JP2522237Y2 - Brake fluid pressure control valve - Google Patents

Brake fluid pressure control valve

Info

Publication number
JP2522237Y2
JP2522237Y2 JP1989122191U JP12219189U JP2522237Y2 JP 2522237 Y2 JP2522237 Y2 JP 2522237Y2 JP 1989122191 U JP1989122191 U JP 1989122191U JP 12219189 U JP12219189 U JP 12219189U JP 2522237 Y2 JP2522237 Y2 JP 2522237Y2
Authority
JP
Japan
Prior art keywords
piston
pressure
chamber
hydraulic pressure
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989122191U
Other languages
Japanese (ja)
Other versions
JPH0361465U (en
Inventor
靖 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc filed Critical Nisshinbo Industries Inc
Priority to JP1989122191U priority Critical patent/JP2522237Y2/en
Publication of JPH0361465U publication Critical patent/JPH0361465U/ja
Application granted granted Critical
Publication of JP2522237Y2 publication Critical patent/JP2522237Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は自動車等に使用するブレーキ液圧制御弁に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a brake fluid pressure control valve used for an automobile or the like.

<従来の技術> 従来のブレーキ液圧制御弁としては、例えば特開昭49
−21563号公報に開示されているものが知られている。
<Conventional technology> As a conventional brake fluid pressure control valve, for example,
What is disclosed in -21563 is known.

第4図を基に従来のブレーキ液圧制御弁について説明
すると、ハウジングA内に嵌挿した第1ピストンBで液
圧発生源に連通する流入室Cとブレーキシリンダに連通
する流出室Dとを区画している。
Referring to FIG. 4, a conventional brake hydraulic pressure control valve will be described. An inflow chamber C communicating with a hydraulic pressure generation source and an outflow chamber D communicating with a brake cylinder are formed by a first piston B fitted in a housing A. It is partitioned.

前記第1ピストンB内には異径受圧部を有する第2ピ
ストンEが嵌挿されている。
A second piston E having a different-diameter pressure receiving portion is fitted into the first piston B.

さらに第2ピストンEの大径受圧部側には、第1ピス
トンBに固定したストッパーFと第2ピストンEに固定
した弁座GとワッシャーHとポペット弁J及びスプリン
グKとで構成するポペット弁機構が形成されている。
Further, a poppet valve comprising a stopper F fixed to the first piston B, a valve seat G fixed to the second piston E, a washer H, a poppet valve J and a spring K is provided on the large-diameter pressure receiving portion side of the second piston E. A mechanism is formed.

また、第1スプリングPは第1ピストンBのフランジ
部と第2ピストンEとの間に縮設され、第2スプリング
Lは第1ピストンBに係止したワッシャーMとハウジン
グAに固定されたキャップNとの間に縮設されている。
The first spring P is contracted between the flange portion of the first piston B and the second piston E, and the second spring L is a washer M locked to the first piston B and a cap fixed to the housing A. N.

そして、流入室Cの液圧が上昇して第2ピストンEの
大径及び小径受圧部に作用する作用力が第1スプリング
Pのばね力に打ち勝つ第1の所定圧に達すると、第2ピ
ストンEは図中の左方に移動して弁座Gがポペット弁J
に着座し流入室Cから流出室Dへの流路を一時閉鎖す
る。
When the hydraulic pressure in the inflow chamber C rises and the acting force acting on the large-diameter and small-diameter pressure receiving portions of the second piston E reaches a first predetermined pressure that overcomes the spring force of the first spring P, the second piston E E moves to the left in the figure and the valve seat G becomes the poppet valve J
To temporarily close the flow path from the inflow chamber C to the outflow chamber D.

流入室Cの液圧が更に上昇すると、前記作用力が逆転
して第2ピストンEは図中の右方へわずかに移動して液
圧が流出室Dへ給送される。
When the fluid pressure in the inflow chamber C further rises, the acting force is reversed, and the second piston E slightly moves rightward in the drawing, and the fluid pressure is fed to the outflow chamber D.

このような動作の繰り返しにより流出室Dの液圧は流
入室Cの液圧上昇に対して一定の割合で減圧される。
By repeating such an operation, the hydraulic pressure in the outflow chamber D is reduced at a fixed rate with respect to the increase in the hydraulic pressure in the inflow chamber C.

更に流入室Cの液圧が上昇し、第1ピストンBに作用
する液圧作用力が第2スプリングLのばね力に打ち勝つ
第2の所定圧に達すると、第1ピストンBは図中の右方
へ移動してポペット弁Jを閉鎖し続け、流出室Dを圧縮
しながら液圧を再昇圧させるものである。
Further, when the hydraulic pressure in the inflow chamber C rises and the hydraulic pressure acting on the first piston B reaches a second predetermined pressure that overcomes the spring force of the second spring L, the first piston B moves to the right in FIG. Then, the poppet valve J continues to be closed, and the hydraulic pressure is increased again while compressing the outflow chamber D.

<本考案が解決しようとする問題点> 従来のブレーキ液圧制御弁においては次のような問題
点がある。
<Problems to be solved by the present invention> The conventional brake fluid pressure control valve has the following problems.

<イ>第1ピストンBに第1及び第2スプリングP,Lの
両荷重が作用するので、第2の所定圧のバラツキが大き
くなる。
<A> Since both loads of the first and second springs P and L act on the first piston B, the variation of the second predetermined pressure increases.

<ロ>第1スプリングPを収容する室が密封されている
ため第1及び第2ピストンB,Eの作動時に内部空気の圧
縮抵抗及び負圧抵抗が生じ、第1及び第2の所定圧のバ
ラツキが大きくなる。
<B> Since the chamber accommodating the first spring P is sealed, a compression resistance and a negative pressure resistance of the internal air are generated when the first and second pistons B and E operate, and the first and second predetermined pressures are reduced. Variation increases.

<ハ>上記したように液圧特性を決定する第1及び第2
の所定圧の変動が大きいため、車両の理想液圧配分に近
似させることが困難である。
<C> First and second liquid pressure characteristics are determined as described above.
Is large, it is difficult to approximate to the ideal hydraulic pressure distribution of the vehicle.

<本考案の目的> 本考案は以上の問題点を解決するために成されたもの
でその目的とするところは、ブレーキシリンダ液圧を理
想液圧配分にできるだけ近似させることができる、ブレ
ーキ液圧制御弁を提供することにある。
<Object of the present invention> The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a brake hydraulic pressure which can approximate a brake cylinder hydraulic pressure to an ideal hydraulic pressure distribution as much as possible. It is to provide a control valve.

<実施例> 本考案の構成を第1図により説明する。<Embodiment> The configuration of the present invention will be described with reference to FIG.

1は有底の段付穴1aを有するハウジングであり、側部
に形成した接続口1bを介して液圧発生源(図示せず)に
連通する中径の流入室1cと、開口部に装着したキャップ
2の接続口2aを介してブレーキシリンダ(図示せず)に
連通する大径の流出室1dとを有する。
Reference numeral 1 denotes a housing having a bottomed stepped hole 1a. The housing 1 has a medium-diameter inflow chamber 1c communicating with a hydraulic pressure source (not shown) through a connection port 1b formed in a side portion, and is mounted on an opening. And a large-diameter outflow chamber 1d that communicates with a brake cylinder (not shown) through a connection port 2a of the cap 2 described above.

また、段付穴1aは底部側へ向けて段階的に縮径して形
成され、その底面に大気と連通する通気路1eが穿設して
ある。
The stepped hole 1a is formed so as to gradually decrease in diameter toward the bottom side, and a ventilation path 1e communicating with the atmosphere is formed in the bottom surface.

3は前記段付穴1aの大径部に摺動自在に嵌挿した筒状
の第1ピストンで、内周に弁座4を付設すると共に外周
の溝にシール部材5を付設して流入室1cと流出室1dを画
成している。
Reference numeral 3 denotes a cylindrical first piston slidably fitted in the large-diameter portion of the stepped hole 1a. A valve seat 4 is provided on the inner periphery, and a seal member 5 is provided on a groove on the outer periphery. 1c and outflow chamber 1d are defined.

6は前記第1ピストン3を貫通する棒状の第2ピスト
ンで、流出室1d側に位置する大径の弁頭6aと流入室1c側
に位置する小径の受圧軸部6bとより成る。
Reference numeral 6 denotes a rod-shaped second piston that penetrates the first piston 3, and includes a large-diameter valve head 6a located on the outflow chamber 1d side and a small-diameter pressure receiving shaft portion 6b located on the inflow chamber 1c side.

小径の受圧軸部6bの終端部は、通気路1eに連通する小
径の段付穴1aの底部にシール部材7を介して嵌挿してあ
る。
The terminal end of the small-diameter pressure receiving shaft portion 6b is inserted through the seal member 7 into the bottom of the small-diameter stepped hole 1a communicating with the air passage 1e.

8は前記弁座4と弁頭6aとより成る弁機構で、第1お
よび第2ピストン3、6の相対移動により両室1c、1d間
の流路を開閉する。
Reference numeral 8 denotes a valve mechanism including the valve seat 4 and the valve head 6a, and opens and closes a flow path between the two chambers 1c and 1d by the relative movement of the first and second pistons 3 and 6.

9は第1ピストン3を流入室1c側へ付勢する第1スプ
リングで、流出室1d内の第1ピストン3とキャップ2と
の間に縮設してある。
Reference numeral 9 denotes a first spring for urging the first piston 3 toward the inflow chamber 1c, which is contracted between the first piston 3 and the cap 2 in the outflow chamber 1d.

第1ピストン3は段付穴1aの段付部に係止して後退位
置が一定に規制されている。
The first piston 3 is locked in the stepped portion of the stepped hole 1a, and the retreat position is regulated to be constant.

11は流入室1c内で第2ピストン6を流出室1d側へ付勢
する第2スプリングで、段付穴1aの内壁に当接するワッ
シャー10と第2ピストン6との間に縮設してある。
Reference numeral 11 denotes a second spring which urges the second piston 6 toward the outflow chamber 1d in the inflow chamber 1c, and is contracted between the washer 10 contacting the inner wall of the stepped hole 1a and the second piston 6. .

第2ピストン6を流出室1d側へ付勢する第2スプリン
グ11のばね力で以て、弁機構8の開弁状態を維持する。
The valve mechanism 8 is kept open by the spring force of the second spring 11 that urges the second piston 6 toward the outflow chamber 1d.

尚、上記構成はこれに限らず、例えば弁機構8を構成
する弁座4を第2ピストン6側に装着したり、流入室1c
と流出室1dを同径に形成すると共に第1ピストン3の後
退位置を止め輪で規制するようにしたり、或は延長した
第2ピストン6の小径の受圧軸部6dをハウジング1の底
部に貫通して外部に突出させてもよい。
The configuration is not limited to this. For example, the valve seat 4 constituting the valve mechanism 8 may be mounted on the second piston 6 side, or the inflow chamber 1c
And the outflow chamber 1d are formed to have the same diameter and the retreat position of the first piston 3 is restricted by a retaining ring, or the small-diameter pressure receiving shaft portion 6d of the extended second piston 6 penetrates through the bottom of the housing 1. And may be projected outside.

<作用> 次に第1、2図を基に前記ブレーキ液圧制御弁の作用
について説明する。尚、第2図は液圧特性線図で、横軸
に流入室液圧、縦軸に流出室液圧がとってある。
<Operation> Next, the operation of the brake fluid pressure control valve will be described with reference to FIGS. FIG. 2 is a hydraulic pressure characteristic diagram, in which the horizontal axis indicates the inflow chamber hydraulic pressure and the vertical axis indicates the outflow chamber hydraulic pressure.

<イ>液圧の比例上昇 弁機構8は第1の所定圧に達するまで開弁状態であ
る。
<A> Proportional rise in hydraulic pressure The valve mechanism 8 is in the valve-open state until it reaches the first predetermined pressure.

そのため、マスターシリンダ等の液圧発生源から供給
された液圧は、流入室1cから弁機構8を経て流出室1dに
至る。
Therefore, the hydraulic pressure supplied from a hydraulic pressure generation source such as a master cylinder reaches the outflow chamber 1d from the inflow chamber 1c via the valve mechanism 8.

従って、弁機構8が第1の所定圧に達するまで流出室
1dの液圧は流入室1cの液圧と同圧で比例上昇していく。
Therefore, the outflow chamber is maintained until the valve mechanism 8 reaches the first predetermined pressure.
The hydraulic pressure of 1d increases proportionally with the hydraulic pressure of the inflow chamber 1c.

このときの液圧特性は第2図の直線O〜Xとなる。 The hydraulic characteristics at this time are represented by straight lines O to X in FIG.

<ロ>液圧の緩上昇 流入室1cの液圧上昇が続き、小径の受圧軸部6bに作用
する液圧作用力が第2スプリング11の付勢力に打ち勝つ
第1の所定圧に達すると、第2ピストン6は図中の左方
へ移動し、弁頭6aが弁座4に着座して弁機構8を一時的
に閉弁状態にする。
<B> Slow rise in hydraulic pressure When the hydraulic pressure in the inflow chamber 1c continues to rise and the hydraulic pressure acting on the small-diameter pressure receiving shaft portion 6b reaches a first predetermined pressure that overcomes the urging force of the second spring 11, The second piston 6 moves to the left in the figure, and the valve head 6a is seated on the valve seat 4 to temporarily close the valve mechanism 8.

更に流入室1cの液圧が上昇すると、弁頭6aの方が小径
の受圧軸部6bの受圧面積より大きいので、両者6a、6bに
液圧の作用力差が生じる。
Further, when the hydraulic pressure in the inflow chamber 1c rises, the valve head 6a is larger than the pressure receiving area of the small-diameter pressure receiving shaft portion 6b, so that there is a difference in the hydraulic pressure acting force between the two 6a and 6b.

その結果、第2ピストン6が図中の右方へ移動して弁
機構8を開弁状態にし、流入室1cと流出室1dとが連通す
る。
As a result, the second piston 6 moves to the right in the drawing to open the valve mechanism 8, and the inflow chamber 1c and the outflow chamber 1d communicate.

このような弁機構8の開閉動作の繰り返しにより、流
出室1dの液圧は流入室1cの上昇に対し一定割合で減圧さ
れる。
By repeating the opening and closing operations of the valve mechanism 8, the fluid pressure in the outflow chamber 1d is reduced at a fixed rate with respect to the rise in the inflow chamber 1c.

この流出室1dの減圧現象は流入室1cの液圧が第2の所
定圧に達するまで続く。
This decompression phenomenon in the outflow chamber 1d continues until the hydraulic pressure in the inflow chamber 1c reaches the second predetermined pressure.

このときの液圧特性は第2図の直線O〜Xより勾配の
緩やかな直線X〜Yとなる。
The hydraulic characteristics at this time are straight lines X to Y having a gentler gradient than the straight lines O to X in FIG.

尚、前記弁頭6aと小径の受圧軸部6bの受圧面積比を変
えることにより適宜減圧勾配を設定できる。
The pressure reduction gradient can be appropriately set by changing the pressure receiving area ratio between the valve head 6a and the small diameter pressure receiving shaft 6b.

<ハ>液圧の再上昇 引き続き流入室1cの液圧が上昇し、第1ピストン3に
作用する液圧作用力が第1スプリング9の付勢力に打ち
勝つ第2の所定圧に達すると、第1ピストン3は弁座4
と一体に図中の右方へ移動し、弁機構8を閉弁状態にし
て第2図のYの折点を得る。
<C> Re-rise of hydraulic pressure When the hydraulic pressure of the inflow chamber 1c continuously increases and the hydraulic pressure acting on the first piston 3 reaches a second predetermined pressure that overcomes the urging force of the first spring 9, 1 piston 3 is valve seat 4
Then, the valve mechanism 8 is moved to the right side in the figure and the valve mechanism 8 is closed to obtain a turning point of Y in FIG.

そして弁機構8を閉じたまま更に第1ピストン3が右
方へ移動すると流出室1dの体積を縮小するので流出室1d
の液圧は一定の割合で再上昇する。
When the first piston 3 further moves rightward with the valve mechanism 8 closed, the volume of the outflow chamber 1d is reduced, so that the outflow chamber 1d is reduced.
Hydraulic pressure rises again at a constant rate.

このときの液圧特性は第2図の直線Y〜Zとなる。 The hydraulic characteristics at this time are represented by straight lines Y to Z in FIG.

<変形例> つぎに第3図に示す変形例について説明する。<Modification> Next, a modification shown in FIG. 3 will be described.

尚、前記の実施例と同様の部品は100の位の数字を付
してその説明を省略する。
Note that parts similar to those in the above-described embodiment are numbered in hundreds and their description is omitted.

第3図に示す変形例は第1図の第1スプリング9を廃
止する代わりに第1ピストン103を異径の液圧受圧部を
有する形状と成し、ブレーキ不作動時には液圧発生源の
残圧を利用して第1ピストン103を流入室101c側へ付勢
するように構成したものである。
In the modification shown in FIG. 3, instead of abolishing the first spring 9 of FIG. 1, the first piston 103 has a shape having a hydraulic pressure receiving portion having a different diameter. The first piston 103 is urged toward the inflow chamber 101c using pressure.

即ち、流入室101c側に小径部103aを、流出室101d側に
大径部103bを形成した第1ピストン103をハウジング101
の段付穴101aに嵌挿したものである。
That is, the first piston 103 having the small diameter portion 103a formed on the inflow chamber 101c side and the large diameter portion 103b formed on the outflow chamber 101d side is connected to the housing 101.
Is inserted into the stepped hole 101a.

液圧特性としては、第2の所定圧である第2図の折点
Y以降異径の第1ピストン103が流出室101dの体積を縮
小するので、流出室101dの液圧は例えば第2図の破線で
示す直線Y〜Wが得られる。
As for the hydraulic characteristics, the first piston 103 having a different diameter after the break point Y in FIG. 2 which is the second predetermined pressure reduces the volume of the outflow chamber 101d. The straight lines Y to W indicated by broken lines are obtained.

尚、前記第1ピストン103の小径部103aと大径部103b
の異径比を変えることにより、折点Y以降の減圧勾配を
適宜設定できる。
The first piston 103 has a small diameter portion 103a and a large diameter portion 103b.
By changing the different diameter ratio, the decompression gradient after the turning point Y can be appropriately set.

<本考案の効果> <イ>第2ピストンに作用力を与えるためのスプリング
荷重が第1ピストンに作用しないので第2の所定圧の変
動が少ない。
<Effect of the present invention><A> Since the spring load for applying the acting force to the second piston does not act on the first piston, the second predetermined pressure fluctuates little.

<ロ>密閉された空気室がないので第1及び第2図の所
定圧の変動が少ない 上記<イ>、<ロ>により液圧特性を決定する第1及
び第2図の所定圧の変動を抑えて、理想液圧配分に近似
させることができる。
<B> Fluctuations in the predetermined pressure in FIGS. 1 and 2 are small because there is no closed air chamber. Fluctuations in the predetermined pressure in FIGS. 1 and 2 that determine the hydraulic characteristics according to <a> and <b> above. And it can be approximated to the ideal hydraulic pressure distribution.

そのため、車輪の早期ロックを防止する効果が著しく
向上し、ブレーキの効きを有効に働かせることができ
る。
Therefore, the effect of preventing early locking of the wheels is significantly improved, and the braking effect can be effectively exerted.

<ハ>第1ピストンを第1スプリングで付勢する場合
は、シール箇所が少ないので液漏れの発生する危険性が
きわめて低い。
<C> When the first piston is urged by the first spring, the risk of liquid leakage is extremely low because the number of seal locations is small.

【図面の簡単な説明】[Brief description of the drawings]

第1図:本考案に係るブレーキ液圧制御弁の断面図 第2図:液圧特性線図 第3図:変形例の断面図 第4図:従来のブレーキ液圧制御弁の断面図 FIG. 1 is a cross-sectional view of a brake hydraulic pressure control valve according to the present invention. FIG. 2 is a cross-sectional view of a hydraulic pressure characteristic valve. FIG. 3 is a cross-sectional view of a modified example.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】ハウジング内に摺動自在に収容し、液圧発
生源に連通する流入室とブレーキシリンダに連通する流
出室とに画成し、この両室の液圧が作用する第1ピスト
ンと、 前記第1ピストンを貫通し流入室側に小径の受圧部を有
すると共に、流出室側に弁座と弁頭からなる大径の受圧
弁機構を第1ピストンとの間に形成する第2ピストン
と、 流出室内に縮設し前記第1ピストンを流入室側へ付勢す
る第1スプリングと、 流入室内のハウジング底部と第2ピストンとの間に縮設
し前記第2ピストンを流出室側へ付勢する第2スプリン
グとからなり、 前記流入室の液圧が第1の所定圧に達すると、前記弁機
構が開閉動作を繰り返して流出室の液圧を一定割合で減
圧し、更に流入室の液圧が第2の所定圧に達すると弁機
構を閉弁状態に維持して流出室の液圧を一定の割合で再
上昇させるよう構成した、 ブレーキ液圧制御弁。
A first piston slidably housed in a housing and defined as an inflow chamber communicating with a hydraulic pressure generating source and an outflow chamber communicating with a brake cylinder, and the hydraulic pressure of both chambers acts thereon. A second pressure-receiving valve mechanism having a small-diameter pressure receiving portion penetrating the first piston on the inflow chamber side and having a large-diameter pressure receiving valve mechanism including a valve seat and a valve head on the outflow chamber side; A piston, a first spring contracted in the outflow chamber to bias the first piston toward the inflow chamber, and a first spring contracted between the housing bottom in the inflow chamber and the second piston to move the second piston toward the outflow chamber. When the fluid pressure in the inflow chamber reaches a first predetermined pressure, the valve mechanism repeats the opening and closing operations to reduce the fluid pressure in the outflow chamber at a fixed rate, and further inflows. When the fluid pressure in the chamber reaches the second predetermined pressure, the valve mechanism is maintained in a closed state. A brake fluid pressure control valve configured to increase the fluid pressure in the outflow chamber at a constant rate.
【請求項2】ハウジングの段付穴に摺動自在に収容し、
液圧発生源に連通する小径の流入室とブレーキシリンダ
に連通する大径の流出室とに画成し、この両室の液圧が
作用する異径の第1ピストンと、 前記第1ピストンを貫通し流入室側に小径の受圧部を有
すると共に、流出室側に弁座と弁頭からなる大径の受圧
弁機構を第1ピストンとの間に形成する第2ピストン
と、 流入室内のハウジングの底部と第2ピストンとの間に縮
設し前記第2ピストンを流出室側へ付勢する第2スプリ
ングとからなり、 前記流入室の液圧が第1の所定圧に達すると、前記弁機
構が開閉動作を繰り返して流出室の液圧を一定割合で減
圧し、更に流入室の液圧が第2の所定圧に達すると弁機
構を閉弁状態に維持して流出室の液圧を一定の割合で再
上昇させるように構成した、 ブレーキ液圧制御弁。
2. A housing which is slidably housed in a stepped hole of a housing,
A small-diameter inflow chamber communicating with the hydraulic pressure generation source and a large-diameter outflow chamber communicating with the brake cylinder, and a first piston having a different diameter on which the hydraulic pressure of both chambers acts; A second piston having a small-diameter pressure receiving portion penetrating therethrough on the inflow chamber side and forming a large-diameter pressure receiving valve mechanism including a valve seat and a valve head on the outflow chamber side between the first piston; and a housing in the inflow chamber. A second spring that is contracted between the bottom of the second piston and the second piston and urges the second piston toward the outflow chamber. When the hydraulic pressure in the inflow chamber reaches a first predetermined pressure, the valve The mechanism repeats the opening and closing operations to reduce the hydraulic pressure in the outflow chamber at a fixed rate, and further, when the hydraulic pressure in the inflow chamber reaches the second predetermined pressure, maintains the valve mechanism in a closed state to reduce the hydraulic pressure in the outflow chamber. A brake fluid pressure control valve configured to re-raise at a constant rate.
JP1989122191U 1989-10-20 1989-10-20 Brake fluid pressure control valve Expired - Lifetime JP2522237Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989122191U JP2522237Y2 (en) 1989-10-20 1989-10-20 Brake fluid pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989122191U JP2522237Y2 (en) 1989-10-20 1989-10-20 Brake fluid pressure control valve

Publications (2)

Publication Number Publication Date
JPH0361465U JPH0361465U (en) 1991-06-17
JP2522237Y2 true JP2522237Y2 (en) 1997-01-08

Family

ID=31670204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989122191U Expired - Lifetime JP2522237Y2 (en) 1989-10-20 1989-10-20 Brake fluid pressure control valve

Country Status (1)

Country Link
JP (1) JP2522237Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127269U (en) * 1984-02-06 1985-08-27 トヨタ自動車株式会社 Brake hydraulic pressure control valve

Also Published As

Publication number Publication date
JPH0361465U (en) 1991-06-17

Similar Documents

Publication Publication Date Title
JPS5926507B2 (en) Tandem master cylinder with hydraulic control valve
EP0353506B1 (en) Hydraulic braking system for an automotive vehicle
US3736031A (en) Hydraulic brake fluid pressure proportioning valve
JP2522237Y2 (en) Brake fluid pressure control valve
JPS6111827B2 (en)
JPH0535900Y2 (en)
US3671080A (en) Device for regulating the pressure between front and rear brake cylinders
JP3903579B2 (en) Hydraulic brake device for vehicles
JP2543444Y2 (en) Pilot operated check valve
JPH08216853A (en) Reservoir structure
JPS5912498B2 (en) Deceleration sensing type brake hydraulic control device
JPH077236Y2 (en) Proportioning valve
JPS583851B2 (en) Tandem master cylinder with hydraulic control valve
JP2642444B2 (en) Master cylinder
JPS5928934Y2 (en) Brake hydraulic pressure control valve
JPS6329643Y2 (en)
JPH067017Y2 (en) Master cylinder
JPH0211246Y2 (en)
JP2745113B2 (en) Hydraulic pressure control valve
JPH07137621A (en) Hydraulic pressure control valve
JPS598927Y2 (en) hydraulic control device
JPH061498Y2 (en) Master cylinder
JP3159812B2 (en) Pneumatic booster
JPH0336456Y2 (en)
JP2519375Y2 (en) Master cylinder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100502

LAPS Cancellation because of no payment of annual fees