injected into the battery container, a liquid short circuit occurs between individual power generating elements. Occurs only in the direction along the film surface of the ion conductive film, and since it is also extremely small, the liquid short circuit does not pose a problem.

またイオン導電性フィルムの厚み方向にのみイオン伝
導性を有する異方性のイオン導電性フィルムを用いる
と、液短絡は全く発生せず、その結果自己放電を完全に
防止できる利点がある。
When an anisotropic ion conductive film having ion conductivity only in the thickness direction of the ion conductive film is used, liquid short circuit does not occur at all, and as a result, self-discharge can be completely prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の集合電池をシート状にした実施例の断
面図、第2図は本発明の集合電池を積層型にした実施例
の断面図、第3図は巻回型の集合電池を製造する場合の
製造概念図、第4図は本発明の電池のメカニズムを説明
するための説明図である。 1,101,201……イオン導電性フィルム、7,107……電池ケ
ース、20〜24,120〜124,220〜222……正極剤、30…34,1
30〜134,230〜232……負極剤,111……絶縁性フィルム。
FIG. 1 is a cross-sectional view of a sheet-shaped embodiment of the assembled battery of the present invention, FIG. 2 is a cross-sectional view of an embodiment of the assembled battery of the present invention in a stack type, and FIG. 3 is a winding-type assembled battery. FIG. 4 is a conceptual diagram for manufacturing the battery, and FIG. 4 is an explanatory view for explaining the mechanism of the battery of the present invention. 1,101,201 …… Ion conductive film, 7,107 …… Battery case, 20〜24,120〜124,220〜222 …… Cathode, 30 ・ ・ ・ 34,1
30〜134,230〜232 …… Anode agent, 111 …… Insulating film.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イオン導電性フィルムの一方の面上に正極
剤と負極剤とが間隔をあけて交互に配置され、他方の面
上には前記一方の面上に配置された前記正極剤または負
極剤と前記イオン導電性フィルムを間に介して異なる極
性の極剤が対向して複数個の発電要素を構成するように
正極剤と負極剤とが間隔をあけて交互に配置され、 前記複数個の発電要素が電気的に直列接続されてなる固
体電解質集合電池。
1. A positive electrode agent and a negative electrode agent are alternately arranged at intervals on one surface of an ion conductive film, and the positive electrode agent or the positive electrode agent is arranged on the other surface on the other surface. The positive electrode agent and the negative electrode agent are alternately arranged at intervals so that the negative electrode agent and the electrode agents of different polarities face each other through the ion conductive film to form a plurality of power generating elements, A solid electrolyte assembled battery in which individual power generating elements are electrically connected in series.
【請求項2】前記複数個の発電要素は道電コネクタによ
って電気的に直列接続されている請求項1に記載の固体
電解質集合電池。
2. The solid electrolyte assembled battery according to claim 1, wherein the plurality of power generating elements are electrically connected in series by a roadway connector.
【請求項3】前記複数個の発電要素が直列接続された集
合電池が絶縁フィルムを重ねて巻回されて電池容器に収
納されてなる請求項2に記載の固体電解質集合電池。
3. The solid electrolyte assembled battery according to claim 2, wherein the assembled battery in which the plurality of power generating elements are connected in series is wrapped with insulating films and wound and housed in a battery container.
【請求項4】前記複数個の発電要素間に位置するイオン
導電性フィルムの連結部分が交互に異なる向きに折返さ
れ、前記イオン導電性フィルムの同一面側に位置する隣
接する前記陽極剤と前記陰極剤とが直接接触させられて
前記複数個の発電要素が電気的に直列接続されている請
求項1に記載の固体電解質集合電池。
4. The connecting parts of the ion conductive films located between the plurality of power generating elements are alternately folded back in different directions, and the adjacent anodic agent located on the same side of the ion conductive film and the adjacent anodic agent. The solid electrolyte assembled battery according to claim 1, wherein the plurality of power generating elements are electrically connected in series by being brought into direct contact with a cathodic agent.
【請求項5】前記イオン導電性フィルムがイオン解離基
を有するポリマーフィルムからなり、イオン解離した状
態でアニオンまたはカチオンの一方がポリマーに固定さ
れており、実質的なイオン伝導が固定されていないイオ
ン種のみによって起こる請求項1,2,3または4に記載の
固体電解質集合電池。
5. An ion in which the ionic conductive film is a polymer film having an ionic dissociative group, and one of an anion and a cation is fixed to the polymer in an ion dissociated state, and substantial ionic conduction is not fixed. The solid electrolyte assembled battery according to claim 1, 2, 3 or 4, which is caused only by seeds.
【請求項6】前記イオン導電性フィルムが、厚み方向に
のみイオン導電性を有する異方性インオン導電性フィル
ムである請求項1,2,3または4に記載の固体電解質集合
電池。
6. The solid electrolyte assembled battery according to claim 1, 2, 3, or 4, wherein the ion conductive film is an anisotropic in-on conductive film having ion conductivity only in the thickness direction.
【請求項7】前記イオン導電性フィルムを間に介して積
層された前記陽極剤と陰極剤とが積層方向に加圧される
ようにして電池容器内に収納され、前記電池容器内にイ
オン種を含まない溶媒が注入されている請求項5または
6に記載の固体電解質集合電池。
7. The anodic agent and the cathodic agent, which are laminated with the ion conductive film interposed therebetween, are housed in a battery container so as to be pressed in the stacking direction, and the ionic species is contained in the battery container. The solid electrolyte assembled battery according to claim 5, wherein a solvent not containing is injected.
【請求項8】前記イオン導電性フィルムがカチオン導電
体であり、前記固定されていないイオン種がリチウムイ
オンであり、前記負極剤がリチウムを含んでいる請求項
5,6または7に記載の固体電解質集合電池。
8. The ion conductive film is a cation conductor, the unfixed ionic species is lithium ions, and the negative electrode agent contains lithium.
5. The solid electrolyte assembled battery described in 5, 6, or 7.
【請求項9】前記イオン導電性フィルムがアニオン導電
体であり、前記固定されていないイオン種が水酸イオン
であり、前記負極剤が水素吸蔵合金を主体とするもので
あるか、または酸化カドミウムであり、前記正極剤が水
酸化ニッケルである請求項5,6または7に記載の固体電
解質集合電池。
9. The ion conductive film is an anion conductor, the unfixed ionic species is a hydroxide ion, and the negative electrode agent is mainly composed of a hydrogen storage alloy, or cadmium oxide. 8. The solid electrolyte assembled battery according to claim 5, 6 or 7, wherein the positive electrode agent is nickel hydroxide.
JP1254230A 1989-09-29 1989-09-29 Solid electrolyte assembled battery Expired - Fee Related JP2522410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254230A JP2522410B2 (en) 1989-09-29 1989-09-29 Solid electrolyte assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254230A JP2522410B2 (en) 1989-09-29 1989-09-29 Solid electrolyte assembled battery

Publications (2)

Publication Number Publication Date
JPH03116661A JPH03116661A (en) 1991-05-17
JP2522410B2 true JP2522410B2 (en) 1996-08-07

Family

ID=17262073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254230A Expired - Fee Related JP2522410B2 (en) 1989-09-29 1989-09-29 Solid electrolyte assembled battery

Country Status (1)

Country Link
JP (1) JP2522410B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800709B1 (en) * 1994-12-17 2001-04-18 Loughborough University Innovations Limited Electrolytic and fuel cell arrangements
JP4054920B2 (en) * 1997-02-13 2008-03-05 株式会社ジーエス・ユアサコーポレーション Solid electrolyte battery
KR100497147B1 (en) * 2000-02-08 2005-06-29 주식회사 엘지화학 Multiply stacked electrochemical cell and method for preparing the same
KR100515572B1 (en) * 2000-02-08 2005-09-20 주식회사 엘지화학 Stacked electrochemical cell and method for preparing the same
JP4967265B2 (en) * 2005-07-13 2012-07-04 大日本印刷株式会社 Non-aqueous electrolyte storage element electrode structure, method for producing the electrode structure, and non-aqueous electrolyte storage element
JP5104066B2 (en) * 2007-06-29 2012-12-19 住友電気工業株式会社 battery
JP5685148B2 (en) * 2011-06-03 2015-03-18 旭化成株式会社 Bipolar battery
US9343781B2 (en) * 2013-10-29 2016-05-17 Palo Alto Research Center Incorporated Adaptive current-collector electrochemical system
WO2016113863A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US10680273B2 (en) * 2017-07-14 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Battery
JP7411331B2 (en) 2019-01-11 2024-01-11 日立造船株式会社 All-solid-state batteries and methods of manufacturing all-solid-state batteries
JP7061588B2 (en) * 2019-04-24 2022-04-28 本田技研工業株式会社 Manufacturing method of all-solid-state battery and all-solid-state battery

Also Published As

Publication number Publication date
JPH03116661A (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US3844841A (en) Modular battery construction
US20130101878A1 (en) Battery comprising cuboid cells which contain a bipolar electrode
US9048028B2 (en) Hybrid electrochemical cell systems and methods
US3353999A (en) Conductive film battery
JP2522410B2 (en) Solid electrolyte assembled battery
JPH11238528A (en) Lithium secondary battery
KR19990067043A (en) Electrochemical cell with symmetrical inorganic electrode
JP2698340B2 (en) Electrochemical battery
ES2009213A6 (en) Storage battery.
US3607403A (en) Self-charging battery incorporating a solid-gas battery and storage battery within a honeycomb matrix
US4057675A (en) Electrochemical cell
US3447968A (en) Electrical energy storage device and method of storing electrical energy
US3625764A (en) Electrode for electric storage batteries containing zinc halide in aqueous solution, of the type having a soluble cathode and a dissolved anode
JP6286632B2 (en) Bipolar battery
US5116695A (en) Deferred actuated battery assembly system
US11393640B2 (en) Water based hybrid lithium ion capacitor battery having a water-in-salt electrolyte
JP3510582B2 (en) 3D battery
US3317349A (en) Ambipolar battery including electrodes of identical nickelous composition
KR20210039568A (en) Lithium air battery package
JPH11224699A (en) Energy storage element
US2640863A (en) Deferred action type battery
KR20140137393A (en) Electrochemical energy storage device or energy conversion device comprising a galvanic cell having electrochemical half-cells containing a suspension of fullerene and ionic liquid
JPH0963630A (en) Electricity accumulating element, and electricity accumulator, and manufacture of electricity accumulating element
KR101894385B1 (en) Manufacturing Method of Anode for Secondary Battery and Anode for Secondary Battery Manufactured thereby
US5654113A (en) Protonated cathode battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees