JP2521556B2 - Optical beam heating machine - Google Patents

Optical beam heating machine

Info

Publication number
JP2521556B2
JP2521556B2 JP2097755A JP9775590A JP2521556B2 JP 2521556 B2 JP2521556 B2 JP 2521556B2 JP 2097755 A JP2097755 A JP 2097755A JP 9775590 A JP9775590 A JP 9775590A JP 2521556 B2 JP2521556 B2 JP 2521556B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
light receiving
bundle
emitting lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2097755A
Other languages
Japanese (ja)
Other versions
JPH03297589A (en
Inventor
誠 小林
保 池田
彰一 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2097755A priority Critical patent/JP2521556B2/en
Publication of JPH03297589A publication Critical patent/JPH03297589A/en
Application granted granted Critical
Publication of JP2521556B2 publication Critical patent/JP2521556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1464Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体・電子部品・電子機器分野でのはん
だ付や樹脂ケースの封止などの樹脂加工などに利用され
る光ビーム加熱機に関する。
Description: TECHNICAL FIELD The present invention relates to a light beam heating machine used for resin processing such as soldering and sealing of a resin case in the fields of semiconductors, electronic components, and electronic devices. .

(従来の技術) 従来、キセノンランプ等の発光ランプからの光を楕円
鏡を用いて一点に集光し、この集光点に被加熱物を設置
してはんだ付などの加熱加工を行っている。
(Prior Art) Conventionally, light from a light-emitting lamp such as a xenon lamp is focused at one point by using an elliptical mirror, and an object to be heated is installed at this focusing point to perform heating processing such as soldering. .

また、前記集光部にバンドル光ファイバーの受光部を
設置し、該バンドル光ファイバーの出射端に集光レンズ
を設け、該集光レンズの集光点で加熱加工することによ
り、該バンドル光ファイバーで光エネルギーを導くこと
により自由な位置に、自由な姿勢で加熱できるようにし
てその利用範囲を広げていた。
In addition, a light receiving unit of the bundle optical fiber is installed in the light collecting unit, a light collecting lens is provided at an emitting end of the bundle optical fiber, and heat processing is performed at a light collecting point of the light collecting lens to generate light energy in the bundle optical fiber. It was possible to heat at any desired position by guiding the, so that the range of its use was expanded.

第4図は光ビーム加熱機の原理図であり、1は発光ラ
ンプ、2は楕円鏡、3は楕円鏡の第1焦点であり発光ラ
ンプの発光アークの最高輝点部とほぼ一致させてある。
4は楕円鏡の第2焦点であり、被加熱物を位置させるか
或は第4図の如くバンドル光ファイバー5の受光端6を
設置し、バンドル光ファイバー5の出射端には集光レン
ズ7が設けられており、集光レンズ7で集光された焦点
8に被加熱物を置いて加熱加工を行えるようになってい
る。
FIG. 4 is a principle view of the light beam heating machine, in which 1 is a light emitting lamp, 2 is an elliptic mirror, and 3 is a first focal point of the elliptic mirror, which is substantially aligned with the highest bright spot of the light emitting arc of the light emitting lamp. .
Reference numeral 4 is the second focal point of the elliptical mirror, and the object to be heated is positioned or the light receiving end 6 of the bundle optical fiber 5 is installed as shown in FIG. 4, and the condenser lens 7 is provided at the output end of the bundle optical fiber 5. The object to be heated is placed on the focal point 8 condensed by the condenser lens 7 to perform the heating process.

(発明が解決しようとする課題) 従来の発光ランプの光エネルギーは該発光ランプ内に
設けられた陰極と陽極間のアーク放電時に放射されるも
のを利用しており、経時的にあるいはアークのON−OFF
のたびに陰極と陽極との間に生じるアークの発生位置が
電極に対し少しずつ変っており、全く同一点でアークを
保持することが極めて困難であり、この結果発光ランプ
の発光点が前記楕円鏡の第1焦点からずれることにな
り、第2焦点部に集光される光のエネルギーの最も高い
点がこれに従って第2焦点からずれると共に、集光度合
も集中性の悪いものとなる。
(Problems to be solved by the invention) The light energy of a conventional light-emitting lamp utilizes what is radiated at the time of arc discharge between a cathode and an anode provided in the light-emitting lamp. -OFF
The arc generation position between the cathode and the anode changes little by little with respect to the electrode, and it is extremely difficult to hold the arc at exactly the same point. Since the point deviates from the first focal point of the mirror, the point at which the energy of the light focused on the second focal point is highest deviates from the second focal point, and the degree of condensing also becomes poor.

さらに、発光ランプから放射される光エネルギーも、
長期の使用による電極の消耗やランプのガラスの曇りな
どにより徐々に低下してくる。
In addition, the light energy emitted from the light-emitting lamp
It gradually decreases due to wear of the electrode due to long-term use and fogging of the lamp glass.

従来は、このような変化に対して、人の手によってそ
れぞれランプ位置を再調整し、ランプへの入力電流を再
設定することにより光エネルギー出力が一定にかつ、第
2焦点部に集中するようにしていた。
Conventionally, the lamp position is manually readjusted by such a change and the input current to the lamp is reset by such a change so that the light energy output is kept constant and concentrated on the second focal portion. I was doing.

上記の従来例では常に人手による再調整が必要なた
め、加熱の自動化・無人化ができなかったので、本発明
ではこれを常に一定に光エネルギー出力が第2焦点部に
集中するよう自動的に制御し、自動化・無人化が容易に
できる加熱源を提供しようとするものである。
In the above-mentioned conventional example, since the readjustment by hand is always required, the heating cannot be automated and unmanned. Therefore, in the present invention, this is automatically adjusted so that the light energy output is always concentrated at the second focal point. It aims to provide a heating source that can be controlled and easily automated and unmanned.

(課題を解決するための手段) 本発明では数十本から数百本の細い光ファイバー素線
をたばねてなるバンドル光ファイバーの受光部を前記の
楕円鏡の第2焦点部に設置し、この光ファイバー素線の
うち少なくとも2本以上を光出力検出用として用い、こ
の検出された光を電気信号に変換する受光素子をそれぞ
れの光検出用ファイバーに対応して設け、さらに前記信
号間の差を取り出す比較部を設け、この比較部から出力
される差信号に応じてこの差信号を小さくする方向に発
光ランプと楕円鏡の相対位置を調整する焦点位置調整手
段を設けた。
(Means for Solving the Problem) In the present invention, the light receiving portion of a bundle optical fiber formed by springing dozens to hundreds of thin optical fiber strands is installed at the second focal portion of the elliptic mirror, and At least two of the lines are used for optical output detection, and a light receiving element for converting the detected light into an electric signal is provided corresponding to each optical detection fiber, and the difference between the signals is extracted. And a focus position adjusting means for adjusting the relative position of the light emitting lamp and the elliptic mirror in the direction of reducing the difference signal output from the comparison unit.

また、光検出用ファイバーは前記バンドル光ファイバ
ーの受光端において、外周部にバンドルファイバーの中
心に対して対称的に配置し、この光検出用ファイバーの
配置位置に対応した発光ランプと楕円鏡との相対位置調
整機構を設けた。
Further, the light detection fiber is arranged symmetrically with respect to the center of the bundle fiber in the outer peripheral portion at the light receiving end of the bundle optical fiber, and the relative position between the light emitting lamp and the elliptical mirror corresponding to the arrangement position of the light detection fiber. A position adjustment mechanism was provided.

さらに、焦点位置調整手段は、比較部からの出力信号
を受け取り相対位置調整機構を駆動するための出力を出
す制御部と前記の相対位置調整機構とからなり、相対位
置調整機構は楕円鏡を前記のバンドル光ファイバー受光
部に対して固定して、発光ランプ位置を楕円鏡に対して
相対的に移動するようにした。
Further, the focus position adjusting means comprises a control unit which receives an output signal from the comparing unit and outputs an output for driving the relative position adjusting mechanism, and the relative position adjusting mechanism, wherein the relative position adjusting mechanism is an elliptic mirror. The position of the light emitting lamp was fixed relative to the light receiving part of the bundle optical fiber, and the position of the light emitting lamp was moved relative to the elliptical mirror.

さらに、2本の光検出用ファイバーをバンドル光ファ
イバーの中心をはさんで相対する外周に設けてこれを1
対とし、この1対の配置された光検出用ファイバーと直
交する位置に他の2本の他の1対として配置し、それぞ
れの対を構成する2本の光検出用ファイバーからの光を
それぞれの受光素子で受光し、それぞれの1対の受光素
子間の出力を比較部へ入力し、比較部の2つの差出力を
焦点位置調整手段の一部となる2つの制御部へ入力し、
この制御部の2つの出力によりそれぞれの1対の光検出
用ファイバーの配置と対応したそれぞれの直交する相対
位置調整を駆動させる。
In addition, two optical fibers for photodetection are provided on the outer circumference facing each other with the center of the bundled optical fiber in between,
The light from each of the two photo-detecting fibers constituting each pair is arranged as a pair and is arranged as a pair of the other two at a position orthogonal to the photo-detecting fiber thus arranged. Light is received by the light receiving elements of, and the output between each pair of light receiving elements is input to the comparison section, and the two difference outputs of the comparison section are input to the two control sections that are part of the focus position adjusting means.
The two outputs of the control unit drive respective orthogonal relative position adjustments corresponding to the arrangement of the pair of photodetection fibers.

さらに、少なくとも1本の光検出用ファイバーからの
光を受光素子で受光し、この受光素子の電気出力信号を
直接に、あるいは増幅器および、あるいは関数発生器を
介して間接的に、外部から設定される基準信号と比較し
て差信号を出力する基準比較部を設け、この基準比較部
の出力を光出力自動補正手段へ入力し、光出力自動補正
手段は基準比較部からの信号に応じて発光ランプへの供
給電流を増減し、これにより発光ランプの光放射エネル
ギーを増減させて基準信号に対応した一定値に保持して
いる。
Further, the light from at least one light detecting fiber is received by the light receiving element, and the electric output signal of the light receiving element is set from the outside directly or indirectly through the amplifier and / or the function generator. A reference comparison unit that outputs a difference signal in comparison with a reference signal is provided, and the output of this reference comparison unit is input to the optical output automatic correction unit, and the optical output automatic correction unit emits light according to the signal from the reference comparison unit. The current supplied to the lamp is increased / decreased, thereby increasing / decreasing the light radiant energy of the light emitting lamp and holding it at a constant value corresponding to the reference signal.

(作 用) 課題を解決するために前項で述べた手段を採用するこ
とにより、発光ランプ及びランプ内の陰極と陽極位置は
楕円鏡に対して不変であっても陰陽両電極に対するアー
ク発生部位が微妙に変動するとこれに応じて楕円鏡の第
1焦点部からの光放射エネルギーの放射部位がずれ、そ
れにより楕円鏡の第2焦点から集光点が少しずれる。こ
のずれが生ずると2本以上の光検出用ファイバーへの入
射光が等しくなくなり、それぞれの受光素子への入射光
もそれにつれて変動し2個以上の受光素子の出力信号間
に差が生じてくる。この差を比較部で差信号として取り
出し、この差信号を焦点位置調整手段へ入力することに
よりこの差信号が小さくなる方向に発光ランプ位置を移
動し、もってアーク発生位置のずれによるバンドル光フ
ァイバー受光端面中心と集光中心とのずれを自動補正す
ることができる。
(Operation) By adopting the means described in the previous section in order to solve the problem, even if the position of the cathode and the anode in the light emitting lamp and the lamp is unchanged with respect to the elliptical mirror, the arc generation site with respect to both the positive and negative electrodes is A slight change causes a shift in the emission site of the light radiation energy from the first focal point portion of the elliptic mirror, which causes the focal point to be slightly displaced from the second focal point of the elliptic mirror. When this shift occurs, the light incident on the two or more photodetection fibers becomes unequal, and the light incident on each light receiving element also changes accordingly, resulting in a difference between the output signals of the two or more light receiving elements. . This difference is taken out as a difference signal by the comparison unit, and the difference signal is input to the focus position adjusting means to move the position of the light emitting lamp in the direction in which this difference signal becomes smaller, so that the bundle optical fiber light receiving end face due to the deviation of the arc generation position. It is possible to automatically correct the deviation between the center and the light collection center.

さらにバンドル光ファイバー受光端面の中心に対して
X軸方向に2本の1対となった光検出用ファイバーをバ
ンドル光ファイバーの外周部に、他の2本の1対となっ
た光検出用ファイバーをX軸と直交するY軸方向にX軸
方向の1対と同様に設けてあり、前記のX,Y軸方向にそ
れぞれ相対位置調整機構が設けられているので、発光ラ
ンプ内のアーク発生部位のずれがいかなる方向であって
も、完全に補正できるものである。
Further, two pairs of photodetection fibers in the X-axis direction with respect to the center of the light receiving end surface of the bundle optical fiber are provided on the outer peripheral portion of the bundle optical fiber, and the other two pairs of photodetection fibers are arranged in the X direction. Since it is provided in the Y-axis direction orthogonal to the axis in the same manner as a pair in the X-axis direction, and the relative position adjusting mechanism is provided in each of the X- and Y-axis directions, the arc generation position in the light emitting lamp is displaced. Can be completely corrected in any direction.

このような補正により、少なくとも2本の、望ましく
は4本の光検出用ファイバーへの光入射量はほぼ等しく
なり、いずれの1本であっても光検出用ファイバーへの
光入射量はバンドル光ファイバー全体への光入射量とほ
ぼ一定の関係を持った値となる。
With such a correction, the amount of light incident on at least two, preferably four, photodetection fibers becomes almost equal, and the amount of light incident on the photodetection fiber is equal to that of any one bundle optical fiber. The value has a substantially constant relationship with the amount of light incident on the whole.

発光ランプはアンプへの入力電流値を一定に保持して
も長期間の使用によりガラスバルブの曇りなど種々の原
因により光放射出力が低下してくる。このような光出力
の低下が生じた場合でも、少なくとも1本の光検出用フ
ァイバーへ入射し、出射する光を受光素子で受光し、受
光素子の出力信号を直接あるいは間接的に基準信号と比
較し、両者をほぼ一致させる如く前記の光出力補正手段
が動作して発光ランプへの入力電流が調整されるので、
バンドル光ファイバー全体へ光入射量を一定値に保持す
ることができる。
Even if the input current value to the amplifier is kept constant, the light-emitting lamp has a reduced light emission output due to various causes such as fogging of the glass bulb due to long-term use. Even if such a decrease in optical output occurs, the light incident on at least one photodetection fiber and emitted is received by the photodetector, and the output signal of the photodetector is compared directly or indirectly with the reference signal. However, since the light output correction means operates so as to make them substantially coincident with each other and the input current to the light emitting lamp is adjusted,
The amount of light incident on the entire bundle optical fiber can be maintained at a constant value.

(実施例) 第1図は本発明の光ビーム加熱機のバンドル光ファイ
バーの受光端を光の照射側から見たバンドル光ファイバ
ー受光端面要部図であり、6′は数十本から数百本の光
ファイバー素線10より構成されているバンドル光ファイ
バー受光端面であり、11a,11bはX軸方向の外周部に設
けられた1対の光検出用ファイバーであり、12a,12bは
Y軸方向の外周に設けられた1対の光検出用ファイバー
である。ファイバー素線10と検出用ファイバーとの太さ
は同一であっても、或は異なった径のものであってもよ
いが、工業的生産の面からは同一径のものの方が製造し
やすい。
(Embodiment) FIG. 1 is a schematic view of a bundle optical fiber light receiving end surface of a light receiving end of a bundle optical fiber of a light beam heater according to the present invention as seen from a light irradiation side. A bundle optical fiber light receiving end face composed of the optical fiber strands 10, 11a and 11b are a pair of optical detection fibers provided in the outer peripheral portion in the X-axis direction, and 12a and 12b are outer peripheral portions in the Y-axis direction. It is a pair of optical detection fibers provided. The fiber strand 10 and the detection fiber may have the same thickness or different diameters, but from the viewpoint of industrial production, the same diameter is easier to manufacture.

第2図は本発明の機械構造的な構成図であり、1は発
光ランプ、2は楕円鏡、3は楕円鏡2の第1焦点、4は
第2焦点でありバンドル光ファイバー5の受光端6を設
けてある。13は楕円鏡2の固定板であり、バンドル光フ
ァイバー5の受光端支持体14と固定的に組立・結合され
ている。15は発光ランプ1のランプ支持体であり、16は
X軸方向の相対位置調整機構であり、17はY軸方向の相
対位置調整機構であり、それぞれのX軸方向とY軸方向
はバンドル光ファイバーに設けられたX軸,Y軸と一致す
る方向に設けられてあり、それぞれが摺動ガイド機構と
駆動モータ・駆動機構とを有している。18は位置調整機
構支持体であり、楕円鏡固定板13に固定的に取付られて
おり、Y軸方向相対位置調整機構17を保持している。ラ
ンプ支持体15はX軸方向相対位置調整機構の可動部に取
付られており、相対位置調整機構16の固定部は相対位置
調整機構17の可動部に、相対位置調整機構17の固定部は
支持体18にそれぞれ取付られている。
FIG. 2 is a structural structural diagram of the present invention, in which 1 is a light emitting lamp, 2 is an elliptic mirror, 3 is a first focal point of the elliptic mirror 2, 4 is a second focal point, and the light receiving end 6 of the bundle optical fiber 5 is shown. Is provided. Reference numeral 13 denotes a fixed plate of the elliptic mirror 2, which is fixedly assembled and coupled to the light receiving end support 14 of the bundle optical fiber 5. Reference numeral 15 is a lamp support of the light-emitting lamp 1, 16 is a relative position adjusting mechanism in the X-axis direction, 17 is a relative position adjusting mechanism in the Y-axis direction, and each of the X-axis direction and the Y-axis direction is a bundle optical fiber. Is provided in a direction coinciding with the X-axis and the Y-axis provided in the above, and each has a slide guide mechanism and a drive motor / drive mechanism. Reference numeral 18 denotes a position adjusting mechanism support, which is fixedly attached to the elliptic mirror fixing plate 13 and holds the Y-axis direction relative position adjusting mechanism 17. The lamp support 15 is attached to the movable portion of the X-axis direction relative position adjusting mechanism, the fixed portion of the relative position adjusting mechanism 16 is supported by the movable portion of the relative position adjusting mechanism 17, and the fixed portion of the relative position adjusting mechanism 17 is supported. Each is attached to body 18.

ランプ1には電流を供給するための導体19,20が接続
されており、導体19,20の他の端はランプ用電源(図示
せず)に接続されている。
The conductors 19 and 20 for supplying an electric current are connected to the lamp 1, and the other ends of the conductors 19 and 20 are connected to a lamp power source (not shown).

受光端面6′に第1図の如く配置された光検出用ファ
イバー11a,11b,12a,12bは、バンドル光ファイバーの受
光端と出射端との間に設けられた分岐部21により分岐さ
れ、それぞれの出射端11a′,11b′,12a′,12b′を有し
ている。
The light detecting fibers 11a, 11b, 12a, 12b arranged on the light receiving end face 6'as shown in FIG. 1 are branched by a branching portion 21 provided between the light receiving end and the emitting end of the bundle optical fiber, and It has emitting ends 11a ', 11b', 12a ', 12b'.

第3図は本発明の信号の流れを示すブロック図であ
り、22a,22b,23a,23bはそれぞれ光検出用ファイバー11
a,11b,12a,12bより放射される光であり、それぞれ対応
する受光素子24a,24b,25a,25bに照射される。受光素子2
4a,24b,25a,25bはフォトダイオード・フォトトランジス
タ・光導電セルなど光入力を電気的出力に変換できるも
のであればよい。特に本機を加熱機として用いるので、
波長600nmから2500nmの範囲での光入力に応じた電気信
号を出力するものを採用している。26はX軸用の比較
部、27はY軸用の比較部であり、比較部26は受光素子24
aと24bからの出力信号を比較し、受光素子24aからの出
力信号が受光素子24bからの出力信号より大きい時は、
X軸方向相対位置調整機構16内の駆動モータMx28を第3
図の矢印Aの(+)方向に第2図の焦点4が移動する如
く駆動するため信号を制御部30へ送り、制御部30は比較
部26からの信号が或る一定値以下となるまで駆動モータ
Mx28を駆動する。受光素子24bからの信号が受光素子24a
からの信号より大きい(受光量との関係で11b′の受光
量が大きい)場合には駆動モータMx28が矢印Aの(−)
方向へ焦点が移動するようX軸方向相対位置調整機構16
を駆動して発光ランプ位置を補正する。Y軸方向につい
ても受光素子25a,25bからの信号に応じてX軸方向と同
様に制御する。
FIG. 3 is a block diagram showing the signal flow of the present invention, and 22a, 22b, 23a and 23b are optical detection fibers 11 respectively.
The light is emitted from a, 11b, 12a, 12b, and is applied to the corresponding light receiving elements 24a, 24b, 25a, 25b. Light receiving element 2
4a, 24b, 25a, 25b may be any one capable of converting a light input into an electric output such as a photodiode, a phototransistor, a photoconductive cell. Especially since this machine is used as a heating machine,
The one that outputs an electrical signal according to the optical input in the wavelength range of 600 nm to 2500 nm is adopted. Reference numeral 26 is an X-axis comparison unit, 27 is a Y-axis comparison unit, and the comparison unit 26 is a light receiving element 24.
Compare the output signals from a and 24b, when the output signal from the light receiving element 24a is larger than the output signal from the light receiving element 24b,
Set the drive motor Mx28 in the X-axis direction relative position adjustment mechanism 16 to the third position.
A signal is sent to the control unit 30 in order to drive the focus 4 of FIG. 2 so as to move in the (+) direction of the arrow A in the figure, and the control unit 30 keeps the signal from the comparison unit 26 below a certain fixed value. Drive motor
Drive the Mx28. The signal from the light receiving element 24b is the light receiving element 24a.
Is larger than the signal from (the amount of received light of 11b 'is large in relation to the amount of received light), the drive motor Mx28 indicates the arrow (-) of arrow A.
X-axis relative position adjustment mechanism 16 so that the focus moves in the direction
To correct the light emitting lamp position. The Y-axis direction is controlled similarly to the X-axis direction according to the signals from the light receiving elements 25a and 25b.

32は受光素子の1つ、例えば25bと接続された増幅器
あるいは増幅器と関数発生機器とからなる増幅器であ
り、33は外部端子34から入力された基準信号保持部であ
り、35は増幅器32の出力信号と基準信号保持部33で保持
された基準信号とを比較し、その差に対応した差信号を
出力する基準比較部であり、出力された差信号は光出力
自動補正手段36へ入力され、光出力自動補正手段36は、
増幅器32の出力信号が基準信号保持部33からの信号より
或る一定の差以上に小さい時(発光ランプ1からの放射
光が設定値より小さい時)には、発光ランプ1へ供給す
る電流を増加し、増幅器32の出力信号が大きいときには
発光ランプ1への供給電流を減少させる。
Reference numeral 32 is one of the light receiving elements, for example, an amplifier connected to 25b or an amplifier including an amplifier and a function generating device, 33 is a reference signal holding unit input from an external terminal 34, and 35 is an output of the amplifier 32. The signal is compared with the reference signal held by the reference signal holding unit 33, and is a reference comparing unit that outputs a difference signal corresponding to the difference, and the output difference signal is input to the optical output automatic correction means 36, The optical output automatic correction means 36,
When the output signal of the amplifier 32 is smaller than the signal from the reference signal holding section 33 by a certain difference or more (when the emitted light from the light emitting lamp 1 is smaller than the set value), the current supplied to the light emitting lamp 1 is changed. When the output signal of the amplifier 32 is increased, the supply current to the light emitting lamp 1 is decreased.

(発明の効果) 本発明によって、キセノンランプ等の発光ランプでの
発光点のずれによる加熱点での焦点ずれに対して、従来
の如く、人手により試行錯誤により焦点合せを行う必要
がなくなったので、安定して自動化ラインへ組み込んで
自動はんだ付などの手段として光ビーム加熱機を利用で
きるようになった。
(Effects of the Invention) According to the present invention, it is no longer necessary to manually perform focusing by trial and error as to the defocus at the heating point due to the deviation of the light emitting point in a light emitting lamp such as a xenon lamp. , The light beam heater can now be used stably as a means for automatic soldering by incorporating it into an automated line.

また、従来は発光ランプの寿命は約800時間であり、
これを経過すると発光点のずれが頻繁に発生すると共に
全発光量が低下し、加熱能力が低下していた。本発明に
より、発光ランプの発光点のずれを自動補正できるよう
になると共に、光量の低下をも補正できるようになった
ので発光ランプの寿命を大幅に増加することができた。
In addition, the life of the light emitting lamp is about 800 hours in the past,
After this, the light emitting points were frequently displaced, the total amount of light emission was decreased, and the heating capacity was decreased. According to the present invention, it is possible to automatically correct the deviation of the light emitting point of the light emitting lamp and also to correct the decrease of the light amount, so that the life of the light emitting lamp can be significantly increased.

以上述べたように、非接触による安定した加熱源を低
ランニングコストで(ランプ交換コストが少なく)産業
界に提供したことの貢献・効果は極めて大きなものとな
った。
As described above, the contribution and effect of providing a stable non-contact heating source to the industrial world at low running cost (low lamp replacement cost) has become extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光ビーム加熱機のバンドル光ファイバ
ー受光端面要部図、第2図は本発明の一実施例の機械構
造的構成図、第3図はその電気ブロック図、第4図は光
ビーム加熱機の原理図である。 1……発光ランプ、2……楕円鏡、3……楕円鏡の第1
焦点、4……楕円鏡の第2焦点、5……バンドル光ファ
イバー、6……受光端、7……集光レンズ、8……焦
点、10……光ファイバー素線、11a,11b……X軸方向光
検出用ファイバー、12a,12b……Y軸方向光検出用ファ
イバー。
FIG. 1 is a main part view of a light receiving end surface of a bundle optical fiber of a light beam heater according to the present invention, FIG. 2 is a mechanical structural configuration diagram of an embodiment of the present invention, FIG. 3 is an electric block diagram thereof, and FIG. It is a principle view of a light beam heating machine. 1 ... Light emitting lamp, 2 ... Elliptical mirror, 3 ... First of elliptical mirror
Focus, 4 ... Second focus of elliptical mirror, 5 ... Bundled optical fiber, 6 ... Light receiving end, 7 ... Condensing lens, 8 ... Focus, 10 ... Optical fiber wire, 11a, 11b ... X axis Directional light detection fiber, 12a, 12b ... Y-axis direction light detection fiber.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】キセノンランプ等の発光ランプの発光点を
楕円鏡の第1焦点に位置させ、該楕円鏡の第2焦点に光
を集光し、該集光部に複数本の光ファイバー素線をたば
ねてなるハンドル光ファイバーの受光部を設け、該光フ
ァイバーの出射部に被加熱物を設置して加熱加工を行う
ファイバー付光ビーム加熱機において、少なくとも2本
以上の光ファイバー素線を光出力検出用として使用する
ことを特徴とする光ビーム加熱機。
1. A light-emitting point of a light-emitting lamp such as a xenon lamp is located at a first focal point of an elliptical mirror, light is condensed at a second focal point of the elliptic mirror, and a plurality of optical fiber strands are arranged at the condensing portion. In a light beam heating machine with a fiber, which is provided with a light receiving part of an optical fiber and a heating target is installed at the emitting part of the optical fiber, and at least two or more optical fiber strands are used for optical output detection. A light beam heating machine characterized by being used as.
【請求項2】少なくとも2本以上の光出力検出用光ファ
イバー素線からの検出光を、フォトトランジスタ,フォ
トダイオード,光電セル等の光の受光量に応じて電気抵
抗・電圧・電流等の電気的量が変化する受光素子でそれ
ぞれ個別に受光し、2個以上の該受光素子の電気的出力
を比較しその差に応じた差信号を出力する比較部を有
し、誤差信号を小さくする方向に該発光ランプと該楕円
鏡の相対位置を調整する、焦点位置調整手段を有するこ
とを特徴とする請求項(1)記載の光ビーム加熱機。
2. An electric resistance, voltage, current, etc. of detected light from at least two or more optical output detecting optical fiber wires depending on the amount of light received by a phototransistor, a photodiode, a photoelectric cell, or the like. In order to reduce the error signal, there is provided a comparison unit that receives light individually by the light receiving elements of varying amounts, compares the electrical outputs of two or more light receiving elements, and outputs a difference signal according to the difference. The light beam heating machine according to claim 1, further comprising a focus position adjusting unit that adjusts a relative position between the light emitting lamp and the elliptical mirror.
【請求項3】バンドル光ファイバーの受光端において、
検出用光ファイバーをバンドルファイバーの外周部に、
バンドルファイバーの中心に対して対称的に配置し、こ
の配置位置に対応した発光ランプと楕円鏡との相対位置
調整機構を設けたことを特徴とする請求項(1)または
(2)記載の光ビーム加熱機。
3. A light receiving end of a bundle optical fiber,
Detecting optical fiber on the outer circumference of the bundle fiber,
The light according to claim (1) or (2), wherein the bundle fibers are arranged symmetrically with respect to the center, and a relative position adjusting mechanism for the light emitting lamp and the elliptic mirror corresponding to this arrangement position is provided. Beam heating machine.
【請求項4】焦点位置調整手段において、楕円鏡とバン
ドル光ファイバー受光部との位置関係を固定し、発光ラ
ンプの位置を移動することにより発光ランプと楕円鏡の
相対的位置を調整することを特徴とする請求項(2)記
載の光ビーム加熱機。
4. The focal position adjusting means adjusts the relative position of the light emitting lamp and the elliptic mirror by fixing the positional relationship between the elliptical mirror and the bundle optical fiber light receiving unit and moving the position of the light emitting lamp. The light beam heater according to claim (2).
【請求項5】バンドル光ファイバーの受光端において、
光出力検出用ファイバー素線をバンドル光ファイバーの
外周部に外周を4等分する位置に4本設け、それぞれバ
ンドル光ファイバーの中心をはさんで相対向する2本を
1対とし、それぞれの1対が他の1対と直交する配置と
なし、それぞれの1対の光出力検出用ファイバー素線間
の検出光量を比較することを特徴とする請求項(1)ま
たは(2)記載の光ビーム加熱機。
5. A light receiving end of a bundle optical fiber,
Four fiber strands for optical output detection are provided on the outer peripheral portion of the bundle optical fiber at positions that divide the outer periphery into four equal parts, and two pairs facing each other with the center of the bundle optical fiber as one pair are formed. 3. The light beam heating machine according to claim 1, wherein the light beam heating apparatus is arranged so as to be orthogonal to the other pair, and compares the detected light amount between each pair of the optical output detecting fiber wires. .
【請求項6】少なくとも2本以上の光出力検出用ファイ
バー素線からの検出光を、光量を電気的量に変換する受
光素子で受光し、該受光素子のうちの1つの電気的出力
を直接に、あるいは増幅器および、あるいは関数発生器
を介して間接的に、外部から設定される基準信号と比較
して差信号を出力する基準比較部を有し、基準信号と受
光素子からの直接、間接的な信号の差が小さくなる如く
該発光ランプへ供給する電流値を調整する光出力自動補
正手段を有することを特徴とする請求項(1),
(2),(3),(4)または(5)記載の光ビーム加
熱機。
6. The detection light from at least two or more optical output detecting fiber wires is received by a light receiving element for converting the light quantity into an electric quantity, and the electric output of one of the light receiving elements is directly output. In addition, or indirectly via an amplifier and / or a function generator, it has a reference comparison unit that outputs a difference signal by comparing with a reference signal set from the outside, and directly or indirectly from the reference signal and the light receiving element. The optical output automatic correction means for adjusting the current value supplied to the light emitting lamp so that the difference between the signals is reduced, (1),
The light beam heater according to (2), (3), (4) or (5).
JP2097755A 1990-04-16 1990-04-16 Optical beam heating machine Expired - Lifetime JP2521556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097755A JP2521556B2 (en) 1990-04-16 1990-04-16 Optical beam heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097755A JP2521556B2 (en) 1990-04-16 1990-04-16 Optical beam heating machine

Publications (2)

Publication Number Publication Date
JPH03297589A JPH03297589A (en) 1991-12-27
JP2521556B2 true JP2521556B2 (en) 1996-08-07

Family

ID=14200699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097755A Expired - Lifetime JP2521556B2 (en) 1990-04-16 1990-04-16 Optical beam heating machine

Country Status (1)

Country Link
JP (1) JP2521556B2 (en)

Also Published As

Publication number Publication date
JPH03297589A (en) 1991-12-27

Similar Documents

Publication Publication Date Title
CA2069132C (en) Light-beam heating apparatus
CN204256215U (en) Optical fiber end cap fusion splicing devices
JP2001523585A (en) Method and apparatus for thermally connecting a connection surface of two substrates
CN218864000U (en) Light source device and lighting apparatus
US6123429A (en) Light source device
JP5007654B2 (en) Light source device
JP2521556B2 (en) Optical beam heating machine
US5778146A (en) Light beam heating apparatus
US4960972A (en) Light-beam-operated heating machine
JP3216570B2 (en) Light beam heating device
JP2558907B2 (en) Light beam heating machine
JP3180589B2 (en) Light beam heating device
US20110304838A1 (en) Exposure system and adjustment method thereof
EP0521178B1 (en) Light beam heater
JP2002357866A (en) Method for manufacturing light source unit
JPH1030988A (en) Automatic focus correcting method and apparatus therefor
JP2746397B2 (en) Optical scanning device
JP2006003403A (en) Position adjusting device and method
JP2512249B2 (en) Optical beam heating device
JP3307368B2 (en) Light source unit manufacturing method
JP2828022B2 (en) Light beam heating machine
WO2014188746A1 (en) Solar simulator
JPH0760729B2 (en) Light beam heating device
JPH03230885A (en) Equipment and method for laser beam welding
JP2013507650A (en) Microscope laser system and operation method of microscope laser system