JP2520605Y2 - Composite antenna - Google Patents

Composite antenna

Info

Publication number
JP2520605Y2
JP2520605Y2 JP1989133686U JP13368689U JP2520605Y2 JP 2520605 Y2 JP2520605 Y2 JP 2520605Y2 JP 1989133686 U JP1989133686 U JP 1989133686U JP 13368689 U JP13368689 U JP 13368689U JP 2520605 Y2 JP2520605 Y2 JP 2520605Y2
Authority
JP
Japan
Prior art keywords
radiating element
antenna
conductor
circular
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989133686U
Other languages
Japanese (ja)
Other versions
JPH0373018U (en
Inventor
一郎 鳥山
慎一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1989133686U priority Critical patent/JP2520605Y2/en
Publication of JPH0373018U publication Critical patent/JPH0373018U/ja
Application granted granted Critical
Publication of JP2520605Y2 publication Critical patent/JP2520605Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は、複数の周波数帯を使用する移動局に好適
な、複合アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a composite antenna suitable for a mobile station using a plurality of frequency bands.

[考案の概要] この考案は、円環アンテナと、円形放射素子のマイク
ロストリップアンテナとを組み合わせた複合アンテナに
おいて、円形放射素子の直径を円環アンテナの円環状放
射素子の内径より小さく設定して、円形放射素子を円環
状放射素子と同心に配置することにより、小形かつ簡単
な構成で、比較的近接した複数の周波数帯においても、
各単位アンテナの偏波特性及び放射特性を任意に設定す
ることができるようにしたものである。
[Summary of the Invention] This invention is a composite antenna in which a circular antenna and a microstrip antenna having a circular radiating element are combined, and the diameter of the circular radiating element is set to be smaller than the inner diameter of the circular radiating element of the circular antenna. , By arranging the circular radiating element concentrically with the annular radiating element, a small and simple structure, even in a plurality of relatively close frequency bands,
The polarization characteristic and the radiation characteristic of each unit antenna can be arbitrarily set.

[従来の技術] 従来、静止人工衛星を介して、基地局と多数の移動局
との間の無線通信系が構成され、または提案されてい
る。
[Prior Art] Conventionally, a radio communication system between a base station and a large number of mobile stations has been constructed or proposed via a geostationary satellite.

このような無線通信系は、例えば第6図に示すよう
に、衛星STdを介して、基地局CSから多数の移動局Mへ
の下り回線が構成されると共に、各移動局から基地局CS
への上り回線が衛星STuを介して構成される。上り回線
の使用周波数は例えば1.6GHzとされ,下り回線の使用周
波数は例えば2.5GHzまたは4.2GHzとされる。例えば運輸
会社のような利用者HQと基地局CSとが別の通信回線Lで
接続される。
In such a wireless communication system, for example, as shown in FIG. 6, a downlink from the base station CS to a large number of mobile stations M is configured via a satellite STd, and each mobile station makes a base station CS.
The up-link to is configured via the satellite STu. The frequency used in the uplink is, for example, 1.6 GHz, and the frequency used in the downlink is, for example, 2.5 GHz or 4.2 GHz. For example, a user HQ such as a transportation company and a base station CS are connected by another communication line L.

上述のような無線通信系において、移動局側のアンテ
ナとしては、構成が簡単で形状が小さく、マイクロスト
リップアンテナのように低プロファイルであることが必
要である。
In the wireless communication system as described above, it is necessary for the antenna on the mobile station side to have a simple configuration, a small shape, and a low profile like a microstrip antenna.

従来、上述のような低プロファイルアンテナとして、
電子情報通信学会技術研究報告AP85−62(昭和60年10
月)などにより、第7図及び第8図に示すように、円環
アンテナと円形マイクロストリップアンテナとを積層し
た2周波共用アンテナが知られている。
Conventionally, as a low profile antenna as described above,
IEICE Technical Report AP85-62 (1960
As shown in FIG. 7 and FIG. 8, a dual frequency shared antenna in which a circular ring antenna and a circular microstrip antenna are stacked is known.

両図において、(1)は円環アンテナであって、円形
の接地導体(2)及び放射素子(3)が同軸に配置さ
れ、中央部が円筒導体(4)により短絡されて構成され
る。この円環アンテナの放射素子(3)に対向して、マ
イクロストリップアンテナの円形の放射素子(5)が同
軸に配置される。両放射素子(3)及び(5)の中心か
ら離れた位置に給電点(3f)及び(5f)が設けられ、接
地導体(2)の下側から同軸給電線(6)及び(7)の
内部導体が接続される。
In both figures, (1) is a ring antenna, which is configured by arranging a circular ground conductor (2) and a radiating element (3) coaxially, and shorting the central part by a cylindrical conductor (4). The circular radiating element (5) of the microstrip antenna is coaxially arranged so as to face the radiating element (3) of the annular antenna. Feeding points (3f) and (5f) are provided at positions distant from the centers of both radiating elements (3) and (5), and the coaxial feeding lines (6) and (7) are connected from the lower side of the ground conductor (2). The inner conductor is connected.

上述の複合アンテナは、それぞれTM11モードで励振さ
れて直線偏波を放射し、双方で数%の周波数帯域をカバ
ーする。また、指向性は正面方向に最大利得を有する単
方向性となる。
The above composite antennas are each excited by TM 11 mode and radiate linearly polarized waves, and both cover a frequency band of several percent. The directivity is unidirectional with maximum gain in the front direction.

[考案が解決しようとする課題] ところで、静止衛星を利用した移動無線システムにお
いて、移動局から見た衛星の仰角は、中緯度の地域で、
概ね25〜65°の範囲におさまる。
[Problems to be solved by the invention] By the way, in a mobile radio system using a geostationary satellite, the elevation angle of the satellite seen from the mobile station is in the mid-latitude region,
It fits in the range of 25-65 °.

ところが、前述のような従来の複合アンテナでは、移
動局側で使用する場合、アンテナの最大利得方向と衛星
の仰角とが一致せず、アンテナの利得が低下するという
問題があった。
However, in the conventional composite antenna as described above, when used on the mobile station side, the maximum gain direction of the antenna and the elevation angle of the satellite do not match, and there is a problem that the antenna gain decreases.

また、前述の無線通信系で使用されるような、その比
が2倍以上にもなる程かけ離れた送信周波数帯及び受信
周波数帯をカバーすることができないという問題があっ
た。
Further, there is a problem that the transmission frequency band and the reception frequency band which are far apart from each other cannot be covered as the ratio becomes twice or more as used in the above-mentioned wireless communication system.

更に、前述の複合アンテナでは、構造が複雑であり、
円環アンテナの放射素子(3)とマイクロストリップア
ンテナの放射素子(5)の直径がほぼ等しいため、実際
の組立が困難であるという問題もあった。
Further, the above-mentioned composite antenna has a complicated structure,
Since the radiating element (3) of the circular ring antenna and the radiating element (5) of the microstrip antenna have substantially the same diameter, there is a problem that actual assembly is difficult.

上述のような指向性と形状・構造の問題を概ね解消す
るものとして、本出願人は、特願昭63−331494号におい
て、接地導体上にそれぞれ誘電体層を介して直径の大き
い順に複数の円板導体を積層し、最小径の円板導体に
は、その中心に給電すると共に、他の円板導体にはオフ
セット給電することにより、最小径の円板導体が最高周
波数帯の放射素子となり、他の円板導体は隣接する小径
円板導体に対する接地導体となると共に、順次低くなる
周波数帯の放射素子ともなって、1.6GHz及び4.2GHzの周
波数帯において、垂直面で主放射ビームが所要の仰角範
囲をカバーすると共に、水平面無指向性とした積層型の
マイクロストリップアンテナを既に提案している。
In order to solve the above-mentioned problems of directivity and shape / structure, the applicant of the present application discloses in Japanese Patent Application No. 63-331494 that a plurality of conductors are arranged in order of increasing diameter through a dielectric layer. By stacking disc conductors and feeding the disc conductor with the smallest diameter to the center of the disc conductor and offset feeding the other disc conductors, the disc conductor with the smallest diameter becomes the radiating element in the highest frequency band. , The other disc conductors serve as ground conductors for the adjacent small-diameter disc conductors, and also serve as radiating elements in the successively lower frequency bands.In the frequency bands of 1.6GHz and 4.2GHz, the main radiation beam is required in the vertical plane. We have already proposed a stacked microstrip antenna that covers the elevation range and is omnidirectional in the horizontal plane.

次に、第9図及び第10図を参照しながら、既提案の積
層型マイクロストリップアンテナについて説明する。
Next, the proposed stacked microstrip antenna will be described with reference to FIGS. 9 and 10.

第9図及び第10図において、(10S)は既提案の積層
型マイクロストリップアンテナであって、いずれも円形
の接地導体(11)上に、ふっ素樹脂のような低損失の誘
電体層(12)を介して、中径の円板導体(13)が同心に
積層配設され、この円板導体(13)上に、小径の誘電体
層(14)を介して、小径の円板導体(15)が同心に積層
配設されて構成される。各導体(11),(13),(15)
の半径、誘電体層(12),(14)の誘電率及び厚さは、
例えば次のように設定される。
In FIG. 9 and FIG. 10, (10S) is an already-proposed laminated microstrip antenna, both of which have a low loss dielectric layer (12) such as fluororesin on a circular ground conductor (11). ), A medium-diameter disc conductor (13) is concentrically laminated, and a small-diameter disc conductor (13) is provided on the disc conductor (13) via a small-diameter dielectric layer (14). 15) are concentrically stacked and configured. Each conductor (11), (13), (15)
Radius, dielectric constant and thickness of the dielectric layers (12) and (14) are
For example, it is set as follows.

r11=90mm, r13=55mm r15=26.5mm, εr=2.6 t12=t14=3.2mm 中径の円板導体(13)には、その中心から等しくrf
けオフセットされ、角間隔θの2ヶ所に給電点(13f1
及び(13f2)が設けられ、小径の円板導体(15)の中心
に給電点(15ff)が設けられる。給電点(13f1)及び
(13f2)のオフセット距離及び角間隔は例えば次のよう
に設定される。
r 11 = 90mm, r 13 = 55mm r 15 = 26.5mm, ε r = 2.6 t 12 = t 14 = 3.2mm A medium diameter disc conductor (13) is offset by r f equally from its center and Feeding points (13f 1 ) at two locations with an interval θ
And (13f 2 ) are provided, and the feeding point (15f f ) is provided at the center of the disk conductor (15) having a small diameter. The offset distances and angular intervals of the feeding points (13f 1 ) and (13f 2 ) are set as follows, for example.

rf=33mm, θ=135° 中径円板導体(13)の両給電点(13f1)及び(13f2
には、それぞれ同軸給電線(21)及び(22)が接続され
る。この場合、両給電線(21)及び(22)の外部導体は
接地導体(11)に接続される。
r f = 33mm, θ = 135 ° Both feeding points (13f 1 ) and (13f 2 ) of medium diameter disc conductor (13)
The coaxial feeders (21) and (22) are connected to the respective terminals. In this case, the outer conductors of both feeder lines (21) and (22) are connected to the ground conductor (11).

また、小径円板導体(15)の給電点(15f)には同軸
給電線(25)の内部導体(26)が接続され、給電線(2
5)の外部導体(27)は接地導体(11)に接続される。
In addition, the inner conductor (26) of the coaxial power feed line (25) is connected to the power feed point (15f) of the small-diameter disc conductor (15), and the power feed line (2
The outer conductor (27) of 5) is connected to the ground conductor (11).

なお、中径円板導体(13)は、その中心において、ス
ルーホール加工により接地導体(11)と電気的に接続さ
れており、従って、同軸給電線(25)の外部導体(27)
は中径円板導体(13)の中央部に接続されることにな
る。
The medium-diameter disk conductor (13) is electrically connected to the ground conductor (11) at the center by through-hole processing, and therefore, the outer conductor (27) of the coaxial feeder line (25).
Will be connected to the center of the medium-diameter disk conductor (13).

既提案例の動作は次の通りである。 The operation of the already proposed example is as follows.

小径円板導体(15)は中心給電であり、その半径はr
15=26.5mmであって、TM01モードで4.2GHzに共振して、
垂直偏波の放射素子となる。このとき、中径円板導体
(13)は小径円板導体(15)に対する接地導体として機
能し、主ビームが所望の仰角範囲となるほぼ円錐状の垂
直指向性が得られる。
The small-diameter disc conductor (15) is the center feed and its radius is r
15 = 26.5mm, resonating to 4.2GHz in TM 01 mode,
It becomes a vertically polarized radiation element. At this time, the medium-diameter disc conductor (13) functions as a ground conductor for the small-diameter disc conductor (15), and a substantially conical vertical directivity in which the main beam is in a desired elevation angle range is obtained.

一方、中径円板導体(13)は、インピーダンスがそれ
ぞれ50Ωの、第1の給電点(13f1)が基準位相(0
°)、第2の給電点(13f2)が−90°位相の1.6GGHzの
信号でTM21モードで励振されて、円偏波の放射素子とな
り、ほぼ円錐状の所望の垂直指向性が得られる。
On the other hand, in the medium-diameter disk conductor (13), the first feeding point (13f 1 ) having an impedance of 50Ω and the reference phase (0
°), the second feeding point (13f 2 ) is excited in TM 21 mode with a 1.6GGHz signal with a -90 ° phase, and becomes a circularly polarized radiating element, giving the desired conical vertical directivity. To be

また、TM01モード以外で放射素子の中点のインピーダ
ンスは基本的に0Ωであるから、前述のように、中径円
板導体(13)の中央部を接地導体(11)に接続して動作
の安定が図られる。
In addition, since the impedance at the midpoint of the radiating element is basically 0Ω in the modes other than TM 01 mode, as described above, it operates by connecting the center part of the medium diameter disc conductor (13) to the ground conductor (11). Stability is achieved.

上述の既提案例では、所望の指向性が正面方向の利得
を必要としない円錐ビームであるため、正面方向の環境
がアンテナ自身の特性に及ぼす影響が少ないことに着目
して、低い方の周波数帯のアンテナの正面中央に高い方
の周波数帯のアンテナを積層することにより、小形でか
つ簡単な構成で所望の指向性を実現している。
In the above-mentioned proposed example, since the desired directivity is a cone beam that does not require the gain in the front direction, focusing on the fact that the environment in the front direction has little influence on the characteristics of the antenna itself, the lower frequency By stacking the antenna of the higher frequency band in the center of the front of the band antenna, the desired directivity is realized with a small and simple structure.

ところが、下り回線として2.5GHz帯が使用される場
合、小径円板導体(15)の半径r15が周波数に反比例し
て大きくなるため、第9図及び第10図に破線で示すよう
に、1.6GHz帯用の中径円板導体(13)のオフセット給電
点(13f1)及び(13f2)が覆われてしまい、指向性等の
所望の特性が損なわれるという問題が生ずる。
However, when the 2.5 GHz band is used as the downlink, the radius r 15 of the small-diameter disk conductor (15) increases in inverse proportion to the frequency, so as shown by broken lines in FIGS. 9 and 10, 1.6 The offset feeding points (13f 1 ) and (13f 2 ) of the medium-diameter disk conductor (13) for GHz band are covered, which causes a problem that desired characteristics such as directivity are impaired.

また、小径円板導体(15)がTM01モードで励振されて
垂直偏波の放射素子となるため、下り回線でも円偏波が
使用される場合には、これに対応することができないと
いう問題が生ずる。
Also, since the small-diameter disk conductor (15) is excited in TM 01 mode and becomes a vertically polarized radiating element, it is not possible to deal with this when circularly polarized waves are used even in the downlink. Occurs.

かかる点に鑑み、この考案の目的は、小形かつ簡単な
構成で、比較的近接した複数の周波数帯においても、各
単位アンテナの偏波特性及び放射特性を任意に設定する
ことができる複合アンテナを提供するところにある。
In view of this point, an object of the present invention is a small and simple configuration, and a composite antenna capable of arbitrarily setting the polarization characteristics and radiation characteristics of each unit antenna even in a plurality of relatively close frequency bands. Is in the place of providing.

〔課題を解決するための手段〕[Means for solving the problem]

本考案にかかる複合アンテナは、円環状放射素子の内
径部を接地導体に接続した円環アンテナと、円形放射素
子のマイクロストリップアンテナとを組み合わせた複合
アンテナであって、上記円形放射素子の直径を上記円環
状放射素子の内径より小さく設定し、上記円形放射素子
を上記円環状放射素子と同心に配置し、上記円形放射素
子と上記円環状放射素子は各々それらの中心から等しく
オフセットされた複数箇所に給電点が設けられている。
A composite antenna according to the present invention is a composite antenna in which an annular antenna in which an inner diameter of an annular radiating element is connected to a ground conductor is combined with a microstrip antenna of a circular radiating element, and the diameter of the circular radiating element is Set smaller than the inner diameter of the annular radiating element, the circular radiating element is arranged concentrically with the annular radiating element, the circular radiating element and the annular radiating element are respectively at a plurality of locations which are equally offset from their centers. Is equipped with a feeding point.

[作用] この考案によれば、小形かつ簡単な構成で、比較的近
接した複数の周波数帯においても、各単位アンテナの偏
波特性及び放射特性を任意に設定される。
[Operation] According to the present invention, the polarization characteristic and the radiation characteristic of each unit antenna can be arbitrarily set even in a plurality of relatively close frequency bands with a small and simple configuration.

[実施例] 以下、第1図〜第5図を参照しながら、この考案によ
る複合アンテナの一実施例について説明する。
[Embodiment] An embodiment of the composite antenna according to the present invention will be described below with reference to FIGS. 1 to 5.

この考案の一実施例の構成を第1図及び第2図に示
す。
The construction of one embodiment of the present invention is shown in FIGS.

この両図において、(30)は円環アンテナであって、
いずれも円形の接地導体(31)上に、ふっ素樹脂のよう
な低損失の誘電体層(32)を介して、円環導体(放射素
子)(33)が同軸に積層配設され、この円環導体(33)
の内周部(33i)が、多数箇所のスルーホール(34)を
介して、接地導体(31)と短絡されて構成される。円環
導体(33)には、その中心から等しくオフセットされた
2ヶ所に給電点(35)及び(36)が設けられ、両給電点
(35)及び(36)に同軸給電線(37)及び(38)がそれ
ぞれ接続される。この場合、両給電線(37)及び(38)
の外部導体は接地導体(31)に接続される。
In both figures, (30) is a circular antenna,
In each case, an annular conductor (radiating element) (33) is coaxially laminated on a circular ground conductor (31) via a low-loss dielectric layer (32) such as fluororesin. Ring conductor (33)
The inner peripheral portion (33i) is short-circuited with the ground conductor (31) through the through holes (34) at a large number of places. The annular conductor (33) is provided with feed points (35) and (36) at two locations that are equally offset from the center thereof, and coaxial feed lines (37) and (36) are provided at both feed points (35) and (36). (38) are connected respectively. In this case, both feeder lines (37) and (38)
The outer conductor of is connected to the ground conductor (31).

円板導体(放射素子)(41)が、円環アンテナ(30)
の誘電体層(32)上で、円環導体(33)の内側に同心に
配置されて、接地導体(31)を共用するマイクロストリ
ップアンテナが構成される。この円板導体(41)にも、
その中心から等しくオフセットされた2ヶ所に給電点
(42)及び(43)が設けられて、円環アンテナ(30)と
は独立に、両給電点(42)及び(43)に同軸給電線(4
4)及び(45)がそれぞれ接続される。
The disk conductor (radiating element) (41) is an annular antenna (30).
A microstrip antenna that is concentrically arranged inside the annular conductor (33) on the dielectric layer (32) and shares the ground conductor (31). Also in this disc conductor (41),
Feeding points (42) and (43) are provided at two locations that are equally offset from the center, and coaxial feeding lines (42) and (43) are provided independently of the annular antenna (30). Four
4) and (45) are connected respectively.

なお、円板導体(41)と円環導体(33)とは、同じ銅
張積層板をエッチング処理して容易に形成することがで
きる。
The disc conductor (41) and the annular conductor (33) can be easily formed by etching the same copper clad laminate.

各導体(31),(33),(41)の寸法、誘電体層(3
2)の厚さ及び誘電率は、例えば次のように設定され
る。
Dimensions of each conductor (31), (33), (41), dielectric layer (3
The thickness and dielectric constant of 2) are set as follows, for example.

r31=100mm, ro33=76.4mm ri33=46.7mm, r41=35.3mm t32=3.2mm, εr=2.6 また、各給電点(35),(36);(42),(43)のオ
フセット距離及び角間隔は例えば次のように設定され
る。
r 31 = 100mm, ro 33 = 76.4mm ri 33 = 46.7mm, r 41 = 35.3mm t 32 = 3.2mm, ε r = 2.6 Moreover, each feeding point (35), (36); (42), (43 ) The offset distance and the angular interval are set as follows, for example.

rf3=58mm, rf4=17.5mm,θ=135° なお、各放射素子(33)及び(41)の給電点を半径方
向に整列させる必要はない。
rf 3 = 58 mm, rf 4 = 17.5 mm, θ = 135 ° It is not necessary to align the feeding points of the radiating elements (33) and (41) in the radial direction.

上述の実施例の動作は次のとおりである。 The operation of the above-described embodiment is as follows.

1.6GHz帯用の円環アンテナ(30)の放射素子(33)
と、2.5GHz帯用のマイクロストリップアンテナの放射素
子(41)とは、いずれも前述の既提案例と同様に、90°
の位相差でTM21モードで励振されて、放射素子(41)が
右旋性円偏波を放射し、放射素子(33)が左旋性円偏波
を放射する。そして、第3図A,Bに示すように、それぞ
れほぼ円錐状の所望の垂直指向性が得られる。また、第
4図及び第5図に両アンテナの入力インピーダンスを示
す。
Radiating element (33) of circular ring antenna (30) for 1.6GHz band
And the radiating element (41) for the 2.5 GHz band microstrip antenna are both 90 ° as in the previously proposed example.
The radiating element (41) radiates a right-handed circularly polarized wave and the radiating element (33) radiates a left-handed circularly polarized wave by being excited in the TM 21 mode with a phase difference of. Then, as shown in FIGS. 3A and 3B, desired vertical directivities each having a substantially conical shape are obtained. The input impedances of both antennas are shown in FIGS. 4 and 5.

この実施例では、円環アンテナ(30)とマイクロスト
リップアンテナを組み合わせたことにより、接地導体を
共用しているにもかかわらず、両者のアイソレーション
が大きくとれ、給電系が独立しているため、それぞれの
共振周波数、偏波特性及び放射特性を任意に設定するこ
とができる。
In this embodiment, by combining the annular antenna (30) and the microstrip antenna, the ground conductor is shared, but the isolation between the two is large and the feeding system is independent. Each resonance frequency, polarization characteristic, and radiation characteristic can be set arbitrarily.

[考案の効果] 以上詳述のように、この考案によれば、マイクロスト
リップアンテナの円形放射素子の直径を円環アンテナの
円環状放射素子の内径より小さく設定して、円形放射素
子を円環状放射素子と同心に配置するようにしたので、
小形かつ簡単な構成で、比較的近接した複数の周波数帯
においても、各単位アンテナの偏波特性及び放射特性を
任意に設定することができる複合アンテナが得られる。
[Effect of the Invention] As described in detail above, according to the present invention, the diameter of the circular radiating element of the microstrip antenna is set smaller than the inner diameter of the annular radiating element of the annular antenna so that the circular radiating element is annular. Since it is arranged concentrically with the radiating element,
It is possible to obtain a composite antenna having a small size and a simple configuration in which polarization characteristics and radiation characteristics of each unit antenna can be arbitrarily set even in a plurality of relatively close frequency bands.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はこの考案による複合アンテナの一実
施例の構成を示す平面図及び断面図、第3図はこの考案
の一実施例の垂直指向性を示す線図、第4図及び第5図
はこの考案の一実施例の各要部のインピーダンス特性を
示す線図、第6図はこの考案の説明のための概念図、第
7図及び第8図は従来の複合アンテナの構成例を示す平
面図及び断面図、第9図及び第10図は既提案による積層
形のアンテナの構成例を示す平面図及び断面図である。 (30)は円環アンテナ、(31)は接地導体、(32)は誘
電体層、(33)は円環状放射素子、(34)はスルーホー
ル、(35),(36),(42),(43)は給電点、(41)
は円形放射素子である。
1 and 2 are a plan view and a sectional view showing the structure of an embodiment of a composite antenna according to the present invention, and FIG. 3 is a diagram showing the vertical directivity of an embodiment of the present invention, FIG. 4 and FIG. FIG. 5 is a diagram showing impedance characteristics of each main part of one embodiment of the present invention, FIG. 6 is a conceptual diagram for explaining the present invention, and FIGS. 7 and 8 are structures of a conventional composite antenna. 9A and 9B are a plan view and a cross-sectional view showing an example, and FIGS. 9 and 10 are a plan view and a cross-sectional view showing a configuration example of a proposed laminated antenna. (30) is an annular antenna, (31) is a ground conductor, (32) is a dielectric layer, (33) is an annular radiating element, (34) is a through hole, (35), (36), (42). , (43) is the feeding point, (41)
Is a circular radiating element.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】円環状放射素子の内径部を接地導体に接続
した円環アンテナと、 円形放射素子のマイクロストリップアンテナとを組み合
わせた複合アンテナにおいて、 上記円形放射素子の直径を上記円環状放射素子の内径よ
り小さく設定し、 上記円形放射素子を上記円環状放射素子と同心に配置
し、 上記円形放射素子と上記円環状放射素子は各々それらの
中心から等しくオフセットされた複数箇所に給電点が設
けられていることを特徴とする複合アンテナ。
1. A composite antenna in which a circular antenna in which an inner diameter portion of the circular radiating element is connected to a ground conductor and a microstrip antenna of a circular radiating element are combined, wherein the diameter of the circular radiating element is the circular radiating element. Set smaller than the inner diameter of, the circular radiating element is arranged concentrically with the annular radiating element, and the circular radiating element and the annular radiating element are provided with feeding points at a plurality of positions that are equally offset from their centers, respectively. A complex antenna characterized by being used.
JP1989133686U 1989-11-17 1989-11-17 Composite antenna Expired - Lifetime JP2520605Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989133686U JP2520605Y2 (en) 1989-11-17 1989-11-17 Composite antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989133686U JP2520605Y2 (en) 1989-11-17 1989-11-17 Composite antenna

Publications (2)

Publication Number Publication Date
JPH0373018U JPH0373018U (en) 1991-07-23
JP2520605Y2 true JP2520605Y2 (en) 1996-12-18

Family

ID=31681083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989133686U Expired - Lifetime JP2520605Y2 (en) 1989-11-17 1989-11-17 Composite antenna

Country Status (1)

Country Link
JP (1) JP2520605Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420232B2 (en) * 2001-11-16 2003-06-23 日本アンテナ株式会社 Composite antenna
JP3420233B2 (en) * 2001-11-28 2003-06-23 日本アンテナ株式会社 Composite antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1990年電子情報通信学会春季全国大会B−122

Also Published As

Publication number Publication date
JPH0373018U (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US6697019B1 (en) Low-profile dual-antenna system
US10044111B2 (en) Wideband dual-polarized patch antenna
US5818391A (en) Microstrip array antenna
US6198449B1 (en) Multiple beam antenna system for simultaneously receiving multiple satellite signals
EP2201646B1 (en) Dual polarized low profile antenna
EP0456034B1 (en) Bicone antenna with hemispherical beam
JP3029231B2 (en) Double circularly polarized TEM mode slot array antenna
US10978812B2 (en) Single layer shared aperture dual band antenna
JP2005086801A (en) Microstrip patch antenna for transmission/reception having high gain and wideband, and array antenna with array of same
US20170237174A1 (en) Broad Band Diversity Antenna System
US5323168A (en) Dual frequency antenna
US4555708A (en) Dipole ring array antenna for circularly polarized pattern
JP3167342B2 (en) Transmitting and receiving circularly polarized antenna
US3044063A (en) Directional antenna system
US6819288B2 (en) Singular feed broadband aperture coupled circularly polarized patch antenna
JP2693565B2 (en) Planar antenna
JPH0522013A (en) Dielectric substrate type antenna
JP2520605Y2 (en) Composite antenna
CN109244650A (en) Wide-beam circularly-polarizedmicrostrip microstrip antenna and array
CN111162379B (en) Polarization adjustable antenna array based on double-layer patch antenna
JPS62210703A (en) Plane antenna
EP3357125B1 (en) Cupped antenna
JPH05291816A (en) Plane antenna sharing linearly and circularly polarized waves
US11682842B1 (en) Log periodic array application of minature active differential/quadrature radiating elements
JPH03182102A (en) Microstrip antenna

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term