JP2519754B2 - Process for producing optically active cyanohydrin or enantiomer thereof - Google Patents

Process for producing optically active cyanohydrin or enantiomer thereof

Info

Publication number
JP2519754B2
JP2519754B2 JP62248633A JP24863387A JP2519754B2 JP 2519754 B2 JP2519754 B2 JP 2519754B2 JP 62248633 A JP62248633 A JP 62248633A JP 24863387 A JP24863387 A JP 24863387A JP 2519754 B2 JP2519754 B2 JP 2519754B2
Authority
JP
Japan
Prior art keywords
group
optically active
compound
enantiomer
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62248633A
Other languages
Japanese (ja)
Other versions
JPS6490161A (en
Inventor
紘一 奈良坂
徹 山田
博之 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62248633A priority Critical patent/JP2519754B2/en
Publication of JPS6490161A publication Critical patent/JPS6490161A/en
Application granted granted Critical
Publication of JP2519754B2 publication Critical patent/JP2519754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学活性シアノヒドリンの製造方法に関す
る。光学活性シアノヒドリンは農薬、医薬等の中間体と
して重要な化合物である。例えば、S−α−シアノ−m
−フェノキシベンジルアルコールはピレスロイド系殺虫
剤の重要な中間体であり、またR−1−シアノ−3−フ
ェニルプロパン−1−オールはエナラプリル、キナプリ
ルなどに代表される血圧降下剤の重要な中間体である。
TECHNICAL FIELD The present invention relates to a method for producing an optically active cyanohydrin. Optically active cyanohydrin is an important compound as an intermediate for agricultural chemicals, pharmaceuticals and the like. For example, S-α-cyano-m
-Phenoxybenzyl alcohol is an important intermediate for pyrethroid insecticides, and R-1-cyano-3-phenylpropan-1-ol is an important intermediate for blood pressure lowering agents such as enalapril and quinapril. is there.

〔従来の技術〕[Conventional technology]

従来アルデヒドを原料として光学活性シアノヒドリン
を合成する方法としては光学活性ホウ素化合物を用いる
方法(Tetrahedron Lett.,27,4721(1986))、D−オ
キシニトリラーゼを用いる方法(Angew.Chem.,77,1139
(1965))、合成ペプチドを用いる方法(Bull.Chem.So
c.Japan.,59,893(1986))などが知られているが、得
られたシアノヒドリンの光学純度は必ずしも満足できる
ものではない。
As a conventional method for synthesizing an optically active cyanohydrin using an aldehyde as a raw material, a method using an optically active boron compound (Tetrahedron Lett., 27,4721 (1986)) and a method using D-oxynitrilase (Angew. Chem., 77 , 1139)
(1965)), a method using a synthetic peptide (Bull.Chem.So.
c.Japan., 59 , 893 (1986)), etc., but the optical purity of the obtained cyanohydrin is not always satisfactory.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

アルデヒドを原料として光学分割に頼らずに光学活性
シアノヒドリンを高い光学収率で合成する技術は従来知
られておらず、光学分割による方法(例えば特開昭52−
148047号に記されているごとく光学活性カルボン酸との
エステルとし、ジアステレマーでの分離を行なう)に頼
らざるを得ないのが現状である。本発明は光学分解とい
う操作を行なうことなく高い光学純度で光学活性シアノ
ヒドリンを合成する方法を提供することを目的とするも
のである。
A technique for synthesizing an optically active cyanohydrin with a high optical yield from an aldehyde as a raw material without relying on the optical resolution has not heretofore been known, and a method using the optical resolution (for example, JP-A-52-
As described in 148047, as an ester with an optically active carboxylic acid, and the separation with diastereomer is performed), the current situation is to rely on. An object of the present invention is to provide a method for synthesizing an optically active cyanohydrin with high optical purity without performing an operation of optical decomposition.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、一般式 R1CHO ……(I) (式中R1はアルキル基、アルケニル基、アリール基、シ
クロアルキル基またはアリールオキシアリール基を表わ
す。) で示される化合物(以下化合物(I)と記す。)と一般
式 R2 3SiCN ……(II) (式中R2は低級アルキル基を表わす。) で示される化合物(以下化合物(II)と記す。)とを一
般式 (式中R3およびR4は同一または異なり、フェニル基また
は低級アルキル基を表わし、R5はフェニル基またはフル
オロフェニル基を表わす。) で示される光学活性チタン化合物(以下化合物(III)
と記す。)またはその鏡像体および結晶性アルミノシリ
ケートの存在下に反応させることにより、一般式 (式中R1は式(I)におけるのと同じ意味を表わす。) で示される光学活性シアノヒドリン(以下化合物(IV)
と記す)またはその鏡像体が好収率かつ高い光学純度で
得られることを見出し、本発明に到達した。
The present inventors have developed a compound represented by the general formula R 1 CHO ... (I) (wherein R 1 represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group or an aryloxyaryl group) (I)) and a compound represented by the general formula R 2 3 SiCN ... (II) (wherein R 2 represents a lower alkyl group) (hereinafter referred to as compound (II)). (In the formula, R 3 and R 4 are the same or different and each represents a phenyl group or a lower alkyl group, and R 5 represents a phenyl group or a fluorophenyl group.) (The following compound (III)
It is written. ) Or its enantiomer and a crystalline aluminosilicate in the presence of the general formula (In the formula, R 1 has the same meaning as in formula (I).) An optically active cyanohydrin represented by
It was found that the above-mentioned) or its enantiomer can be obtained in good yield and high optical purity, and thus reached the present invention.

前記の一般式中のR1,R2,R3,R4およびR5を詳しく説明
する。R1は前述のとおりアルキル基、アルケニル基、ア
リール基、シクロアルキル基またはアリールオキシアル
キル基を表わす。ここでアルキル基としてはメチル基、
エチル基、n−プロピル基、n−ブチル基、n−オクチ
ル基などが例示される。アルケニル基としてはアリル
基、ブテニル基などが例示される。アリール基としては
フェニル基、p−トリル基、ナフチル基などが例示され
る。シクロアルキル基としてはシクロペンチル基、シク
ロヘキシル基などが例示される。アリールオキシアルキ
ル基としては2−フェノキシフェニル基、3−フェノキ
シフェニル着などが例示される。R2は低級アルキル基を
表わすが、具体的にはメチル基、エチル基、プロピル基
が例示される。R3およびR4は同一または異なり、フェニ
ル基または低級アルキル基を表わす。ここで低級アルキ
ル基としてはメチル基、エチル基、プロピル基などが例
示される。R5はフェニル基またはフルオロフェニル基を
表わす。
R 1 , R 2 , R 3 , R 4 and R 5 in the above general formula will be described in detail. R 1 represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group or an aryloxyalkyl group as described above. Here, the alkyl group is a methyl group,
Examples thereof include ethyl group, n-propyl group, n-butyl group, n-octyl group and the like. Examples of the alkenyl group include an allyl group and a butenyl group. Examples of the aryl group include a phenyl group, a p-tolyl group and a naphthyl group. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the aryloxyalkyl group include 2-phenoxyphenyl group and 3-phenoxyphenyl group. R 2 represents a lower alkyl group, and specific examples thereof include a methyl group, an ethyl group and a propyl group. R 3 and R 4 are the same or different and each represents a phenyl group or a lower alkyl group. Examples of the lower alkyl group include methyl group, ethyl group, propyl group and the like. R 5 represents a phenyl group or a fluorophenyl group.

本発明で用いられる化合物(III)は例えば光学活性
な酒石酸エステルより下記の方法により製造することが
できる。
The compound (III) used in the present invention can be produced, for example, from an optically active tartaric acid ester by the following method.

本発明において化合物(III)を用いると化合物(I
V)が得られ、化合物(III)の鏡像体を用いると化合物
(IV)の鏡像体が得られる。
When compound (III) is used in the present invention, compound (I
V) is obtained, and the enantiomer of compound (III) is used to obtain the enantiomer of compound (IV).

本発明においては結晶性アルミノシリケートの存在下
に反応が行なわれる。結晶性アルミノシリケートの具体
例としてはモルデナイト属、ファージャサイト属、チャ
バザイド属などの天然及び合成の結晶性アルミノシリケ
ートが挙げられ、リンデ社のモレキュラーシーブ3A,4A,
5Aなどの使用が推奨される。結晶性アルミノシリケート
は化合物(III)1モルに対し通常50〜300gの量で用い
られる。
In the present invention, the reaction is carried out in the presence of crystalline aluminosilicate. Specific examples of crystalline aluminosilicates include mordenite genus, farjasite genus, natural and synthetic crystalline aluminosilicates such as chabazide genus, Linde molecular sieves 3A, 4A,
Use of 5A is recommended. The crystalline aluminosilicate is usually used in an amount of 50 to 300 g per mol of the compound (III).

本発明において使用する化合物(I)、化合物(II)
および化合物(III)の使用比率は特に制限はないが、
高い光学収率を得るためには化合物(I)に対し化合物
(III)を当モルあるいはそれ以上用いることが好まし
い。また化合物(II)の使用量も化合物(I)に対し当
モルあるいはそれ以上用いることが好ましい。
Compound (I) and compound (II) used in the present invention
And the ratio of the compound (III) to be used is not particularly limited,
In order to obtain a high optical yield, it is preferable to use the compound (III) in an equimolar amount or more with respect to the compound (I). The amount of compound (II) used is preferably equimolar or more than that of compound (I).

反応温度は通常−100℃〜室温の範囲から選ばれる
が、高い光学純度を得るためには−100℃〜−40℃の範
囲内に設定するのが好ましい。本発明の反応は通常溶媒
の存在下に行なわれる。用いられる溶媒は反応条件下に
おいて不活性な溶媒であれば特に制限はないが、本反応
においてはジクロロメタンなどの塩素化炭化水素、トル
エン、ベンゼン、キシレン、n−ヘキサン、シクロヘキ
サンなどの炭化水素溶媒を用いることが好ましい。
The reaction temperature is usually selected in the range of -100 ° C to room temperature, but in order to obtain high optical purity, it is preferably set in the range of -100 ° C to -40 ° C. The reaction of the present invention is usually carried out in the presence of a solvent. The solvent used is not particularly limited as long as it is an inert solvent under the reaction conditions, but in this reaction, a chlorinated hydrocarbon such as dichloromethane, a hydrocarbon solvent such as toluene, benzene, xylene, n-hexane, cyclohexane and the like can be used. It is preferable to use.

以下に本発明の実施例を示し、更に詳しく説明する。 Examples of the present invention will be shown below and will be described in more detail.

実施例1 3−フェニルプロパナールシアノヒドリン リンデ社製のモレキュラーシーブ4A(65mg)のトルエ
ン懸濁液(0.5ml)にあらかじめ調製した下記式(III)
−1に示す光学活性アルコキシチタンのトルエン溶液
(5ml,0.5m mol)を加えた。この懸濁液を−78℃に冷却
し、3−フェニルプロバナール(62mg,0.5m mol)のト
ルエン溶液(2ml)を加え、さらにトリメチルシリルシ
アニド(250mg,2.5m mol)のトルエン溶液(2ml)を加
えた。終夜撹拌しながら、0℃まで昇温し、pH7リン酸
緩衝溶液で反応を停止した。生じる沈殿をセライトで
別し、液を無水硫酸ナトリウムで乾燥した。減圧下溶
媒を留去し、得られる油状物をシリカゲル薄層クロマト
グラフィー(酢酸エチル:ヘキサン)で精製すると、無
色油状物として3−フェニルプロパナールシアノヒドリ
ン(64mg)が得られた。収率80%。Mosherの方法で分析
の結果、光学純度は77%eeであった。
Example 1 3-Phenylpropanal cyanohydrin Formula (III) below prepared in a toluene suspension (0.5 ml) of molecular sieve 4A (65 mg) manufactured by Linde Co.
A toluene solution of the optically active alkoxytitanium shown in -1 (5 ml, 0.5 mmol) was added. This suspension was cooled to −78 ° C., a toluene solution of 3-phenylprobanal (62 mg, 0.5 mmol) (2 ml) was added, and a trimethylsilyl cyanide (250 mg, 2.5 mmol) toluene solution (2 ml) was added. Was added. While stirring overnight, the temperature was raised to 0 ° C. and the reaction was stopped with a pH 7 phosphate buffer solution. The resulting precipitate was separated with Celite, and the liquid was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the resulting oil was purified by silica gel thin layer chromatography (ethyl acetate: hexane) to give 3-phenylpropanal cyanohydrin (64 mg) as a colorless oil. Yield 80%. As a result of analysis by the Mosher method, the optical purity was 77% ee.

1H NMR(CDCl3)δ=1.9〜23(m,2H) 2.6〜3.0(m,2H) 3.3〜3.6(br,1H) 4.1〜4.5(m,1H) 7.15(s,5H) IR(neat):3420,2930,2150,1600,1500,1450,1070cm-1 実施例2〜8 実施例1と同様の方法により、一部反応温度を変えて
フェニルアセトアルデヒド、ベンズアルデヒド3−フェ
ニルプロパナール、シクロヘキシルホルムアルデヒドお
よびn−ノニルアルデヒドのシアノヒドリンを合成し
た。結果を表−1に示す。
1 H NMR (CDCl 3 ) δ = 1.9 to 23 (m, 2H) 2.6 to 3.0 (m, 2H) 3.3 to 3.6 (br, 1H) 4.1 to 4.5 (m, 1H) 7.15 (s, 5H) IR (neat ): 3420,2930,2150,1600,1500,1450,1070cm -1 Examples 2 to 8 Phenylacetaldehyde, benzaldehyde 3-phenylpropanal, cyclohexylformaldehyde by partially changing the reaction temperature in the same manner as in Example 1. And n-nonyl aldehyde cyanohydrins were synthesized. The results are shown in Table 1.

実施例9および10 光学活性アルコキシチタン化合物を下記に示す(II
I)−2および(III)−3に変え、実施例1と同様の反
応を行なった。
Examples 9 and 10 Optically active alkoxy titanium compounds are shown below (II
Substituting I) -2 and (III) -3, the same reaction as in Example 1 was performed.

実施例9 式(III)−2においてArはp−フルオロフェニル基
を示す。
Example 9 In formula (III) -2, Ar represents a p-fluorophenyl group.

実施例10 結果を表−2にまとめて示す。Example 10 The results are summarized in Table-2.

〔発明の効果〕 本発明によれば、農薬、医薬等の中間体として重要な
光学活性シアノヒドリンまたはその鏡像体を好収率かつ
高い光学純度で製造することができる。
[Effect of the Invention] According to the present invention, an optically active cyanohydrin or an enantiomer thereof, which is important as an intermediate for agricultural chemicals, pharmaceuticals, etc., can be produced in good yield and high optical purity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07B 61/00 300 C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07B 61/00 300 C07B 61/00 300

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 R1CHO ……(I) (式中R1はアルキル基、アルケニル基、アリール基、シ
クロアルキル基またはアリールオキシアリール基を表わ
す。) で示される化合物と一般式 R2 3SiCN ……(II) (式中R2は低級アルキル基を表わす。) で示される化合物とを一般式 (式中R3およびR4は同一または異なり、フェニル基また
は低級アルキル基を表わし、R5はフェニル基またはフル
オロフェニル基を表わす。) で示される光学活性チタン化合物またはその鏡像体およ
び結晶性アルミノシリケートの存在下に反応させること
を特徴とする一般式 (式中R1は式(I)におけるのと同じ意味を表わす。) で示される光学活性シアノヒドリンまたはその鏡像体の
製造方法。
1. A compound represented by the general formula R 1 CHO (I) (wherein R 1 represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group or an aryloxyaryl group) and the general formula R 2 3 SiCN (II) (wherein R 2 represents a lower alkyl group) and a compound represented by the general formula (In the formula, R 3 and R 4 are the same or different and each represents a phenyl group or a lower alkyl group, and R 5 represents a phenyl group or a fluorophenyl group.), Or an optically active titanium compound or an enantiomer thereof and a crystalline alumino compound. General formula characterized by reacting in the presence of silicate (Wherein R 1 has the same meaning as in formula (I).) A method for producing an optically active cyanohydrin or an enantiomer thereof.
JP62248633A 1987-09-30 1987-09-30 Process for producing optically active cyanohydrin or enantiomer thereof Expired - Fee Related JP2519754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248633A JP2519754B2 (en) 1987-09-30 1987-09-30 Process for producing optically active cyanohydrin or enantiomer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248633A JP2519754B2 (en) 1987-09-30 1987-09-30 Process for producing optically active cyanohydrin or enantiomer thereof

Publications (2)

Publication Number Publication Date
JPS6490161A JPS6490161A (en) 1989-04-06
JP2519754B2 true JP2519754B2 (en) 1996-07-31

Family

ID=17181016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248633A Expired - Fee Related JP2519754B2 (en) 1987-09-30 1987-09-30 Process for producing optically active cyanohydrin or enantiomer thereof

Country Status (1)

Country Link
JP (1) JP2519754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047557A (en) * 1989-03-08 1991-09-10 Ciba-Geigy Corporation Complexes having optically active ligands, a process for their preparation and their use

Also Published As

Publication number Publication date
JPS6490161A (en) 1989-04-06

Similar Documents

Publication Publication Date Title
JP2648013B2 (en) Chiral compound
CA2078360A1 (en) Process of making substituted azetidinones useful as anti-inflammatory and antidegenerative agents
US4994602A (en) Process for preparing optically active 6-t-butyoxy-3,5-dihydroxyhexanoic esters
Bonadies et al. A new procedure for Horner-Wadsworth-Emmons olefination of carbonyl compounds
JPH05331128A (en) @(3754/24)r)-@(3754/24)-)-4-cyano-3-hydroxylactic acid t-butyl ester and its production
JPH09502459A (en) Method for producing (+)-(1R) -cis-3-oxo-2-pentyl-1-cyclopentaneacetic acid
JP2519754B2 (en) Process for producing optically active cyanohydrin or enantiomer thereof
JPH0987258A (en) Oxazolines, their production and production of asymmetric cyclopropanecarboxylic acids
US4229593A (en) Method to prepare (+)-cis-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid
JP3716460B2 (en) Asymmetric cyclopropanation reaction
HU187287B (en) Process for producing cyclopropane carboxylic and derivatives
US5003083A (en) Process for preparing optically active cyano compound
JP3855295B2 (en) Method for producing bisoxazolines
US5329023A (en) Method of preparing optically active alcohols which consist substantially or entirely of one enantiomer
JPS6340776B2 (en)
US5298623A (en) Cu complexes of bis-oxazolines and their use
US6313353B1 (en) Method for producing an optically active acyloin
US4927936A (en) Quinoline derivatives
JP2709807B2 (en) Process for producing 3-chloro-4-silyloxy-2-cyclopenten-1-ones
JPH0523756B2 (en)
US5023365A (en) Process for preparing an intermediate
US5208352A (en) Process for preparing the R- and S-isomers of 2-hydroxy-methyl-2-octadecyloxymethyl-tetrahydrofuran and their use in preparing stereoisomers of pharmacologically active compounds
JPH09151178A (en) Oxiazolines, their production, production of asymmetric cyclopropanecarboxylic acids using the same
JPH0770040A (en) Optically active cyanohydrin ester
JPH0584304B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees