JP2520839B2 - Power supply for static eliminator - Google Patents

Power supply for static eliminator

Info

Publication number
JP2520839B2
JP2520839B2 JP13245993A JP13245993A JP2520839B2 JP 2520839 B2 JP2520839 B2 JP 2520839B2 JP 13245993 A JP13245993 A JP 13245993A JP 13245993 A JP13245993 A JP 13245993A JP 2520839 B2 JP2520839 B2 JP 2520839B2
Authority
JP
Japan
Prior art keywords
voltage
negative
rectifier circuit
positive
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13245993A
Other languages
Japanese (ja)
Other versions
JPH06325892A (en
Inventor
信雄 野村
勝喜 福田
東助 森
敏春 田中
憲史 鈴木
国義 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP13245993A priority Critical patent/JP2520839B2/en
Publication of JPH06325892A publication Critical patent/JPH06325892A/en
Application granted granted Critical
Publication of JP2520839B2 publication Critical patent/JP2520839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、除電器の放電電極に直
流高電圧を印加する除電器用電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static eliminator power supply device for applying a high DC voltage to a discharge electrode of a static eliminator.

【0002】[0002]

【従来の技術】本出願人は、特公平3−1798号公報
に記載されているように、小型であっても十分に高電圧
を取り出せる高周波トランスを使用した交流除電のため
の電源装置を既に提供している。この電源装置は、商用
交流電源を元の電源とし、その交流電圧を整流する整流
回路と、この整流回路の直流出力によって駆動されて自
励発振する高周波発振回路と、その高周波出力を昇圧す
る高周波トランスとで構成される。
2. Description of the Related Art As described in Japanese Examined Patent Publication No. 3-1798, the present applicant has already proposed a power supply device for AC neutralization using a high frequency transformer capable of taking out a sufficiently high voltage even if it is small. providing. This power supply device uses a commercial AC power supply as an original power supply, a rectifier circuit that rectifies the AC voltage, a high-frequency oscillation circuit that is driven by the DC output of the rectification circuit to self-oscillate, and a high-frequency output that boosts the high-frequency output. It consists of a transformer.

【0003】[0003]

【発明が解決しようとする課題】しかし、これによると
除電器の使用場所が商用交流電源の配線設備があるとこ
ろに限られるに加え、移動性や携帯性に欠け、また従前
の大型の低周波トランスを使用していたものに比べれば
幾分小型化できるものの、交流印加型には変わりないた
め、小型化には自ずと限界があり、特に小型・簡便を旨
とする直流除電器には適用できない。
However, according to this, the static eliminator is used only in places where there are wiring facilities for a commercial AC power source, and it lacks mobility and portability. Although it can be made slightly smaller than the one using a transformer, it is still an AC application type, so there is naturally a limit to the size reduction, and it cannot be applied to a DC static eliminator that is particularly small and simple. .

【0004】そこで、本発明の第1の目的は、太陽電池
を電源としたもので、直流除電器のための電源装置とし
て簡便に、しかも商用交流電源の配線設備がなくとも光
を受けるところであれば特に除電器の設置場所を限定さ
れずに広範に使用でき、かつ除電器内に組み込んでそれ
と小型に一体化でき、しかも内部回路での消費電力を少
なくして、室内などの照度の低いところでも容量の小さ
い太陽電池で除電するのに十分な電源を供給できる除電
器用電源装置を提供することにある。
Therefore, a first object of the present invention is to use a solar cell as a power source, and to use it as a power source device for a DC static eliminator, and to receive light even if there is no commercial AC power source wiring facility. For example, the location of the static eliminator can be used widely without being restricted, and it can be incorporated into the static eliminator and integrated with it in a small size. Another object of the present invention is to provide a static eliminator power supply device capable of supplying sufficient power for static erasing with a small-capacity solar cell.

【0005】また、本発明の第2の目的は、除電器の放
電電極に、プラスイオンとマイナスイオンとを同等に発
生させることができ、イオン極性バランスによりプラス
・マイナスいずれの帯電に対しても効率良い除電を行え
るようにすることにある。
A second object of the present invention is to enable positive and negative ions to be generated in the discharge electrode of the static eliminator in the same manner, and due to the ionic polarity balance, both positive and negative charges are generated. It is to enable efficient static elimination.

【0006】[0006]

【課題を解決するための手段】第1の目的を達成するた
め、本発明による除電器用電源装置は、太陽電池と、こ
の太陽電池により充電される蓄電池と、この蓄電池によ
る電圧を印加されて間欠発振する間欠発振回路と、その
発振により二次側に交流高電圧を発生するトランスと、
その交流高電圧を整流して直流高電圧として放電電極へ
印加する整流回路とで構成される。
In order to achieve the first object, a power supply device for a static eliminator according to the present invention includes a solar battery, a storage battery charged by the solar battery, and a voltage applied by the storage battery. An intermittent oscillation circuit that intermittently oscillates, and a transformer that generates an AC high voltage on the secondary side by the oscillation,
The AC high voltage is rectified and applied as a DC high voltage to the discharge electrode.

【0007】第2の目的を達成するため、上記整流回路
は、プラス・マイナスそれぞれの放電電極へプラス・マ
イナスそれぞれの直流高電圧を印加するプラス側倍電圧
整流回路とマイナス側倍電圧整流回路とからなり、プラ
ス側倍電圧整流回路は、トランスの二次側交流電圧をn
段階にプラス整流して増幅すべくダイオードとコンデン
サを直列にn段接続して構成され、マイナス側倍電圧整
流回路は、トランスの二次側交流電圧をnより少ないm
段階にマイナス整流して増幅すべくダイオードとコンデ
ンサを直列にm段接続して構成される。
In order to achieve the second object, the rectifier circuit comprises a positive voltage doubler voltage rectifier circuit and a negative voltage doubler voltage rectifier circuit for applying positive and negative DC high voltages to the positive and negative discharge electrodes, respectively. The positive-side voltage doubler rectifier circuit converts the secondary side AC voltage of the transformer to n.
In order to positively rectify and amplify in stages, a diode and a capacitor are connected in series in n stages, and the negative side voltage doubler rectifier circuit reduces the secondary side AC voltage of the transformer by less than m.
It is configured by connecting m stages of diodes and capacitors in series to perform negative rectification and amplification in stages.

【0008】[0008]

【作用】本発明による電源装置では、太陽電池を電源と
し、これで発電された電荷を蓄電池に蓄電し、その電圧
で発振回路を間欠発振させて直流を交流に変換した後、
その交流電圧をトランスで昇圧し、更にこれを整流して
再び直流にしてから放電電極に印加する。
In the power supply device according to the present invention, the solar battery is used as a power source, the electric charge generated by the solar battery is stored in the storage battery, and the oscillation circuit is intermittently oscillated by the voltage to convert the direct current into the alternating current.
The AC voltage is boosted by a transformer, further rectified to be DC again, and then applied to the discharge electrode.

【0009】ところで、太陽光は照度が高いので太陽電
池に十分な発電力が得られるが、除電器を室内で使用す
ることを考えた場合、光源が白熱灯や蛍光灯になるため
その照度は低い。例えば、光源が通常の蛍光灯である場
合、その近傍での照度は5000Lxほどであっても、
机上では500Lx程度の照度しか得られない。この程
度の照度で除電に必要な電力を得るには、一般には大き
な太陽電池が必要になる。また、蓄電池の直流電圧で発
振回路を発振させて交流に変換するに当たり、発振回路
を連続発振させると、その発振による消費電力が大きく
なり、電源である太陽電池もその消費電力の大きさに応
じた大きなものにならざるを得ない。
By the way, since sunlight has a high illuminance, sufficient power generation can be obtained for the solar cell. However, considering that the static eliminator is used indoors, its illuminance is incandescent lamp or fluorescent lamp. Low. For example, when the light source is an ordinary fluorescent lamp, even if the illuminance in its vicinity is about 5000 Lx,
Only about 500Lx of illuminance can be obtained on the desk. A large solar cell is generally required to obtain the power required for static elimination with this level of illuminance. In addition, when the oscillation circuit is oscillated by the DC voltage of the storage battery and converted into AC, if the oscillation circuit is continuously oscillated, the power consumption due to the oscillation increases, and the solar cell that is the power source also depends on the magnitude of the power consumption. It has to be a big one.

【0010】ところが、本発明では、トランスでの昇圧
効率を上げるため発振回路により直流を交流に変換する
ことに加え、該発振回路を間欠発振させるため、その発
振による消費電力が小さくて済む。従って、室内におい
て白熱灯や蛍光灯を光源としても、小さい太陽電池で除
電に必要な電源供給が可能となる。
However, according to the present invention, in order to improve the boosting efficiency of the transformer, in addition to converting the direct current into the alternating current by the oscillating circuit, the oscillating circuit oscillates intermittently, so that the power consumption due to the oscillation can be small. Therefore, even if an incandescent lamp or a fluorescent lamp is used as a light source indoors, it is possible to supply the power required for static elimination with a small solar cell.

【0011】除電器のプラス・マイナスの放電電極によ
る電離で生ずるイオンは、プラスイオンよりもマイナス
イオンの方が若干多くなる傾向にあるが、整流回路とし
てプラス・マイナスそれぞれの倍電圧整流回路を用い、
これら倍電圧整流回路においてプラス側の増幅段数をマ
イナス側より多くすると、プラス・マイナスの放電電極
に印加される直流高電圧はプラス側の方が高くなり、プ
ラスイオンとマイナスイオンとを同等に発生させること
ができるようになる。
The ions generated by the ionization by the plus and minus discharge electrodes of the static eliminator tend to be slightly more negative ions than positive ions, but positive and negative voltage doubler rectifier circuits are used as rectifier circuits. ,
If the number of amplification stages on the positive side in these voltage doubler rectifier circuits is greater than the number on the negative side, the high DC voltage applied to the positive and negative discharge electrodes will be higher on the positive side, and positive and negative ions will be generated equally. Will be able to.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づき詳細
に説明する。この電源装置は、図1に示すように太陽電
池1と鉛電池やNi−Cd電池等による蓄電池2と高周
波間欠発振回路3と高周波トランス4とプラス側倍電圧
整流回路5及びマイナス側倍電圧整流回路6とから構成
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1, this power supply device includes a solar cell 1, a storage battery 2 such as a lead battery or a Ni-Cd battery, a high-frequency intermittent oscillation circuit 3, a high-frequency transformer 4, a positive-side voltage doubler rectifier circuit 5, and a negative-side voltage doubler rectifier. And the circuit 6.

【0013】太陽電池1が光を受けて発電すると、その
電荷はダイオード7を介して蓄電池2に蓄電され、その
蓄電された電圧が高周波間欠発振回路3に印加される。
この高周波間欠発振回路3は高周波トランス4の一次側
に接続され、蓄電池2による直流電圧の印加により起動
用トランジスタ8がオンになると、自励発振により間欠
的に高周波発振する。すなわち、間欠発振させるため抵
抗Rを大きくしてあり(トランジスタ10のベース電流
を少なくする)、コンデンサC1 にある電荷量が充電さ
れると発振し、その充電された電荷が放電すると発振は
停止する。これを繰り返すことで間欠発振となる。この
ように間欠発振すると、高周波トランス4の二次側に交
流の高電圧が間欠的に得られる。
When the solar cell 1 receives light to generate power, the electric charge is stored in the storage battery 2 via the diode 7, and the stored voltage is applied to the high frequency intermittent oscillation circuit 3.
The high frequency intermittent oscillation circuit 3 is connected to the primary side of the high frequency transformer 4, and when the starting transistor 8 is turned on by the application of the DC voltage from the storage battery 2, the high frequency intermittent oscillation circuit 3 intermittently oscillates the high frequency. That is, the resistance R is increased (to reduce the base current of the transistor 10) for intermittent oscillation, and oscillation occurs when the amount of charge stored in the capacitor C1 is charged, and oscillation stops when the charged charge is discharged. . By repeating this, intermittent oscillation occurs. When the intermittent oscillation is performed in this manner, a high AC voltage is intermittently obtained on the secondary side of the high frequency transformer 4.

【0014】高周波トランス4の二次側の出力端子に
は、プラス側倍電圧整流回路5とマイナス側倍電圧整流
回路6とが並列接続されている。倍電圧整流回路の構成
及び原理は公知であり、ダイオードDとコンデンサCと
を直列に積み重ねるように接続することにより、積み重
ねた段数だけトランスの二次電圧の倍数の高圧直流電圧
が得られるもので、コッククロフト・ウォルトン回路と
も言われている。
A positive side voltage doubler rectifier circuit 5 and a negative side voltage doubler rectifier circuit 6 are connected in parallel to the secondary side output terminal of the high frequency transformer 4. The structure and principle of a voltage doubler rectifier circuit are known, and by connecting a diode D and a capacitor C so as to be stacked in series, a high voltage DC voltage that is a multiple of the secondary voltage of the transformer can be obtained by the number of stacked stages. Also known as the Cockcroft-Walton circuit.

【0015】プラス側倍電圧整流回路5は、高周波トラ
ンス4の二次電圧をn段階にプラス整流して増幅すべく
ダイオードDとコンデンサCを直列にn段(図では5
段)接続して構成され、またマイナス側倍電圧整流回路
6は、高周波トランス4の二次電圧をnより少ないm段
階にマイナス整流して増幅すべく、プラス側倍電圧整流
回路5のダイオードDとは逆向きにしたダイオードDと
コンデンサCとを直列にm段(図では4段)接続して構
成されている。
The positive-side voltage doubler rectifier circuit 5 has a diode D and a capacitor C connected in series in n stages (5 in the figure) to positively rectify and amplify the secondary voltage of the high frequency transformer 4 in n stages.
The negative-side voltage doubler rectifier circuit 6 has a diode D of the positive-side voltage doubler rectifier circuit 5 for negatively rectifying and amplifying the secondary voltage of the high-frequency transformer 4 into m stages less than n. It is configured by connecting a diode D and a capacitor C, which are in the opposite direction to, in series in m stages (4 stages in the figure).

【0016】プラス側倍電圧整流回路5の出力端は、除
電器のプラス側放電電極9と抵抗結合するため、抵抗1
1を介してプラス側の電極ホルダ12に接続され、また
マイナス側倍電圧整流回路6の出力端は、除電器のマイ
ナス側放電電極10と抵抗結合するため、同様に抵抗1
1を介してマイナス側の電極ホルダ12に接続されてい
る。
The output terminal of the positive-side voltage doubler rectifier circuit 5 is resistance-coupled to the positive-side discharge electrode 9 of the static eliminator, so that the resistance 1
1 is connected to the electrode holder 12 on the positive side, and the output terminal of the voltage doubler rectifier circuit 6 on the negative side is resistance-coupled to the negative discharge electrode 10 of the static eliminator.
It is connected to the negative electrode holder 12 via 1.

【0017】このような構成において、太陽電池1によ
る発電で蓄電池2に電荷が蓄電され、その電圧で高周波
間欠発振回路3が間欠発振して例えば図2に示すような
高周波出力を間欠的に生ずると、これが同図に示すよう
に高周波トランス4によって昇圧される。この高周波ト
ランス4の出力は、プラス側倍電圧整流回路5によりn
段にプラス整流及び増幅されると同時に、マイナス側倍
電圧整流回路6によりm段にマイナス整流及び増幅され
る。この場合、プラス側倍電圧整流回路5の方がマイナ
ス側倍電圧整流回路6よりも段数が多いため、プラス側
放電電極9に印加される電圧の方がマイナス側放電電極
10に印加される電圧よりも高くなり、イオンバランス
が図れる。また、高周波間欠発振回路3が間欠発振して
も、プラス・マイナスの倍電圧整流回路5・6の出力
は、発振中断区間の中間点Aでも除電するのに十分な電
圧であるため、除電には支障はない。
In such a configuration, electric power is stored in the storage battery 2 by the power generation by the solar cell 1, and the high frequency intermittent oscillation circuit 3 intermittently oscillates at the voltage to generate a high frequency output as shown in FIG. 2, for example. Then, this is boosted by the high frequency transformer 4 as shown in FIG. The output of the high frequency transformer 4 is n
At the same time as being positively rectified and amplified by the stages, the negative side voltage doubler rectification circuit 6 performs negative rectification and amplification by m stages. In this case, since the positive side voltage doubler rectifier circuit 5 has more stages than the negative side voltage doubler rectifier circuit 6, the voltage applied to the positive side discharge electrode 9 is the voltage applied to the negative side discharge electrode 10. It will be higher than that and ion balance can be achieved. Further, even if the high frequency intermittent oscillation circuit 3 intermittently oscillates, the output of the plus / minus voltage doubler rectifier circuits 5 and 6 is a voltage sufficient to eliminate the charge even at the intermediate point A of the oscillation interruption section, and therefore the charge is removed. There is no problem.

【0018】[0018]

【発明の効果】本発明による除電器用電源装置によれば
次のような効果がある。 太陽電池を電源としているため、直流除電器のため
の電源装置として簡便に、しかも商用交流電源の配線設
備がなくとも光を受けるところであれば特に除電器の設
置場所を限定されずに広範に使用でき、かつ除電器内に
組み込んでそれと小型に一体化できる。
The power supply unit for static eliminator according to the present invention has the following effects. Since it uses a solar cell as a power source, it can be used as a power supply device for a DC static eliminator easily, and can be used extensively without limiting the location of the static eliminator, as long as it receives light without the need for a commercial AC power supply wiring facility It can be incorporated into the static eliminator and can be integrated with it in a small size.

【0019】 太陽電池で発電された電荷を蓄電池に
蓄電し、その電圧で間欠発振回路を間欠発振させて直流
を交流に変換した後、その交流電圧をトランスで昇圧
し、更にこれを整流して再び直流にしてから放電電極に
印加するので、トランスでの昇圧効率を上げるため発振
回路により直流を交流に変換することに加え、該発振回
路を間欠発振させるため、その発振による消費電力が小
さくて済む。従って、室内において白熱灯や蛍光灯を光
源としても、小さい太陽電池で除電に必要な電源供給が
可能となる。
The electric charge generated by the solar cell is stored in a storage battery, the intermittent oscillation circuit is intermittently oscillated by the voltage to convert direct current into alternating current, and then the alternating voltage is boosted by a transformer and further rectified. Since DC is applied again to the discharge electrode, in order to increase the boosting efficiency of the transformer, in addition to converting DC to AC by the oscillator circuit, the oscillator circuit oscillates intermittently, so the power consumption due to the oscillation is small. I'm done. Therefore, even if an incandescent lamp or a fluorescent lamp is used as a light source indoors, it is possible to supply the power required for static elimination with a small solar cell.

【0020】また、請求項2によれば上記に加えて更に
次のような効果がある。 トランスの二次側の交流電圧を、ダイオードとコン
デンサとによる倍電圧整流回路で整流及び増幅してプラ
ス・マイナスの放電電極に印加するので、変圧容量の小
さい小型の高周波トランスを使用しても放電電極に十分
な高電圧を印加でき、一層の小型化が図れる。
According to the second aspect, in addition to the above, the following effect is further provided. Since the AC voltage on the secondary side of the transformer is rectified and amplified by a voltage doubler rectifier circuit consisting of a diode and a capacitor and applied to the positive and negative discharge electrodes, it is discharged even if a small high-frequency transformer with a small transformation capacity is used. A sufficiently high voltage can be applied to the electrodes, and the size can be further reduced.

【0021】 プラス側の倍電圧整流回路の増幅段数
をマイナス側のそれよりも多くして、プラス側の放電電
極に印加される直流電圧がマイナス側よりも高くなるよ
うにしたので、プラスイオンとマイナスイオンとを同等
に発生させることができる。従って、帯電物の逆帯電を
防止できるとともに、イオン極性バランスにより帯電物
の極性や電位に関係なく効率の良い除電が可能となる。
Since the number of amplification stages of the voltage doubler rectifier circuit on the plus side is larger than that on the minus side so that the DC voltage applied to the discharge electrode on the plus side is higher than that on the minus side, Negative ions can be generated equivalently. Therefore, it is possible to prevent the reverse charging of the charged object, and it is possible to efficiently remove the charge regardless of the polarity or the potential of the charged object due to the ionic polarity balance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による除電器用電源装置の一例の電気回
路図である。
FIG. 1 is an electric circuit diagram of an example of a power supply device for a static eliminator according to the present invention.

【図2】同上における一部の回路の出力波形を示す図で
ある。
FIG. 2 is a diagram showing output waveforms of some circuits in the above.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 蓄電池 3 高周波間欠発振回路 4 高周波トランス 5 プラス側倍電圧整流回路 6 マイナス側倍電圧整流回路 9・10 放電電極 D ダイオード C コンデンサ 1 Solar battery 2 Storage battery 3 High frequency intermittent oscillation circuit 4 High frequency transformer 5 Positive voltage doubler voltage rectifier circuit 6 Negative voltage multiplier voltage rectifier circuit 9/10 Discharge electrode D Diode C capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 国義 神奈川県横浜市港南区日野8−20−15− 1003 (56)参考文献 特開 平5−299191(JP,A) 特開 昭51−107435(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyoshi Ogawa 8-20-15-1003, Hino, Konan-ku, Yokohama-shi, Kanagawa Prefecture (56) Reference JP-A-5-299191 (JP, A) JP-A-51-107435 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽電池と、この太陽電池により充電され
る蓄電池と、この蓄電池による電圧を印加されて間欠発
振する間欠発振回路と、その発振により二次側に交流高
電圧を発生するトランスと、その交流高電圧を整流して
直流高電圧として放電電極へ印加する整流回路とからな
ることを特徴とする除電器用電源装置。
1. A solar cell, a storage battery charged by the solar cell, an intermittent oscillation circuit that intermittently oscillates by applying a voltage from the storage battery, and a transformer that generates an AC high voltage on the secondary side by the oscillation. And a rectifying circuit for rectifying the AC high voltage and applying it to the discharge electrode as a DC high voltage.
【請求項2】前記整流回路が、プラス・マイナスそれぞ
れの放電電極へプラス・マイナスそれぞれの直流高電圧
を印加するプラス側倍電圧整流回路とマイナス側倍電圧
整流回路とからなり、プラス側倍電圧整流回路は、前記
トランスの二次側交流電圧をn段階にプラス整流して増
幅すべくダイオードとコンデンサを直列にn段接続して
構成され、マイナス側倍電圧整流回路は、前記トランス
の二次側交流電圧をnより少ないm段階にマイナス整流
して増幅すべくダイオードとコンデンサを直列にm段接
続して構成されていることを特徴とする請求項1に記載
の除電器用電源装置。
2. The rectifier circuit comprises a positive voltage doubler voltage rectifier circuit and a negative voltage doubler voltage rectifier circuit for applying positive and negative DC high voltages to the positive and negative discharge electrodes, respectively. The rectifier circuit is configured by connecting a diode and a capacitor in n stages in series to positively rectify and amplify the secondary side AC voltage of the transformer in n stages, and the negative side voltage doubler rectifier circuit is a secondary side of the transformer. 2. The static eliminator power supply device according to claim 1, wherein a diode and a capacitor are connected in series in m stages to amplify and rectify the side AC voltage by m stages less than n.
JP13245993A 1993-05-11 1993-05-11 Power supply for static eliminator Expired - Lifetime JP2520839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13245993A JP2520839B2 (en) 1993-05-11 1993-05-11 Power supply for static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13245993A JP2520839B2 (en) 1993-05-11 1993-05-11 Power supply for static eliminator

Publications (2)

Publication Number Publication Date
JPH06325892A JPH06325892A (en) 1994-11-25
JP2520839B2 true JP2520839B2 (en) 1996-07-31

Family

ID=15081861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13245993A Expired - Lifetime JP2520839B2 (en) 1993-05-11 1993-05-11 Power supply for static eliminator

Country Status (1)

Country Link
JP (1) JP2520839B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173233B2 (en) 1998-12-10 2008-10-29 和男 元内 Ion generator
EP1189319A4 (en) * 2000-03-27 2008-05-14 Motouchi Kyoko Ionizer
US7224567B2 (en) 2001-11-16 2007-05-29 Kazuo Motouchi Structural arrangements for ion generator to promote ionization efficiency
DE10211429C1 (en) * 2002-03-15 2003-12-04 Krause Heike Ionization device to compensate for electrostatic charging in paper and textiles has direct current source inverter and multiplier to feed electrode system
CN104426161A (en) * 2013-08-27 2015-03-18 兰州新盛光伏科技有限公司 Photovoltaic grid-connected power generation system
CN104578828B (en) * 2013-10-09 2017-05-17 核工业西南物理研究院 Direct current voltage-doubler rectifier

Also Published As

Publication number Publication date
JPH06325892A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
BR9714950A (en) Electronic ballast to drive at least one electro-gas discharge lamp.
JP2520840B2 (en) DC static eliminator
JP2520839B2 (en) Power supply for static eliminator
EP0887899A3 (en) Power supply apparatus for laser
JP2004063431A (en) Static eliminator
EP1056188A3 (en) Power factor correction circuit
JP2789187B2 (en) Mobile object static elimination method
JPH0833341A (en) Power factor improving switching power supply circuit
JP2909893B2 (en) AC / DC neutralizer
JPH0531200U (en) DC static eliminator
JP3724154B2 (en) Lamp drive circuit
JPS60167683A (en) Power source
JP2000092842A (en) Charging circuit using piezoelectric transformer
JP3395858B2 (en) Power factor improvement circuit of switching power supply
JP3395857B2 (en) Power factor improvement circuit of switching power supply
KR970010605B1 (en) Dc type power supply device
JP3235366B2 (en) Inverter device
JP3134958B2 (en) Power supply device, discharge lamp lighting device and lighting device
JP2936561B2 (en) DC converter device
JP3456320B2 (en) Transistor inverter device
JP3413966B2 (en) Inverter device
JP3231175B2 (en) Switching power supply
RU2095928C1 (en) Direct-to-direct voltage converter
JPH0341891Y2 (en)
JPS61227670A (en) Quadruple voltage rectifier circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090517

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110517

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 17

EXPY Cancellation because of completion of term