JP2518465B2 - Flying object guidance device - Google Patents

Flying object guidance device

Info

Publication number
JP2518465B2
JP2518465B2 JP2334488A JP33448890A JP2518465B2 JP 2518465 B2 JP2518465 B2 JP 2518465B2 JP 2334488 A JP2334488 A JP 2334488A JP 33448890 A JP33448890 A JP 33448890A JP 2518465 B2 JP2518465 B2 JP 2518465B2
Authority
JP
Japan
Prior art keywords
angular velocity
axis
antenna
angle
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2334488A
Other languages
Japanese (ja)
Other versions
JPH04203899A (en
Inventor
一博 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2334488A priority Critical patent/JP2518465B2/en
Publication of JPH04203899A publication Critical patent/JPH04203899A/en
Application granted granted Critical
Publication of JP2518465B2 publication Critical patent/JP2518465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、飛しょう体の誘導装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a guidance device for a flying object.

[従来の技術] 従来の比例航法を用いた飛しょう体の誘導装置は、ま
ず角度制御により慣性軸基準の角速度検出器による角速
度信号でアンテナのダンピングを行いながら当該アンテ
ナを目標に指向させ、次に目標の自動追尾を行い、目標
の慣性軸に対する目視線角速度に比例した信号を検出
し、アンテナに固定された慣性角速度検出器を用いてア
ンテナを空間に安定化した上で飛しょう体を目標に命中
させる方式であった。
[Prior Art] A conventional vehicle navigation system using proportional navigation first directs the antenna to a target while damping the antenna with an angular velocity signal from an angular velocity detector based on an inertial axis by angle control, and then Automatically tracks the target, detects a signal proportional to the visual angular velocity with respect to the target inertial axis, stabilizes the antenna in space using the inertial angular velocity detector fixed to the antenna, and then targets the flying object. It was a method to hit.

第3図は従来の装置を説明した図である。図において
1は角度指令または角速度指令指示器、2は角度増幅
器、4は補償回路、5は電流増幅器、6は電流帰還器、
7は駆動モータ、8はアンテナ、11は慣性角速度検出
器、12は積分器、13は補償増幅器、15は解除スイッチ、
16はポテンショメータである。
FIG. 3 is a diagram illustrating a conventional device. In the figure, 1 is an angle command or angular velocity command indicator, 2 is an angle amplifier, 4 is a compensation circuit, 5 is a current amplifier, 6 is a current feedback device,
7 is a drive motor, 8 is an antenna, 11 is an inertial angular velocity detector, 12 is an integrator, 13 is a compensation amplifier, 15 is a release switch,
16 is a potentiometer.

次に動作について説明する。第3図に示す装置では、
角度指令または角速度指令指示器1により飛しょう体軸
と前記アンテナの走査によって得られた目標の方向を示
す目視線がなす角λを指示する。指令角λとポテン
ショメータ16によって得られるアンテナ軸角度λとの差
εを求め、この誤差角εを角度増幅器2で増幅する。こ
こで慣性角速度検出器11からの角速度信号によりアンテ
ナのダンピング(角速度制御)を行った上で、補償増幅
器13を持つ積分器12を介して制御信号を補償回路4に供
給する。前記補償回路4において位相補償を行い電流増
幅器5および電流帰還器6によって電流増幅を行い駆動
モータを介してアンテナ8を走査する。前記目視線角λ
とアンテナ軸角度λとの差εが零になるようにλを走
査させることにより目標を捕捉する。機体軸に対するア
ンテナ軸角度λをポテンショメータ16、慣性軸に対する
アンテナ軸角速度を慣性角速度検出器11により検出し、
フィードバック信号として利用し、角度制御ループを構
成する。
Next, the operation will be described. In the device shown in FIG.
The angle command or angular velocity command indicator 1 indicates the angle λ T formed by the line of sight of the flying body axis and the target line obtained by scanning the antenna. The difference ε between the command angle λ T and the antenna axis angle λ obtained by the potentiometer 16 is calculated, and this error angle ε is amplified by the angle amplifier 2. Here, after damping (angular velocity control) of the antenna by the angular velocity signal from the inertial angular velocity detector 11, the control signal is supplied to the compensation circuit 4 via the integrator 12 having the compensation amplifier 13. Phase compensation is performed in the compensation circuit 4, current amplification is performed by the current amplifier 5 and current feedback device 6, and the antenna 8 is scanned via the drive motor. The visual line angle λ
The target is captured by scanning λ so that the difference ε between T and the antenna axis angle λ becomes zero. The antenna axis angle λ with respect to the machine axis is detected by the potentiometer 16 and the antenna axis angular velocity with respect to the inertial axis is detected by the inertial angular velocity detector 11.
It is used as a feedback signal to form an angle control loop.

一方、目標の自動追尾は、解除スイッチ15により角度
制御ループを解除した上で、角度指令または角速度指令
指示器1により慣性軸に対する目標の目視線角速度
を指示する。指令角速度と慣性角速度検出器11によ
って得られる慣性軸に対するアンテナ軸角速度との差
を求め、この角速度誤差が零になるように角速度制
御を行い、アンテナを空間に安定化させた上で目標の慣
性軸に対する目視線角速度を検出することができる。
On the other hand, in the automatic tracking of the target, after the angle control loop is released by the release switch 15, the target visual linear angular velocity T relative to the inertial axis is set by the angle command or angular velocity command indicator 1.
Instruct. The difference between the commanded angular velocity T and the angular velocity of the antenna axis with respect to the inertial axis obtained by the inertial angular velocity detector 11 is obtained, angular velocity control is performed so that this angular velocity error becomes zero, and the antenna is stabilized in space before the target. The visual linear angular velocity with respect to the axis of inertia can be detected.

[発明が解決しようとする課題] しかしながら、従来の装置では簡便な構成でアンテナ
軸の角度制御を行うことができるものの、角速度信号を
慣性角速度検出器に依存しているために、機体動揺時に
おいてはダンピング効果が低下し、角度制御精度が著し
く劣化するという問題点があった。
[Problems to be Solved by the Invention] However, in the conventional device, although the angle control of the antenna axis can be performed with a simple configuration, the angular velocity signal depends on the inertial angular velocity detector. Had a problem that the damping effect was lowered and the angle control accuracy was significantly deteriorated.

この発明は上記のような課題を解消するためになされ
たもので、アンテナ軸の精密な角度制御が実現できる。
特に、従来、角度制御は発射前または比較的低機動時に
行われていたが、飛しょう体を打ち出した後の慣性誘導
終末期における機体動揺が大きく、従来の方法では要求
を満足出来ないような場合においても対応することがで
きる。
The present invention has been made in order to solve the above problems, and enables precise angle control of the antenna axis.
In particular, conventionally, angle control was performed before launch or during relatively low maneuvering, but the body sway at the end of inertial guidance after launching a projectile is large, and the conventional method cannot satisfy the demand. It can be applied in some cases.

[課題を解決するための手段] この発明による飛しょう体の誘導装置は、目標の目視
線角速度に比例して飛しょう体を誘導させる飛しょう体
の比例航法誘導方式において、アンテナ軸上に置かれた
慣性空間におけるアンテナ軸の角速度を検出する手段
と、機体軸に対するアンテナ軸の角度、角速度を同時に
検出する手段と、前記の2つの手段を誘導条件によって
選択するスイッチと、前記スイッチによって選択された
信号を補償する共通の回路と、前記回路で補償された信
号を電流帰還を行いつつ電流増幅を行い駆動モータを介
してアンテナを駆動する走査系と、前記目標を捜索する
時は機体軸に関する角度制御を行い、前記目標捕捉後は
慣性空間における前記アンテナ軸の角速度を検出しアン
テナ軸を空間に安定させ前記目標を追尾する制御手段と
を備えたものである。
[Means for Solving the Problem] A flying body guiding apparatus according to the present invention is mounted on an antenna axis in a proportional navigation guidance system for a flying body that guides the flying body in proportion to a target visual linear angular velocity. Means for detecting the angular velocity of the antenna axis in the separated inertial space, means for simultaneously detecting the angle and angular velocity of the antenna axis with respect to the fuselage axis, a switch for selecting the above-mentioned two means by induction conditions, and a switch selected by the switch. A common circuit for compensating for the signal, a scanning system for driving the antenna through a drive motor while performing current feedback on the signal compensated by the circuit, and a body axis when searching for the target. Angle control is performed, and after capturing the target, the angular velocity of the antenna axis in the inertial space is detected to stabilize the antenna axis in the space and track the target. It is equipped with means.

[作用] この発明による飛しょう体の誘導装置は、機体動揺時
においても正確に機体軸に対する角度制御を行い目標を
捕捉し、目標捕捉後は慣性軸に対するアンテナの空間安
定化を行うとともに目標の追尾を行うことができる。
[Operation] The flying body guiding apparatus according to the present invention accurately controls the angle with respect to the body axis even when the body is in motion, and captures the target. After capturing the target, the antenna is spatially stabilized with respect to the inertial axis, and the target Tracking can be performed.

[実施例] 以下この発明の一実施例を図を用いて説明する。第1
図はこの発明の一実施例を示す構成図、第2図はこの発
明に関する飛しょう体と目標に関する角度関係を表す図
である。第1図において、1は角度指令または角速度指
令指示器、2は角度増幅器、3は角度増幅器、4は補償
回路、5は電流増幅器、6は電流帰還器、7は駆動モー
タ、8はアンテナ、9はレゾルバ、10は信号変換器、11
は慣性角速度検出器、12は積分器、13は補償増幅器、14
は選択スイッチである。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. First
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an angular relationship between a flying object and a target according to the present invention. In FIG. 1, 1 is an angle command or angular velocity command indicator, 2 is an angle amplifier, 3 is an angle amplifier, 4 is a compensation circuit, 5 is a current amplifier, 6 is a current feedback device, 7 is a drive motor, 8 is an antenna, 9 is a resolver, 10 is a signal converter, 11
Is an inertial angular velocity detector, 12 is an integrator, 13 is a compensation amplifier, 14
Is a selection switch.

飛しょう体の誘導条件により、角度指令λまたは角
速度指令が指令指示器1により指示される。角度指
令が入力される場合は、前記指令角λと信号変換器10
によって得られるアンテナ軸角度λとの差εを求め、こ
の誤差角εを角度増幅器2で増幅し、得られた信号と信
号変換器10によって得られるアンテナ軸角速度λとの差
を角速度増幅器3で増幅する。なお、アンテナの機体軸
に対する状態量の検出は、共通の検出器であるレゾルバ
9を用いて行い、信号変換器により角度、角速度を得て
いる。一方、角速度指令が入力される場合は、アンテナ
8に取り付けられた慣性角速度検出器11によって検出さ
れた慣性軸に対するアンテナ軸の角速度と前記角速度
指令との差の信号が、積分器12および補償増幅器13
を介して選択スイッチ14に入力される。
The angle command λ T or the angular velocity command T is instructed by the command indicator 1 depending on the guiding condition of the flying object. When an angle command is input, the command angle λ T and the signal converter 10
The difference ε with the antenna axis angle λ obtained by the above is obtained, this error angle ε is amplified by the angle amplifier 2, and the difference between the obtained signal and the antenna axis angular velocity λ obtained by the signal converter 10 is obtained by the angular velocity amplifier 3. Amplify. The state quantity of the antenna with respect to the body axis is detected using the resolver 9 which is a common detector, and the angle and angular velocity are obtained by the signal converter. On the other hand, when the angular velocity command is input, the signal of the difference between the angular velocity of the antenna axis with respect to the inertial axis detected by the inertial angular velocity detector 11 attached to the antenna 8 and the angular velocity command T is supplied to the integrator 12 and the compensator. Amplifier 13
Is input to the selection switch 14 via.

上記に示す2つの誤差信号のうちどちらか一方につい
て補償回路4により位相制補償(どちらの信号入力に対
しても同一の回路で対応することができる)を行い、電
流増幅器5および電流帰還器6で電流増幅を行い、駆動
モータ7を介してアンテナ8を走査する。前記選択スイ
ッチ14を切り換えることにより、目視線角λとアンテ
ナ軸角度λとの差εが零になるようにλを走査して機体
動揺にかかわらず正確に目標を捕捉する角度制御機能
と、アンテナ軸を慣性軸に対して空間に安定化した上で
目標を追尾し、目標の慣性軸に対する目視線角速度を検
出し、飛しょう体を目標方向に誘導する機能とを得るこ
とができる。
The compensation circuit 4 performs phase compensation on either one of the two error signals described above (the same circuit can be used for both signal inputs), and the current amplifier 5 and the current feedback device 6 are connected. Then, the current is amplified and the antenna 8 is scanned via the drive motor 7. By switching the selection switch 14, an angle control function of scanning λ so that the difference ε between the line-of-sight angle λ T and the antenna axis angle λ becomes zero and accurately capturing the target regardless of the motion of the body, It is possible to obtain a function of tracking the target after stabilizing the antenna axis in space with respect to the inertial axis, detecting the visual linear angular velocity with respect to the inertial axis of the target, and guiding the flying object in the target direction.

[発明の効果] 以上のように、この発明は、簡便な構成でアンテナ軸
の角度制御を行っていた従来の装置の欠点(ダンピング
を行うための角速度信号を慣性角速度検出器に依存)を
解決するために、機体軸に対する角度、角速度の検出を
レゾルバにより同時に行い、機体動揺にかかわらずアン
テナ軸の精密な角度制御を行い目標を捕捉し、目標捕捉
後は角速度指令入力および前記アンテナ軸上の慣性角速
度検出器による信号によって空間安定化を行いつつ目標
を追尾する角速度制御を行うので、高い目標捜索性能と
高い命中性能を同時に得る効果がある。
[Advantages of the Invention] As described above, the present invention solves the drawback (the angular velocity signal for damping depends on the inertial angular velocity detector) of the conventional device that controls the angle of the antenna axis with a simple configuration. In order to achieve this, the angle and angular velocity with respect to the aircraft axis are simultaneously detected by the resolver, and the target is captured by performing precise angle control of the antenna axis regardless of the motion of the aircraft. Since the angular velocity control for tracking the target is performed while the spatial stabilization is performed by the signal from the inertial angular velocity detector, there is an effect that a high target searching performance and a high hitting performance are simultaneously obtained.

【図面の簡単な説明】 第1図はこの発明の飛しょう体の誘導装置を示す図、第
2図は飛しょう体と目標の関係を示す図、第3図は従来
の飛しょう体の誘導装置を示す図である。 図中1は角度指令または角速度指令指示器、2は角度増
幅器、3は角度増幅器、4は補償回路、5は電流増幅
器、6は電流帰還器、7は駆動モータ、8はアンテナ、
9はレゾルバ、10は信号変換器、11は慣性角速度検出
器、12は積分器、13は補償増幅器、14は選択スイッチ、
15は解除スイッチ、16はポテンショメータである。な
お、図中、同一符号は同一、または相当部分を示す。
[Brief Description of Drawings] FIG. 1 is a diagram showing a guiding device for a flying object of the present invention, FIG. 2 is a diagram showing a relationship between a flying object and a target, and FIG. 3 is a conventional guiding of a flying object. It is a figure which shows an apparatus. In the figure, 1 is an angle command or angular velocity command indicator, 2 is an angle amplifier, 3 is an angle amplifier, 4 is a compensation circuit, 5 is a current amplifier, 6 is a current feedback device, 7 is a drive motor, 8 is an antenna,
9 is a resolver, 10 is a signal converter, 11 is an inertial angular velocity detector, 12 is an integrator, 13 is a compensation amplifier, 14 is a selection switch,
Reference numeral 15 is a release switch, and 16 is a potentiometer. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】目標の目視線角速度に比例して飛しょう体
を誘導させる飛しょう体の誘導装置において、アンテナ
軸上に置かれた慣性空間におけるアンテナ軸の角速度を
検出する角速度検出手段と、機体軸に対するアンテナ軸
の角度、角速度を同時に検出する1つのレゾルバと、前
記角速度検出手段とレゾルバとを誘導条件によって選択
するスイッチと、前記スイッチによって選択された信号
を補償する共通の補償回路と、前記補償回路で補償され
た信号を電流帰還を行いつつ電流増幅を行い駆動モータ
を介してアンテナを駆動する走査系と、前記目標を捜索
する時は機体軸に関する角度制御を行い、前記目標捕捉
後は慣性空間における前記アンテナ軸の角速度を検出し
アンテナ軸を空間に安定させ前記目標を追尾する制御手
段とを備えることを特徴とする飛しょう体の誘導装置。
1. A flying body guiding device for guiding a flying body in proportion to a target visual angular velocity, and angular velocity detecting means for detecting an angular velocity of an antenna axis in an inertial space placed on the antenna axis. One resolver that simultaneously detects the angle of the antenna axis with respect to the body axis and the angular velocity, a switch that selects the angular velocity detecting means and the resolver according to the inductive condition, and a common compensation circuit that compensates the signal selected by the switch. After the target is captured, the scanning system that drives the antenna through the drive motor while performing current amplification on the signal compensated by the compensation circuit while driving the current, and the angle control with respect to the machine axis when searching for the target, Control means for detecting an angular velocity of the antenna axis in the inertial space, stabilizing the antenna axis in the space, and tracking the target. Guidance system flying object, characterized.
JP2334488A 1990-11-30 1990-11-30 Flying object guidance device Expired - Fee Related JP2518465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334488A JP2518465B2 (en) 1990-11-30 1990-11-30 Flying object guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334488A JP2518465B2 (en) 1990-11-30 1990-11-30 Flying object guidance device

Publications (2)

Publication Number Publication Date
JPH04203899A JPH04203899A (en) 1992-07-24
JP2518465B2 true JP2518465B2 (en) 1996-07-24

Family

ID=18277961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334488A Expired - Fee Related JP2518465B2 (en) 1990-11-30 1990-11-30 Flying object guidance device

Country Status (1)

Country Link
JP (1) JP2518465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712861B2 (en) 1991-03-26 1998-02-16 三菱電機株式会社 Flying object guidance control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247997A (en) * 1990-02-26 1991-11-06 Mitsubishi Electric Corp Guidance device for missile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247997A (en) * 1990-02-26 1991-11-06 Mitsubishi Electric Corp Guidance device for missile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712861B2 (en) 1991-03-26 1998-02-16 三菱電機株式会社 Flying object guidance control device

Also Published As

Publication number Publication date
JPH04203899A (en) 1992-07-24

Similar Documents

Publication Publication Date Title
US5557285A (en) Gimbal control system
US5984240A (en) Flight control system for airplane
US5967458A (en) Slaved reference control loop
US4830311A (en) Guidance systems
US3547381A (en) Three-axis orientation system
JP2518465B2 (en) Flying object guidance device
JP3232564B2 (en) Flying object guidance device
US4142695A (en) Vehicle guidance system
GB2375385A (en) Weapon fire control system
JP2673293B2 (en) Semi Strap Down Seeker
US3896751A (en) Navigation method
JPH0526599A (en) Guidance device
JPH088630A (en) Antenna drive controller
JP3451432B2 (en) Flying object guidance device
JPH0222712Y2 (en)
GB2216995A (en) Stabilised weapon system
JPH02106699A (en) Tracing device
JPH0253000A (en) Guiding device for missile
JPS58186808A (en) Guidance system of airframe
JPS62203000A (en) Antiaircraft-artillery target tracking device
JPS6326840B2 (en)
JPS62242800A (en) Guidance controller
JP2505432B2 (en) Azimuth control method for flying objects
JP2600080B2 (en) Tracking device
GB1605292A (en) Radar tracking systems

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees