JP2517728B2 - Variable compression ratio device for internal combustion engine - Google Patents

Variable compression ratio device for internal combustion engine

Info

Publication number
JP2517728B2
JP2517728B2 JP22581687A JP22581687A JP2517728B2 JP 2517728 B2 JP2517728 B2 JP 2517728B2 JP 22581687 A JP22581687 A JP 22581687A JP 22581687 A JP22581687 A JP 22581687A JP 2517728 B2 JP2517728 B2 JP 2517728B2
Authority
JP
Japan
Prior art keywords
liquid chamber
pressure
oil
piston
oil passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22581687A
Other languages
Japanese (ja)
Other versions
JPS6469728A (en
Inventor
博通 尾藤
孝之 荒井
誠之助 原
辰之 松屋
安雄 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Unisia Jecs Corp filed Critical Nissan Motor Co Ltd
Priority to JP22581687A priority Critical patent/JP2517728B2/en
Publication of JPS6469728A publication Critical patent/JPS6469728A/en
Application granted granted Critical
Publication of JP2517728B2 publication Critical patent/JP2517728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads

Abstract

PURPOSE:To improve the responsiveness in switching to a low compression ratio state by supplying the pressurized oil into the upper and lower liquid chambers formed between an outer piston and an inner piston through a check valve opened and closed by the hydraulic pressure before and behind the liquid chambers and discharging the pressurized oil in the upper liquid chamber outside when switching to the low compression ratio state is performed. CONSTITUTION:An inner piston 29 connected with a connecting rod 24 through a piston pin 23 is inserted in free sliding into an outer piston 21 having an annular part 22 screwed onto the lower part inner periphery, and the upper and lower liquid chambers 31 and 32 are formed in the upper and lower parts between the both. A working liquid chamber 25 is formed inside the piston pin 23, and the pressurized oil in the working liquid chamber 25 is supplied into an upper part liquid chamber 31 through a check valve 41, and the pressurized oil in the liquid chamber 31 can be discharged outside from a discharge part 27a through an opening/ closing valve 26 operated according to the variation of the oil pressure in the liquid chamber 31. Further, the upper liquid chamber 31 is allowed to communicate to the lower liquid chamber 31 through a check valve 42, and the pressurized oil in the liquid chamber 31 can be discharged outside through the oil passages 38a and 38b which are opened and closed by the opening/closing valve 26.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、内燃機関の圧縮比可変装置の改良に関す
る。
Description: TECHNICAL FIELD The present invention relates to an improvement in a compression ratio variable device for an internal combustion engine.

従来の技術 周知のように、内燃機関におけるシリンダ内の圧縮比
を高めることは熱効率が向上し機関の始動性や出力及び
燃費,排気エミッションなどの改善策として有効な手段
になっている。しかし、圧縮比を運転条件に拘わらず一
率に高くすると例えばガソリン機関では高負荷時にノッ
キング等が発生し易くなる。一方、ディーゼル機関にあ
っては特に高負荷域でのフリクションが大きくなり機械
的損失によって出力が低下してしまう。
As is well known in the prior art, increasing the compression ratio in the cylinder of an internal combustion engine improves thermal efficiency and is an effective means for improving engine startability, output, fuel consumption, and exhaust emission. However, if the compression ratio is increased to a high rate regardless of the operating conditions, for example, in a gasoline engine, knocking or the like is likely to occur when the load is high. On the other hand, in a diesel engine, the friction becomes large especially in the high load range, and the output decreases due to mechanical loss.

そこで、例えば第6図に示すように圧縮比を機関の運
転状態に応じて可変にする装置が提供されている(実開
昭58−25637号公報参照)。概略を説明すれば、コネク
ティングロッド1に連結されたピストンピン2に、イン
ナピストン3が固定されていると共に、該インナピスト
ン3の外側には軸方向へ摺動可能なアウタピストン4が
配置されている。また、アウタピストン4とインナピス
トン3の上部との間には上部液室5が、アウタピストン
4の下部内周に螺着された円環部7とインナピストン3
との間には、下部液室8が夫々形成されており、各液室
5,8には、油圧回路9の途中に配置され油圧切替弁10や
各スプリング11a,12aによって閉方向に付勢された逆止
弁11,12を介して圧油が供給され、互いの容積変化に伴
ってアウタピストン4を上下に移動させるようになって
いる。更に、上記油圧切替弁10は、機関の運転条件を検
知するセンサ13,13やその信号から加圧装置14に命令を
出す制御回路15などによって制御されている。
Therefore, for example, as shown in FIG. 6, there is provided a device that makes the compression ratio variable according to the operating state of the engine (see Japanese Utility Model Laid-Open No. 58-25637). In brief, an inner piston 3 is fixed to a piston pin 2 connected to a connecting rod 1, and an outer piston 4 slidable in an axial direction is arranged outside the inner piston 3. There is. An upper liquid chamber 5 is provided between the outer piston 4 and the upper portion of the inner piston 3, and an annular portion 7 and an inner piston 3 screwed to the inner circumference of the lower portion of the outer piston 4.
Lower liquid chambers 8 are formed between the respective liquid chambers.
The pressure oil is supplied to the valves 5 and 8 via the oil pressure switching valve 10 and the check valves 11 and 12 which are urged in the closing direction by the springs 11a and 12a, which are arranged in the middle of the hydraulic circuit 9, so that their mutual volumes are increased. The outer piston 4 is moved up and down according to the change. Further, the hydraulic pressure switching valve 10 is controlled by the sensors 13, 13 that detect the operating conditions of the engine, the control circuit 15 that issues a command to the pressurizing device 14 from the signal thereof, and the like.

そして、機関低負荷時あるいは低回転時などにおいて
圧縮比を高める場合は、加圧装置14の加圧を強め、オイ
ルパン16内の圧油が油通路9a→9b→9cに達し、ここでス
プリング11a圧に抗して逆止弁11を押し上げて上部液室
5内に流入する一方、圧油が油通路9bを介して切替弁10
をスプリング10aに抗して、右方向へ油圧して第6図の
位置にする。したがって、油通路9dが閉塞され、下部液
室8内の圧油は油通路9e,9fを通って外部へ流出するた
め、上部液室5内の圧油量の増加に伴ってアウタピスト
ン4が上方に持ち上げられ圧縮比が高められる。
When increasing the compression ratio at low engine load or low engine speed, the pressure of the pressure device 14 is increased so that the pressure oil in the oil pan 16 reaches the oil passages 9a → 9b → 9c. The check valve 11 is pushed up against the pressure of 11a and flows into the upper liquid chamber 5, while the pressure oil is transferred through the oil passage 9b to the switching valve 10
Against the spring 10a and hydraulically move it to the right to the position shown in FIG. Therefore, the oil passage 9d is closed, and the pressure oil in the lower liquid chamber 8 flows out to the outside through the oil passages 9e and 9f. Therefore, as the amount of pressure oil in the upper liquid chamber 5 increases, the outer piston 4 moves. It is lifted up and the compression ratio is increased.

一方、機関高負荷時あるいは高回転時などで圧縮比を
下げる場合は、加圧装置14の加圧力を弱め油通路9b,9c
内の油圧を低下させ、スプリング11aの付勢力によって
逆止弁11が油通路9cを閉じ、切替弁10が第7図に示すよ
うに左方向に移動して油通路9fを閉じ、油通路9d,9eが
接続される。したがって上部液室5内の圧油の略全部
が、逆止弁12によって逆流することなく下部液室8に流
入し、アウタピストン4が下がり低圧縮比状態を維持す
るようになっている。
On the other hand, when the compression ratio is lowered at the time of high engine load or high engine speed, the pressure of the pressure device 14 is weakened and the oil passages 9b, 9c are reduced.
The check valve 11 closes the oil passage 9c by the urging force of the spring 11a, the switching valve 10 moves leftward as shown in FIG. 7 to close the oil passage 9f, and closes the oil passage 9d. , 9e are connected. Therefore, almost all the pressure oil in the upper liquid chamber 5 flows into the lower liquid chamber 8 without backflow by the check valve 12, and the outer piston 4 is lowered to maintain the low compression ratio state.

発明が解決しようとする問題点 しかしながら、上記従来の圧縮比可変装置にあって
は、機関低回転時において加圧装置14の加圧力をスプリ
ング11a圧に抗して高くするようになっているため、機
関の回転数上昇に伴って加圧力が高くなる一般の潤滑用
オイルポンプを使用することが不可能である。したがっ
て、加圧性能の高い別異の加圧装置を用いなければなら
ないか、あるいはオイルポンプの加圧性能を高くしなけ
ればならない不具合がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above-mentioned conventional compression ratio variable device, since the pressurizing force of the pressurizing device 14 is increased against the spring 11a pressure at the time of low engine speed, However, it is impossible to use a general lubricating oil pump whose pressure increases as the engine speed increases. Therefore, there is a problem that a different pressurizing device having high pressurizing performance must be used or the pressurizing performance of the oil pump must be improved.

また、高圧縮比状態から低圧縮比状態に切替える際に
は上述のように上部液室5内の圧油の略全部を、油通路
9d,9eを介して下部液室8内に戻すようになっていると
共に、この下部液室8内の圧油はシール部材6によって
リークが阻止されているため、切替制御の応答性が悪
い。なぜなら、下部液室8の断面積は上部液室5の断面
積よりも小さいため、アウタピストン4の下方移動によ
り減少する上部液室5の容積よりも、増加する下部液室
8の容積の方が小さい。従って、アウタピストン4の下
方移動時に、上部液室5から下部液室8に圧油が流入し
ようとしても、下部液室8から外部へのリークがシール
部材6によって阻止されて流入できなくなり、高圧縮比
状態から低圧縮比状態への切替制御の応答性が悪化す
る。
Further, when switching from the high compression ratio state to the low compression ratio state, as described above, substantially all of the pressure oil in the upper liquid chamber 5 is supplied to the oil passage.
The pressure oil in the lower liquid chamber 8 is returned to the inside of the lower liquid chamber 8 via 9d and 9e, and the leakage of the pressure oil in the lower liquid chamber 8 is blocked by the seal member 6, so that the responsiveness of the switching control is poor. Because the cross-sectional area of the lower liquid chamber 8 is smaller than the cross-sectional area of the upper liquid chamber 5, the volume of the lower liquid chamber 8 that increases increases more than the volume of the upper liquid chamber 5 that decreases due to the downward movement of the outer piston 4. Is small. Therefore, even if the pressure oil tries to flow from the upper liquid chamber 5 to the lower liquid chamber 8 when the outer piston 4 moves downward, leakage from the lower liquid chamber 8 to the outside is blocked by the seal member 6 and cannot flow into the outside. The response of the switching control from the compression ratio state to the low compression ratio state deteriorates.

しかも、この低圧縮比時には、油通路9cが、逆止弁11
のスプリング11a圧によって閉塞されるため、上部液室
5内に圧油が残留し、これが高回転時の燃焼熱などの高
熱に晒されて劣化するばかりかタール化してインナピス
トン3上面などにこびり付き、円滑な圧縮比制御作用が
得られないといった種々の問題がある。
Moreover, at this low compression ratio, the oil passage 9c is closed by the check valve 11c.
Since it is blocked by the pressure of the spring 11a, pressure oil remains in the upper liquid chamber 5, which is not only deteriorated by being exposed to high heat such as combustion heat at high rotation, but also tars and sticks to the upper surface of the inner piston 3 etc. However, there are various problems that a smooth compression ratio control action cannot be obtained.

問題点を解決するための手段 この発明は、上記従来の問題点に鑑み案出されたもの
で、ピストンピンの両端部に支持されたインナピストン
と、該インナピストンの外周に軸方向へ摺動可能に被嵌
したアウタピストンと、該アウタピストンと上記インナ
ピストンとの間に形成される上部液室及び下部液室と、
上記ピストンピンあるいはインナピストンの内部所定位
置に形成され、かつ外部から圧油が導入される作動液室
と、該作動液室内の圧油を前後の油圧で開閉する逆止弁
を介して上記上部液室に供給する第1油通路と、上記上
部液室の圧油を排出口を介して外部に排出する第2油通
路と、該第2油通路に連通し、かつ上記上部液室の圧油
を前後の油圧で開閉する逆止弁を介して上記下部液室に
供給する第3油通路と、上記下部液室内の圧油を排出す
る第4油通路と、上記作動液室に摺動可能に収納され、
機関の燃焼圧力に基づく上記上部液室内の油圧の変化に
応じて上記排出口と第4油通路とを開閉する開閉弁とを
備えたことを特徴としている。
Means for Solving the Problems The present invention has been devised in view of the above-mentioned conventional problems, and an inner piston supported on both ends of a piston pin and an outer periphery of the inner piston are slidable in the axial direction. An outer piston that is fitted as much as possible, and an upper liquid chamber and a lower liquid chamber that are formed between the outer piston and the inner piston,
The hydraulic fluid chamber, which is formed at a predetermined position inside the piston pin or the inner piston, and into which pressure oil is introduced from the outside, and the check valve that opens and closes the pressure fluid in the hydraulic fluid chamber by the front and rear hydraulic pressures, A first oil passage for supplying to the liquid chamber, a second oil passage for discharging the pressure oil of the upper liquid chamber to the outside through a discharge port, and a second oil passage communicating with the second oil passage, and a pressure of the upper liquid chamber. A third oil passage for supplying oil to the lower liquid chamber through a check valve that opens and closes by hydraulic pressure between the front and rear, a fourth oil passage for discharging pressure oil in the lower liquid chamber, and a slide on the hydraulic fluid chamber. Stored as much as possible,
It is characterized by comprising an opening / closing valve for opening / closing the discharge port and the fourth oil passage according to a change in the hydraulic pressure in the upper liquid chamber based on the combustion pressure of the engine.

作用 上記構成のこの発明によれば、まず機関低負荷時ある
いは低回転時などで高圧縮比を得る場合は、所定の加圧
手段によって圧力の比較的弱い圧油が作動液室に導入さ
れ、ここから第1油通路と該圧油で開かれた逆止弁を経
て上部液室に供給される。この時点では開閉弁が排出口
を閉塞しているため、上部液室の容積が速やかに増大
し、これに伴いアウタピストンが上昇して高圧縮比状態
となる。
According to the present invention having the above-described structure, first, when a high compression ratio is obtained at the time of low engine load or low engine speed, the pressure oil having a relatively low pressure is introduced into the hydraulic fluid chamber by the predetermined pressurizing means. From here, it is supplied to the upper liquid chamber through the first oil passage and the check valve opened by the pressure oil. At this point in time, the on-off valve closes the discharge port, so the volume of the upper liquid chamber rapidly increases, and with this, the outer piston rises and enters a high compression ratio state.

一方、機関高負荷時などには、該高負荷による高い燃
焼圧力がアウタピストンの冠面に作用するため、上部液
室の油圧が上昇する。この油圧が第2油通路から伝達さ
れて開閉弁が一方向に瞬時に移動し、排出口を開くと共
に第4油通路を閉塞する。したがって、上部液室内の圧
油は、一部が第2油通路から排出口を通って外部へ速や
かに排出され、同時に他の圧油が第2油通路から逆止弁
を開いて下部液室内に速やかに供給される。従って、圧
縮比の切替え制御が応答性よく行なわれる。
On the other hand, when the engine has a high load, a high combustion pressure due to the high load acts on the crown surface of the outer piston, so that the hydraulic pressure in the upper liquid chamber rises. This hydraulic pressure is transmitted from the second oil passage, the on-off valve instantaneously moves in one direction, opens the discharge port, and closes the fourth oil passage. Therefore, a part of the pressure oil in the upper liquid chamber is quickly discharged to the outside from the second oil passage through the discharge port, and at the same time, other pressure oil opens the check valve from the second oil passage to open the lower liquid chamber. Will be promptly supplied to. Therefore, switching control of the compression ratio is performed with good responsiveness.

また、この低圧縮比状態では、排気行程時において慣
性力でアウタピストンが僅かに上昇すると圧油が第1油
通路を通って上部液室に供給されると共に第2油通路を
経て排出口から排出されて上部液室内を循環するため、
ピストン冠部の冷却作用が得られると共に圧油の劣化が
防止される。
Further, in this low compression ratio state, when the outer piston slightly rises due to inertial force during the exhaust stroke, the pressure oil is supplied to the upper liquid chamber through the first oil passage and is discharged from the discharge port through the second oil passage. Since it is discharged and circulates in the upper liquid chamber,
The piston crown is cooled, and the pressure oil is prevented from being deteriorated.

実施例 以下、この発明の実施例を図面に基づいて詳述する。Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図及び第2図はこの発明の第1実施例を示し、図
中21はピストンの外殻を形成し、かつ下部内周に円環部
22が螺着されたアウタピストン、23はコネクティングロ
ッド24に連結されたピストンピンであって、このピスト
ンピン23は、内部に円柱状の作動液室25が形成されてい
ると共に、図中左端部には中央に排出口27aを有する円
環状のストッパ27が固定されている一方右端部には作動
液室25の一端を密閉する略円板状の閉塞板28が嵌合固定
されている。また、上記作動液室25は、図中左側内部に
略円板状の隔壁50が軸方向に対して垂直に配置されてい
ると共に、該隔壁50で画成された図中左側に比較的小さ
な容積の圧力室51が形成されており、この圧力室51内に
は、断面略コ字形の開閉弁26が左右方向へ摺動可能に設
けられている。また、図中29は第2図にも示すようにこ
のピストンピン23にボス部30,30を介して固定されたイ
ンナピストンであって、このインナピストン29の外側に
は、アウタピストン21が夫々の内外周面21a,29aを摺接
しつつ軸方向に摺動可能に配置されている。また、この
アウタピストン21のインナピストン29との相対的な上方
移動に伴い該アウタピストン21の冠部下面21bとインナ
ピストン29の上面29bとの間に上部液室31が形成される
一方、下方移動に伴い該アウタピストン21の最大上方移
動を規制する上記円環部22の上面とインナピストン29の
下面との間に円環状の下部液室32が形成されており、こ
の各液室31,32に油圧回路33を介して圧油が供給・排出
されて容積が変化し、アウタピストン21をインナピスト
ン29に対して上下動させるようになっている。
1 and 2 show a first embodiment of the present invention, in which reference numeral 21 forms an outer shell of a piston, and an annular portion is formed on the inner circumference of the lower portion.
22 is an outer piston threadedly attached, 23 is a piston pin connected to a connecting rod 24, and this piston pin 23 has a cylindrical working fluid chamber 25 formed inside and a left end portion in the figure. An annular stopper 27 having a discharge port 27a in the center is fixed to it, while a substantially disk-shaped closing plate 28 for sealing one end of the working fluid chamber 25 is fitted and fixed to the right end. Further, the working fluid chamber 25 has a substantially disk-shaped partition wall 50 disposed inside the left side in the figure perpendicularly to the axial direction, and is relatively small on the left side in the figure defined by the partition wall 50. A pressure chamber 51 having a volume is formed, and an opening / closing valve 26 having a substantially U-shaped cross section is provided in the pressure chamber 51 so as to be slidable in the left-right direction. Further, reference numeral 29 in the drawing denotes an inner piston fixed to the piston pin 23 through boss portions 30, 30 as shown in FIG. 2, and the outer piston 21 is provided outside the inner piston 29. The inner and outer peripheral surfaces 21a and 29a are slidably arranged and slidable in the axial direction. Further, as the outer piston 21 moves upward relative to the inner piston 29, an upper liquid chamber 31 is formed between the crown lower surface 21b of the outer piston 21 and the upper surface 29b of the inner piston 29, while An annular lower liquid chamber 32 is formed between the upper surface of the annular portion 22 and the lower surface of the inner piston 29 that regulates the maximum upward movement of the outer piston 21 with the movement. Pressure oil is supplied to and discharged from the hydraulic circuit 32 through the hydraulic circuit 33 to change the volume, and the outer piston 21 is moved vertically with respect to the inner piston 29.

上記油圧回路33は、コネクティングロッド24の内部軸
方向に形成されて上記作動液室25の右室52と連通する主
通路34と、ピストンピン23とインナピストン29の上下方
向に沿って貫通形成されて、圧油を作動液室25から上部
液室31に供給する第1油通路35と、該第1油通路35の図
中左側位置に略平行に貫通形成されて上部液室31から圧
力室51と排出口27a及びアウタピストン21側部の開孔21c
を介して外部に圧油を排出する第2油通路36と、該第2
油通路36と下部液室32とを圧力室51を介して連通し、上
部液室31の圧油を下部液室32に供給する第3油通路37
と、ボス部30に上下方向に沿って略平行に形成され、該
下部液室32の圧油を作動液室25を介して外部に排出する
2本の第4油通路38a,38bとから構成されている。また
上記第1油通路35と第3油通路37の夫々には、前後の油
圧によって開閉状態するチェックボール39,39と切欠路
を有する円環状の通路構成部40,40とからなる逆止弁41,
42が設けられている。
The hydraulic circuit 33 is formed in the inner axial direction of the connecting rod 24 and is formed so as to penetrate the main passage 34 communicating with the right chamber 52 of the hydraulic fluid chamber 25 and the piston pin 23 and the inner piston 29 in the vertical direction. A first oil passage 35 for supplying pressure oil from the hydraulic fluid chamber 25 to the upper liquid chamber 31, and a first oil passage 35 penetratingly formed substantially parallel to the left side position of the first oil passage 35 in the drawing. 51, the outlet 27a, and the opening 21c on the side of the outer piston 21
A second oil passage 36 for discharging pressure oil to the outside via the
A third oil passage 37 that connects the oil passage 36 and the lower liquid chamber 32 to each other through the pressure chamber 51, and supplies the pressure oil of the upper liquid chamber 31 to the lower liquid chamber 32.
And two fourth oil passages 38a, 38b which are formed substantially parallel to the boss portion 30 along the vertical direction and discharge the pressure oil in the lower liquid chamber 32 to the outside via the hydraulic fluid chamber 25. Has been done. Further, each of the first oil passage 35 and the third oil passage 37 has a check valve composed of check balls 39, 39 which are opened and closed by front and rear hydraulic pressure, and annular passage constituting portions 40, 40 having cutout passages. 41,
42 are provided.

更に、上記開閉弁26は、図中左端面に上記排出口27a
を開閉する凸状の第1弁体26aが形成されていると共
に、外周面には上記第4油通路38aを開閉する突起円環
状の第2弁体26bが一体に形成されており、上記第2油
通路36の開口縁36aつまり圧力室51に臨む上記第1弁体2
6aと第2弁体26bとの間の段差状外周面が第2油通路36
を介して上部液室31からの油圧が伝達される受圧部53に
なっている。また、この開閉弁26は、上記第1弁体26a
の基部側内端面と隔壁50との間に装着されたスプリング
43によって図中左方向に付勢されている。すなわち、圧
力部51に大きな油圧が作用しない場合は、スプリング43
圧によって排出口27aを閉塞し、大きな油圧が作用する
とスプリング43圧に抗して右側に移動して排出口27aを
開成すると共に、第4油通路38aを閉塞するように切替
え作動するようになっている。尚、図中54は、円環部22
の外周とインナピストン29との間に設けられたシールリ
ングであって、これによって下部液室32内の圧油が摺動
部位から外部に洩れないようにしている。図中55,55は
ピストンピン23の両端部を支持するストッパリング、56
はインナピストン29の上面29bに形成され、かつ第1油
通路35と第2油通路36を連通する円環状の通路溝であ
る。
Further, the on-off valve 26 has the discharge port 27a on the left end face in the figure.
A convex first valve body 26a for opening and closing is formed on the outer peripheral surface, and a protruding annular second valve body 26b for opening and closing the fourth oil passage 38a is integrally formed on the outer peripheral surface. 2 The first valve body 2 facing the opening edge 36a of the oil passage 36, that is, the pressure chamber 51
The stepped outer peripheral surface between the 6a and the second valve body 26b is the second oil passage 36.
It is a pressure receiving portion 53 to which the hydraulic pressure from the upper liquid chamber 31 is transmitted via. Further, the opening / closing valve 26 is the first valve body 26a.
Spring mounted between the inner end surface of the base of the and the partition wall 50
It is urged to the left in the figure by 43. That is, when the large hydraulic pressure does not act on the pressure portion 51, the spring 43
When the outlet 27a is closed by the pressure and a large hydraulic pressure acts, it moves to the right against the pressure of the spring 43 to open the outlet 27a, and at the same time, the switching operation is performed to close the fourth oil passage 38a. ing. In the figure, 54 is the annular portion 22.
Is a seal ring provided between the outer periphery of the inner piston 29 and the inner piston 29 and prevents the pressure oil in the lower liquid chamber 32 from leaking from the sliding portion to the outside. In the figure, 55 and 55 are stopper rings that support both ends of the piston pin 23, and 56
Is an annular passage groove formed on the upper surface 29b of the inner piston 29 and connecting the first oil passage 35 and the second oil passage 36.

また、上記主通路34には、機関回転と同期する一般的
な機械式オイルポンプ(図示せず)によってオイルパン
内の機関潤滑油が圧送されるようになっている。
Further, the engine lubricating oil in the oil pan is fed under pressure to the main passage 34 by a general mechanical oil pump (not shown) synchronized with the engine rotation.

以下、この実施例の作用について説明する。まず、機
関始動時や低負荷時などにおいて高圧縮比を得る場合
は、オイルポンプによって比較的低圧力の圧油が、第1
図に示すように主通路34から作動液室25の右室52に送ら
れ、ここから第1油通路35とこの油圧で開かれた逆止弁
41を経て上部液室31に供給される。そして、この時点で
は開閉弁26の各第1,第2弁体26a,26bが排出口27aを閉塞
し且つ第4油通路38a,38bを開成しているため、上部液
室31の容積が速やかに増大すると同時に下部液室32の圧
油が速やかに排出される。これに伴いアウタピストン21
がインナピストン29から相対的に上昇して高圧縮比状態
となる。尚、圧縮あるいは膨張行程時に、アウタピスト
ン21に圧縮圧あるいは燃焼圧力が作用しても、逆止弁41
によって圧油の逆流が防止され、僅かにアウタピストン
21とインナピストン29との摺動部位のクリアランスから
リークするにすぎない。これも、排気行程時にアウタピ
ストン21が慣性力で上昇した際、第1油通路35から上部
液室31内に補給されると共に逆止弁41によって圧縮の逆
流が防止されるため、高圧縮比状態が維持される。尚、
上記上部液室31へ圧油を供給する際に、油圧によって開
閉弁26を作動させる必要がないので、オイルポンプの負
荷が小さくて済むことは云うまでもない。
The operation of this embodiment will be described below. First, in order to obtain a high compression ratio at the time of starting the engine or at the time of low load, the pressure oil of a relatively low pressure is set by the oil pump.
As shown in the figure, the check valve is sent from the main passage 34 to the right chamber 52 of the hydraulic fluid chamber 25, and from there, the first oil passage 35 and the check valve opened by this hydraulic pressure.
It is supplied to the upper liquid chamber 31 via 41. At this point, the first and second valve bodies 26a and 26b of the opening / closing valve 26 close the discharge port 27a and open the fourth oil passages 38a and 38b, so that the volume of the upper liquid chamber 31 is quickly increased. At the same time, the pressure oil in the lower liquid chamber 32 is quickly discharged. Along with this, the outer piston 21
Is relatively elevated from the inner piston 29 and enters a high compression ratio state. It should be noted that even if the compression pressure or the combustion pressure acts on the outer piston 21 during the compression or expansion stroke, the check valve 41
The reverse flow of pressure oil is prevented by the outer piston.
It only leaks from the clearance of the sliding portion between 21 and the inner piston 29. This is also because when the outer piston 21 rises due to inertial force during the exhaust stroke, it is replenished from the first oil passage 35 into the upper liquid chamber 31 and the check valve 41 prevents a reverse flow of compression, so that a high compression ratio is achieved. The state is maintained. still,
Needless to say, the load on the oil pump can be small because it is not necessary to operate the on-off valve 26 by hydraulic pressure when supplying pressure oil to the upper liquid chamber 31.

一方、高負荷時などに低圧縮比を得る場合は、該高負
荷時の高い燃焼圧力がアウタピストン21の冠面に作用す
るため、上部液室31の圧力が高くなりこの油圧が第2油
通路36から圧力室51に送られ該圧力室51の圧力が高ま
る。したがって、この油圧が受圧部53に作用して開閉弁
26が第2図に示すようにスプリング43のばね圧に抗して
図中右方向に移動し、排出口27aを開き、同時に第4油
通路38a,38bを閉塞する。したがってアウタピストン21
が燃焼圧力を受けた際に、上部液室31内の圧油は、第2
油通路36及び圧力室51を経て排出口27aから外部へ速や
かに排出されると同時に、第2油通路36,圧力室51を通
り逆止弁42を開きながら第3油通路37を経て下部液室32
内に速やかに供給される。とりわけ排出口27aからの圧
油の排出作用により上部液室31の容積が速やかに減少し
アウタピストン21が下降して低圧縮比状態が応答性よく
確保できる。
On the other hand, when a low compression ratio is obtained at the time of high load, the high combustion pressure at the time of high load acts on the crown surface of the outer piston 21, so that the pressure in the upper liquid chamber 31 becomes high and this hydraulic pressure becomes the second oil pressure. The pressure in the pressure chamber 51 is increased by being sent from the passage 36 to the pressure chamber 51. Therefore, this hydraulic pressure acts on the pressure receiving portion 53 to open / close the valve.
As shown in FIG. 2, 26 moves rightward in the figure against the spring pressure of the spring 43, opens the discharge port 27a, and simultaneously closes the fourth oil passages 38a, 38b. Therefore, the outer piston 21
When the combustion pressure is received, the pressure oil in the upper liquid chamber 31
The liquid is rapidly discharged to the outside from the discharge port 27a through the oil passage 36 and the pressure chamber 51, and at the same time, the lower liquid is passed through the third oil passage 37 while opening the check valve 42 through the second oil passage 36 and the pressure chamber 51. Chamber 32
Will be promptly supplied. In particular, the volume of the upper liquid chamber 31 is rapidly reduced by the action of the pressure oil discharged from the discharge port 27a, the outer piston 21 is lowered, and the low compression ratio state can be secured with good responsiveness.

また、この低圧縮比状態において下部液室32内の圧油
によって、排気行程時のアウタピストン21の上方慣性力
によってインナピストン29と円環部22との干渉が防止さ
れる。一方、圧油が、第1油通路35を通って上部液室31
の通路溝56に供給され、第2油通路36を通って排出口27
aから排出されて上部液室31内を循環するため、ピスト
ン冠部の冷却作用が得られるとともに圧油の劣化が防止
される。
Further, in this low compression ratio state, the pressure oil in the lower liquid chamber 32 prevents interference between the inner piston 29 and the annular portion 22 due to the upper inertial force of the outer piston 21 during the exhaust stroke. On the other hand, the pressure oil passes through the first oil passage 35 and the upper liquid chamber 31.
Is supplied to the passage groove 56 of the discharge port 27 through the second oil passage 36.
Since it is discharged from a and circulates in the upper liquid chamber 31, the cooling action of the crown portion of the piston is obtained and the deterioration of the pressure oil is prevented.

ここで、開閉弁26は、アウタピストン21の冠面に燃焼
圧力が作用しない場合、つまり膨張行程以外の機関サイ
クル時にはスプリング43のばね圧によって排出口27aを
即座に閉塞して、外部から圧力室51及び第2油通路36,
第3油通路37を通って上部液室31と下部液室32に空気が
混入するのを防止している。すなわち、上下部液室31,3
2に空気が混入すると機関サイクル変動に伴うアウタピ
ストン21のインナピストン29に対する上下挙動が不安定
となり、低圧縮比状態の安定化が図れなくなる。このた
め、上記のように開閉弁26によって排出口27aを適宜速
やかに閉塞することによって、各液圧31,32への空気の
混入を十分に防止できる。
Here, the on-off valve 26 immediately closes the discharge port 27a by the spring pressure of the spring 43 when the combustion pressure does not act on the crown surface of the outer piston 21, that is, during the engine cycle other than the expansion stroke, and the pressure chamber from the outside. 51 and the second oil passage 36,
Air is prevented from entering the upper liquid chamber 31 and the lower liquid chamber 32 through the third oil passage 37. That is, the upper and lower liquid chambers 31,3
When air is mixed into 2, the vertical movement of the outer piston 21 with respect to the inner piston 29 becomes unstable due to engine cycle fluctuations, making it impossible to stabilize the low compression ratio state. Therefore, by appropriately closing the outlet 27a with the opening / closing valve 26 as described above, it is possible to sufficiently prevent air from entering the hydraulic pressures 31 and 32.

第3図〜第5図はこの発明の第2実施例を示してお
り、第1実施例とは特に開閉弁と第4油通路の構成が異
なっている。具体的に説明すれば、第4油通路58は、一
端が下部液室32に、他端が作動液室25の右室52に夫々開
口形成されている。また、第1油通路35の図中右側に、
上部液室31から右室52に圧油を供給する圧力通路59が貫
通形成されている。そして、この圧力通路59と第4油通
路58の夫々の途中には、前後の油圧を調整するオリフィ
ス57,57が設けられている。一方開閉弁26は、隔壁50で
画成された圧力室51と右室52内にディスチャージ弁60と
スプール弁61が夫々分割配置されている。すなわち、デ
ィスチャージ弁60は、縦断面略コ字形を呈し、圧力室51
に臨む段差状の外周が受圧部60aとして形成され、外周
縁が面取りされた円板状の弁体60bが比較的大径に形成
された排出口27aを開閉する構成であり、弁体60bの内面
と隔壁50との間に装着された第1スプリング63によって
排出口27aを閉塞する位置に付勢されている。また、ス
プール弁61は、軸部61aの両端部に連結された縦断面略
コ字形の摺動部61bと上記第4油通路58の一端開口58aを
開閉する略円柱状の弁体61cとからなり、該弁体61cは外
端面に上記圧力通路59を介して上部液室31からの油圧を
受ける受圧面61dが形成されている。また、スプール弁6
1は、摺動部61bと隔壁50との間に装着された第2スプリ
ング64によって図中右側つまり第4油通路58を開成する
位置に付勢されている。
3 to 5 show a second embodiment of the present invention, in which the construction of the on-off valve and the fourth oil passage is different from that of the first embodiment. More specifically, one end of the fourth oil passage 58 is formed in the lower liquid chamber 32, and the other end is formed in the right chamber 52 of the hydraulic liquid chamber 25. Further, on the right side of the first oil passage 35 in the drawing,
A pressure passage 59 for supplying pressure oil from the upper liquid chamber 31 to the right chamber 52 is formed so as to penetrate therethrough. In the middle of each of the pressure passage 59 and the fourth oil passage 58, orifices 57, 57 for adjusting the front and rear hydraulic pressure are provided. On the other hand, in the opening / closing valve 26, a discharge valve 60 and a spool valve 61 are separately arranged in a pressure chamber 51 and a right chamber 52 defined by a partition wall 50. That is, the discharge valve 60 has a generally U-shaped vertical cross section, and the pressure chamber 51
A step-shaped outer periphery facing to is formed as a pressure receiving portion 60a, and a disc-shaped valve body 60b whose outer peripheral edge is chamfered is configured to open and close the discharge port 27a formed with a relatively large diameter. A first spring 63 mounted between the inner surface and the partition wall 50 urges the discharge port 27a to a closed position. Further, the spool valve 61 includes a sliding portion 61b having a substantially U-shaped vertical cross section, which is connected to both ends of the shaft portion 61a, and a substantially cylindrical valve body 61c for opening and closing the one end opening 58a of the fourth oil passage 58. The valve body 61c has a pressure receiving surface 61d formed on the outer end surface thereof for receiving the hydraulic pressure from the upper liquid chamber 31 via the pressure passage 59. Also, spool valve 6
1 is urged by a second spring 64 mounted between the sliding portion 61b and the partition wall 50 to the right side in the figure, that is, a position where the fourth oil passage 58 is opened.

更に、上記第1,第2スプリング63,64のセット荷重
は、膨張行程時にアウタピストン21の冠面に作用する燃
焼圧力との相対関係で決定されており、両者63,64とも
高負荷時の高い燃焼圧力が作用した時点ではじめて短縮
するように設定されている。
Furthermore, the set load of the first and second springs 63, 64 is determined by the relative relationship with the combustion pressure acting on the crown surface of the outer piston 21 during the expansion stroke, and both 63, 64 at the time of high load. It is set to be shortened only when a high combustion pressure is applied.

尚、他の構成は、第1実施例と同様であるから同一符
号を付して具体的な説明は省略する。
Since the other configurations are the same as those in the first embodiment, the same reference numerals are given and the detailed description will be omitted.

以下、この第2実施例の作用について説明する。機関
始動時や低負荷時には、比較的低圧力の圧油が第3図に
示すように主通路34から作動液室25の右室52に送られ、
ここから第1油通路35とこの油圧で開かれた逆止弁41を
経て上部液室31に供給される。そして、この時点では、
ディスチャージ弁60が排出口27aを閉塞していると共
に、スプール弁61が第4油通路58を開成しているため、
上部液室31の容積が速やかに増大する一方、下部液室32
の圧油が第4油通路58を介して右室52内に排出され、そ
のまま上部液室31内に主通路34からの圧油と同伴する形
で供給される。したがって、アウタピストン21がインナ
ピストン29に対して速やかに上昇するため、高圧縮比状
態を応答性よく確保できる。特に、低圧縮比状態(第5
図参照)にある機関高負荷域から低負荷域に移行した場
合には、その瞬間的な移行過程においてスプール弁61が
第4図に示すように膨張行程以外の機関サイクル時に第
2スプリング64のばね圧によって第4油通路58の開口58
aを開成する位置に付勢されつまり、下部液室32からの
圧油が右室52内に排出できるように待機した形になって
いる。このため、低負荷域に達した時点で即座に下部液
室32から圧油が排出され、下部液室32の容積が速やかに
減少し、一方上部液室31の容積が速やかに増加する。よ
って、低圧縮比状態から高圧縮比への切替えの応答性が
一層向上するのである。
The operation of the second embodiment will be described below. When the engine is started or the load is low, relatively low pressure oil is sent from the main passage 34 to the right chamber 52 of the hydraulic fluid chamber 25, as shown in FIG.
From here, it is supplied to the upper liquid chamber 31 via the first oil passage 35 and the check valve 41 opened by this hydraulic pressure. And at this point,
Since the discharge valve 60 closes the discharge port 27a and the spool valve 61 opens the fourth oil passage 58,
While the volume of the upper liquid chamber 31 increases rapidly, the lower liquid chamber 32
Pressure oil is discharged into the right chamber 52 through the fourth oil passage 58, and is supplied to the upper liquid chamber 31 as it is along with the pressure oil from the main passage 34. Therefore, the outer piston 21 quickly rises with respect to the inner piston 29, so that a high compression ratio state can be secured with good responsiveness. Especially in the low compression ratio state (5th
When the engine is shifted from the high load region to the low load region shown in FIG. 4), the spool valve 61 is moved to the second spring 64 during the engine cycle other than the expansion stroke as shown in FIG. The opening 58 of the fourth oil passage 58 is caused by the spring pressure.
It is urged to the position where a is opened, that is, the pressure oil from the lower liquid chamber 32 stands by so that it can be discharged into the right chamber 52. Therefore, when the low load region is reached, the pressure oil is immediately discharged from the lower liquid chamber 32, the volume of the lower liquid chamber 32 is rapidly reduced, and the volume of the upper liquid chamber 31 is rapidly increased. Therefore, the responsiveness of switching from the low compression ratio state to the high compression ratio is further improved.

一方、高負荷時には、膨張行程時における高い燃焼圧
力がアウタピストン21の冠面に作用し、上部液室31内の
圧力が高まると、第5図に示すようにその油圧が第2油
通路36から圧力室51に導入されてディスチャージ弁60の
受圧部60aに作用すると、該ディスチャージ弁60が第1
スプリング63のばね圧に抗して図中右方向に移動して排
出口27aを開く。同時にスプール弁61は、受圧面61dに圧
力通路59からの油圧が作用して第2スプリング64のばね
圧に抗して図中左方向に移動して第4油通路58を閉塞す
る。したがって、上部液室31内の圧油は、第2油通路36
及び圧力室51を経て排出口27aから外部へ速やかに排出
されると同時に一部が圧力室51から逆止弁42を開きなが
ら第3油通路37を経て下部液室32内に速やかに供給され
る。したがって、上部液室31の容積が直ちに減少しアウ
タピストン21がインナピストン29に対して下降し、低圧
縮比状態が応答性よく確保できる。また、上記のように
下部液室32内にもアウタピストン21の急下降に伴って速
やかに圧油が供給されるため、低圧縮比への切替え応答
性を助長できることは勿論のこと、下部液室32内に負圧
の発生がなくしたがって外部からの空気の混入が防止さ
れる。ここで、第4油通路58は、閉状態に制御され、膨
張行程以外のサイクル時に第2スプリング64のばね圧で
開かれるが短い開時間であるため、下部液室32から右室
52への圧油のリーク油は極めて少ない。したがって、低
圧縮比状態の維持に影響を与えることなく安定した低圧
縮比状態となる。尚、上記ディスチャージ弁60は、膨張
行程時以外のサイクル時には上記第1実施例と同様に第
1スプリング63により排出口27aを閉塞するため、排出
口27aから上下部液室31,32への空気の逆流混入が防止さ
れることは云うまでもない。
On the other hand, when the load is high, the high combustion pressure during the expansion stroke acts on the crown surface of the outer piston 21 and the pressure in the upper liquid chamber 31 increases, and as shown in FIG. When the discharge valve 60 is introduced into the pressure chamber 51 and acts on the pressure receiving portion 60a of the discharge valve 60,
It moves to the right in the figure against the spring pressure of the spring 63 to open the discharge port 27a. At the same time, the spool valve 61 moves to the left in the drawing against the spring pressure of the second spring 64 due to the oil pressure from the pressure passage 59 acting on the pressure receiving surface 61d, and closes the fourth oil passage 58. Therefore, the pressure oil in the upper liquid chamber 31 is transferred to the second oil passage 36.
And is quickly discharged from the discharge port 27a to the outside through the pressure chamber 51, and at the same time, a part of the pressure chamber 51 is rapidly supplied to the lower liquid chamber 32 through the third oil passage 37 while opening the check valve 42. It Therefore, the volume of the upper liquid chamber 31 immediately decreases, the outer piston 21 descends with respect to the inner piston 29, and a low compression ratio state can be secured with good responsiveness. Further, as described above, since the pressure oil is rapidly supplied into the lower liquid chamber 32 as the outer piston 21 rapidly descends, it is of course possible to promote the switching response to the low compression ratio. No negative pressure is generated in the chamber 32, and therefore air is prevented from entering from the outside. Here, the fourth oil passage 58 is controlled to be in a closed state and is opened by the spring pressure of the second spring 64 during a cycle other than the expansion stroke, but the opening time is short, so that the lower liquid chamber 32 to the right chamber is opened.
There is very little leakage of pressure oil to 52. Therefore, a stable low compression ratio state is achieved without affecting the maintenance of the low compression ratio state. The discharge valve 60 closes the discharge port 27a by the first spring 63 during the cycle other than the expansion stroke as in the case of the first embodiment, so that the air from the discharge port 27a to the upper and lower liquid chambers 31 and 32 is discharged. It goes without saying that the backflow of is prevented.

その他、斯る低圧縮比状態において右室52内の少量の
圧油が第1油通路35及び第2油通路36を介して上部液室
31の通路溝56を循環し、ピストン冠部を冷却するといっ
た作用効果は第1実施例と同様である。
In addition, in such a low compression ratio state, a small amount of pressure oil in the right chamber 52 passes through the first oil passage 35 and the second oil passage 36 to the upper liquid chamber.
The effect of circulating the passage groove 56 of 31 to cool the piston crown is the same as that of the first embodiment.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機
関の圧縮比可変装置によれば、特に上部液室及び下部液
室に供給される圧油を、前後の油圧で開閉する逆止弁を
介して供給すると共に、高圧縮比状態から低圧縮比状態
に切替える際には、上部液室内の圧油を外部に排出する
構成としたため、高圧縮比状態から低圧縮比への切替え
応答性が良好となる。しかも、上部液室内の圧油を排出
する開閉弁を機関運転変化に伴う燃焼圧力に応じて作動
させるようにしたため、上記高圧縮比状態から低圧縮比
への切替え応答性が一層向上する。また、高圧縮比状態
を得る場合には従来と異なり上記逆止弁を小さな油圧の
みで開くことができるため、一般の潤滑用オイルポンプ
の使用が可能となる。
EFFECTS OF THE INVENTION As is clear from the above description, according to the compression ratio variable device for an internal combustion engine according to the present invention, it is possible to reverse the pressure oil supplied to the upper liquid chamber and the lower liquid chamber by the front and rear hydraulic pressures. In addition to supplying through the stop valve, when switching from the high compression ratio state to the low compression ratio state, the pressure oil in the upper liquid chamber is discharged to the outside, so switching from the high compression ratio state to the low compression ratio state Good responsiveness. Moreover, since the on-off valve for discharging the pressure oil in the upper liquid chamber is operated in accordance with the combustion pressure due to the change in engine operation, the switching response from the high compression ratio state to the low compression ratio is further improved. Further, when a high compression ratio state is obtained, the check valve can be opened with only a small hydraulic pressure, unlike the conventional case, so that a general lubricating oil pump can be used.

また、低圧縮比状態において、上部液室内に圧油が循
環するため、ピストンの冠部を効果的に冷却できると共
に、圧油の劣化を防止できる。
Further, since the pressure oil circulates in the upper liquid chamber in the low compression ratio state, it is possible to effectively cool the crown portion of the piston and prevent deterioration of the pressure oil.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例における高圧縮比状態を
示す要部断面図、第2図は、この実施例の低圧縮比状態
を示す要部断面図、第3図はこの発明の第2実施例にお
ける高圧縮比状態を示す要部断面図、第4図はこの実施
例の低圧縮比状態から高圧縮比状態に切替わる過程を示
す要部断面図、第5図はこの実施例の低圧縮比状態を示
す要部断面図、第6図は従来の圧縮比可変装置を示す全
体構成図、第7図は従来装置の一部を示す断面図であ
る。 21……アウタピストン、23……ピストンピン、24……作
動液室、26……スプール弁(開閉弁)、27a……排出
口、29……インナピストン、31……上部液室、32……下
部液室、35……第1油通路、36……第2油通路、37……
第3油通路、38a,38b,58……第4油通路、41,42……逆
止弁。
FIG. 1 is a cross-sectional view of an essential part showing a high compression ratio state in a first embodiment of the present invention, FIG. 2 is a cross-sectional view of an essential part showing a low compression ratio state of this embodiment, and FIG. FIG. 4 is a sectional view of an essential part showing a high compression ratio state in the second embodiment, FIG. 4 is a sectional view of an essential part showing a process of switching from a low compression ratio state to a high compression ratio state of this embodiment, and FIG. FIG. 6 is a cross-sectional view of an essential part showing an example low compression ratio state, FIG. 6 is an overall configuration diagram showing a conventional compression ratio variable device, and FIG. 7 is a cross-sectional view showing a part of the conventional device. 21 …… Outer piston, 23 …… Piston pin, 24 …… Operating fluid chamber, 26 …… Spool valve (open / close valve), 27a …… Discharge port, 29 …… Inner piston, 31 …… Upper fluid chamber, 32… … Lower liquid chamber, 35 …… First oil passage, 36 …… Second oil passage, 37 ……
3rd oil passage, 38a, 38b, 58 ... 4th oil passage, 41, 42 ... Check valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 誠之助 神奈川県厚木市恩名1370番地 厚木自動 車部品株式会社内 (72)発明者 松屋 辰之 神奈川県厚木市恩名1370番地 厚木自動 車部品株式会社内 (72)発明者 高島 安雄 神奈川県厚木市恩名1370番地 厚木自動 車部品株式会社内 (56)参考文献 特開 昭64−24130(JP,A) 実開 昭63−202749(JP,U) 実開 昭58−25637(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seinosuke Hara Atsugi City Kanagawa Prefecture 1370 Onna Motor Parts Co., Ltd. (72) Inventor Tatsuyuki Matsuya 1370 Atsugi City Kanagawa Prefecture Atsugi Motor Parts Co., Ltd. (72) Inventor Yasuo Takashima 1370, Onna, Atsugi City, Kanagawa Prefecture Atsugi Auto Parts Co., Ltd. (56) Reference JP 64-24130 (JP, A) JP 63-202749 (JP, U) Actual development Sho 58-25637 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ピストンピンの両端部に支持されたインナ
ピストンと、該インナピストンの外周に軸方向へ摺動可
能に被嵌したアウタピストンと、該アウタピストンと上
記インナピストンとの間に形成される上部液室及び下部
液室と、上記ピストンピンあるいはインナピストンの内
部所定位置に形成され、かつ外部から圧油が導入される
作動液室と、該作動液室内の圧油を前後の油圧で開閉す
る逆止弁を介して上記上部液室に供給する第1油通路
と、上記上部液室の圧油を排出口を介して外部に排出す
る第2油通路と、該第2油通路に連通し、かつ上記上部
液室の圧油を前後の油圧で開閉する逆止弁を介して上記
下部液室に供給する第3油通路と、上記下部液室内の圧
油を排出する第4油通路と、上記作動液室に摺動可能に
収納され、機関の燃焼圧力に基づく上記上部液室内の油
圧の変化に応じて上記排出口と第4油通路とを開閉する
開閉弁とを備えたことを特徴とする内燃機関の圧縮比可
変装置。
1. An inner piston supported at both ends of a piston pin, an outer piston axially slidably fitted on an outer circumference of the inner piston, and formed between the outer piston and the inner piston. Upper and lower liquid chambers, a working fluid chamber formed at a predetermined position inside the piston pin or the inner piston, and into which pressure oil is introduced from the outside, and pressure oil in the working fluid chamber before and after the hydraulic fluid. A first oil passage for supplying to the upper liquid chamber via a check valve that opens and closes with a second oil passage for discharging pressure oil in the upper liquid chamber to the outside through a discharge port, and a second oil passage And a fourth oil passage for discharging the pressure oil in the lower liquid chamber, and a third oil passage for communicating the pressure oil in the upper liquid chamber to the lower liquid chamber via a check valve that opens and closes by front and rear hydraulic pressure. It is slidably housed in the oil passage and the hydraulic fluid chamber, and Variable compression ratio device for an internal combustion engine, characterized in that a closing valve for opening and closing a fourth oil passage and the discharge port in response to pressure changes in the upper liquid chamber based on the pressure.
JP22581687A 1987-09-09 1987-09-09 Variable compression ratio device for internal combustion engine Expired - Lifetime JP2517728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22581687A JP2517728B2 (en) 1987-09-09 1987-09-09 Variable compression ratio device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22581687A JP2517728B2 (en) 1987-09-09 1987-09-09 Variable compression ratio device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6469728A JPS6469728A (en) 1989-03-15
JP2517728B2 true JP2517728B2 (en) 1996-07-24

Family

ID=16835245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22581687A Expired - Lifetime JP2517728B2 (en) 1987-09-09 1987-09-09 Variable compression ratio device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2517728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974133B1 (en) * 2016-04-18 2019-04-30 (주)세아테크 Piston for viscous material supply device with reverse flow protection

Also Published As

Publication number Publication date
JPS6469728A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
US10087831B2 (en) Engine
US9605590B2 (en) Crosshead engine
US7434548B2 (en) Control device for hydraulic actuator in piston
US6662784B1 (en) Pump assembly, valve and method
US6892683B2 (en) Electrohydraulic valve controller
US8151691B2 (en) Variable compression ratio piston with rate-sensitive response
US4031868A (en) Variable compression ratio piston
JPH03151546A (en) Rod seal device of steering engine
US7574986B2 (en) Variable compression ratio device of internal combustion engine
US4079707A (en) Variable compression ratio piston
JP2517728B2 (en) Variable compression ratio device for internal combustion engine
US3403662A (en) Variable compression ratio piston assembly
JPH07113330B2 (en) Variable compression ratio device for internal combustion engine
JPH076418B2 (en) Variable compression ratio device for internal combustion engine
JP2013083220A (en) Piston of internal combustion engine
JPH0826792B2 (en) Variable compression ratio device for internal combustion engine
AU3733699A (en) Valve device of engine
JPH0612229Y2 (en) Variable compression ratio device for internal combustion engine
US3418982A (en) Variable compression ratio piston assembly
JP2563381B2 (en) Variable compression ratio device for internal combustion engine
JPH0417791Y2 (en)
JPH063167Y2 (en) Variable compression ratio device for internal combustion engine
JPS63186926A (en) Compression ratio varying device for internal combustion engine
JPH082445Y2 (en) Variable compression ratio device for internal combustion engine
US4023349A (en) Valve arrangements for reciprocating piston machines