JP2517208B2 - Pre-expanded particles of non-crosslinked ethylene resin - Google Patents

Pre-expanded particles of non-crosslinked ethylene resin

Info

Publication number
JP2517208B2
JP2517208B2 JP5260785A JP26078593A JP2517208B2 JP 2517208 B2 JP2517208 B2 JP 2517208B2 JP 5260785 A JP5260785 A JP 5260785A JP 26078593 A JP26078593 A JP 26078593A JP 2517208 B2 JP2517208 B2 JP 2517208B2
Authority
JP
Japan
Prior art keywords
resin
particles
expanded particles
temperature
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5260785A
Other languages
Japanese (ja)
Other versions
JPH06316645A (en
Inventor
健一 千田
昌博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP5260785A priority Critical patent/JP2517208B2/en
Publication of JPH06316645A publication Critical patent/JPH06316645A/en
Application granted granted Critical
Publication of JP2517208B2 publication Critical patent/JP2517208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、予備発泡粒子を閉鎖し
うるが密閉しえない型内で水蒸気などの加熱媒体により
加熱成形し、成形体にする方法に適用しうる無架橋エチ
レン系樹脂予備発泡粒子に関する。さらに詳しくは、溶
融時に特定の粘性を有する無架橋エチレン系樹脂を加熱
発泡させて予備発泡粒子とし、そののち型内で加熱膨張
させて成形する無架橋エチレン系樹脂予備発泡粒子に関
する。 【0002】 【従来の技術】エチレン系樹脂のビーズ法型内成形によ
る発泡成形体の製造においては、架橋したエチレン系樹
脂粒子に揮発性発泡剤を含有せしめ、水蒸気などで加熱
して予備発泡粒子をえ、この予備発泡粒子を用いる方法
が一般的である。 【0003】エチレン系樹脂を架橋させないで使用する
と、融点付近での樹脂の溶融粘度の低下が著しく、発泡
剤ガスによる破泡、さらには収縮などがおこり、高発泡
倍率で収縮の少ない予備発泡粒子、さらに粒子同士の融
着性がよく、外観が美麗で粒子間間隙の少ない成形体を
うることが極めて困難である。それゆえエチレン系樹脂
を架橋させ、架橋結合の形成により融点以上の温度領域
における樹脂の溶融粘度を予備発泡およびえられた予備
発泡粒子の成形に適した範囲にコントロールすることが
必須である。そのため、架橋工程という余分な工程が必
要で、しかも架橋したエチレン系樹脂は再利用が困難で
あるという欠点を有している。その上、架橋に適してい
るのは分岐の多い構造をもつ低密度ポリエチレンであ
り、分岐の少ない高密度ポリエチレンなどは架橋させる
のさえも容易でないという問題があり、架橋工程を省略
したエチレン系樹脂の型内発泡成形技術の開発が待望さ
れている。 【0004】 【課題を解決するための手段】本発明は、架橋させなく
ても予備発泡性および予備発泡粒子の成形性に優れたエ
チレン系樹脂予備発泡粒子をうることを目的としてなさ
れたものであり、たとえ無架橋エチレン系樹脂を基材樹
脂として用いるばあいでも溶融時に特定の粘性を有する
ものを用いることにより、高発泡倍率で収縮の少ない予
備発泡粒子がえられ、さらに該粒子を用いて型内成形す
ると粒子同士の融着性がよく、粒子間の間隙が少なく、
外観の美麗な成形体がえられることが見出されたことに
よりなされたものである。 【0005】すなわち本発明は、密度 0.940g/cm 3
上、MI 0.01 〜 0.5g/10分の高密度ポリエチレンと密
度 0.920〜 0.940g/cm 3 、MI 0.1〜10g/10分の直鎖
状低密度ポリエチレンとをブレンドした無架橋エチレン
系樹脂または密度 0.920〜 0.940g/cm 3 、MI 0.01 〜
10g/10分の直鎖状低密度ポリエチレンであり、示差走
査熱量計で測定したDSC 融解曲線が低温側と高温側に2
つの融解ピークを有し、かつ該融解ピークの2つのピー
ク温度の温度差が3℃以上の無架橋エチレン系樹脂であ
って、動的粘弾性測定装置の一種である加硫試験機を用
いて角周波数(ω)10.5 sec-1で温度を変えて測定した
トルク値(lM* l)から算出した複素粘度(lη* (ω)l)
を温度に対してプロットした曲線において、複素粘度の
値が5℃以上の温度幅にわたり0.06〜 0.2kg/cm2 の範
囲の値をとる部分を有する無架橋エチレン系樹脂を基材
樹脂とする発泡倍率5〜50倍の無架橋エチレン系樹脂
予備発泡粒子に関する。 【0006】 【実施例】本明細書にいう加硫試験機とは、未加硫ゴム
の加硫の進行をモニターする目的で開発された一種の動
的粘弾性試験機であり、その原理は試料に一定温度で回
転往復運動の微少角振動を与えて、それに対する応力を
トルク値として測定するもので、本発明で用いたのはJS
R キャラストメータIII 型(日本合成ゴム(株)製)の
加硫試験機である。 【0007】前記試験機で測定したトルク値(lM* l)と
試料の複素粘度(lη* (ω)l)との関係は、式: lM* l =kθo ω lη* (ω)l (式中、 kは加硫試験機定数、θo は角振幅、ωは角周
波数)で与えられる。したがって、 lη* (ω)l =lM
* l/(kθo ω)として lη* (ω)l を求めることがで
きる。加硫試験機定数(k) 、角振幅(θo ) 、角周波数
(ω)は用いる加硫試験機によって異なり、トルク値lM
* l も異なるが、複素粘度 lη* (ω)lは普遍的な値
である。 【0008】本発明に用いる加硫試験機および測定条件
より、 k=πR4 /2h=82.45 cm3 /rad (ラジアン)=1.44cm3
/deg (式中、Rは加硫試験機のダイの有効半径(1.8cm)、h
はダイ間の距離(0.2cm))、θo =1deg およびω=2π
f=2π・100/60=10.5 sec-1(式中、fは振動数(100
cpm)) であり、したがって lη* (ω)l =lM* l/(kθo ω) =lM* l ×0.0662(k
g・sec /cm2 ) である。 【0009】η* (ω)と 【0010】 【外1】 【0011】との対応関係をみるばあいのタイムスケー
ルは概ね 【0012】 【外2】 【0013】といわれており、本発明に用いる加硫試験
機は一般的にω=10.5 sec-1で用いられる。本発明でも
この条件で用いるので 【0014】 【外3】 【0015】が10.5 sec-1近傍での定常流粘度に相当す
る。 【0016】一般に熱可塑性樹脂の粘度特性はキャピラ
リーレオメーター、メルトインデクサーなどを用いて 【0017】 【外4】 【0018】を求めるが、これらの装置では、予備発泡
および予備発泡粒子の成形に適した高粘度領域での粘度
測定が不可能であり、高粘度領域での粘度を測定するた
めには本発明に示すごとき加硫試験機のような機器を用
いる必要がある。 【0019】本明細書にいう無架橋エチレン系樹脂と
は、たとえば低密度ポリエチレン、中密度ポリエチレ
ン、高密度ポリエチレン、直鎖状低密度ポリエチレンな
どの各種ポリエチレンのほか、エチレン- 酢酸ビニルコ
ポリマー、エチレン- メチルメタクリレートコポリマ
ー、エチレン- アクリル酸コポリマーなどのようにエチ
レン単位を50%(重量%、以下同様)以上含有する各種
共重合体をも含み、かつ意図的に架橋させていない樹脂
のことである。 【0020】本発明に用いる無架橋エチレン系樹脂は、
前記のごとき無架橋エチレン系樹脂のうちでも、前記加
硫試験機を用いて角周波数(ω)10.5 sec-1で温度を 1
10〜150℃の範囲でかえて測定したトルク値から算出し
た複素粘度を温度に対してプロットした曲線において、
複素粘度の値が5℃以上の温度幅にわたり0.06〜 0.2kg
・sec /cm2 、好ましくは0.065 〜0.17kg・sec /cm2
の範囲の値をとる部分を有する無架橋エチレン系樹脂
(以下、特定の無架橋エチレン系樹脂という)である。
これらは単独で用いてもよく、併用してもよい。 【0021】前記5℃以上の温度幅にわたる複素粘度が
0.06kg・sec /cm2 未満になると樹脂の流動性が大きく
なりすぎて予備発泡時や予備発泡粒子からの成形時に破
泡や収縮がおこりやすく、また 0.2kg・sec /cm2 をこ
えると流動性がわるくて予備発泡や予備発泡粒子からの
成形が困難になる。また該複素粘度を示す温度幅は加工
性の上から少なくとも5℃は必要である。 【0022】前記特定の無架橋エチレン系樹脂のうち、 (A) 密度 0.940g/cm3 以上、MI 0.01 〜 0.5g/10分
の高密度ポリエチレンと密度 0.920〜 0.940g/cm3
MI 0.1〜10g/10分の直鎖状低密度ポリエチレンとをブ
レンドした樹脂、または(B) 密度 0.920〜 0.940g/cm3 、MI 0.01 〜10g/10
分の直鎖状低密度ポリエチレンであって、示差走査熱量
計で測定したDSC 融解曲線が低温側と高温側に2つの融
解ピークを有し、かつ該融解ピークの2つのピーク温度
の温度差が3℃以上であるものがとくに好ましい。 【0023】(A) 記載の無架橋エチレン系樹脂は融点を
こえても溶融粘度があまり低下せず、これらの樹脂を使
用して予備発泡粒子を製造すると、融点以上の温度領域
で広い温度幅にわたり、高発泡倍率で収縮の少ない予備
発泡粒子がえられる。さらに該粒子を用いて型内成形す
ると粒子同士の融着性がよく、粒子間間隙が少なく、外
観の美麗な成形体がえられる。また(B) 記載の無架橋エ
チレン系樹脂は結晶の融解ピークが3℃以上はなれた2
つに分れることにより融解温度域が広がり、2つの融解
ピークの間で緩やかな粘度低下を示し、この樹脂を使用
して予備発泡粒子を製造すると比較的広い温度幅にわた
り高発泡倍率で収縮の少ない予備発泡粒子がえられる。
さらに該粒子を用いて型内成形すると粒子同士の融着性
がよく、粒子間間隙が少なく、外観の美麗な成形体がえ
られる。 【0024】 【0025】(B) 記載の樹脂では密度が 0.920g/cm3
未満になると、えられる成形体が柔軟となりすぎ、良好
な物性を示さず、 0.940g/cm3 をこえると、後述する
樹脂粒子の熱処理によるDSC 融解曲線のピーク分離がお
こりにくくなる。MIが0.01g/10分未満では流動性がわ
るく、予備発泡や成形がさせにくくなり、10g/10分を
こえるとDSC 融解曲線が3℃以上はなれた2つの融解ピ
ークを有していても粘度が低くなりすぎ、予備発泡時や
成形時に連続気泡化、破泡、収縮などが生じやすくな
る。さらにDSC 融解曲線の2つのピークの温度差が3℃
未満しかないときには、DSC 融解曲線が1つのピークし
かもたないものに近くなり、融点付近での溶融粘度の低
下が大きく、予備発泡や成形時に連続気泡化、破泡、収
縮などが生じやすくなる。 【0026】(A) 記載の樹脂は密度 0.940g/cm3
上、MI 0.01 〜 0.5g/10分の高密度ポリエチレンと密
度 0.920〜 0.940g/cm3 、MI 0.1〜10g/10分の直鎖
状低密度ポリエチレンとを適切な比率でブレンドするこ
とにより、(B) 記載の樹脂に相当する流動性を有する樹
脂組成物をうることができる。 【0027】なお、(B) 記載のDSC 融解曲線が低温側と
高温側に2つの融解ピークを有する直鎖状低密度ポリエ
チレン樹脂粒子は、樹脂粒子を樹脂の融点近傍で5分以
上熱処理後冷却することによってえられる。この熱処理
は乾熱処理でもよいが、熱処理時に粒子同士が融着しや
すいため、水などの加熱媒体中に樹脂粒子を分散させて
熱処理する方法が好ましい。 【0028】前記樹脂密度およびMIはJIS K 6760に準じ
て測定しうる。またDSC 融解曲線は示差走査熱量計を用
い、試料を10℃/分の速度で 200℃まで昇温させて測定
しうる。 【0029】つぎに予備発泡粒子の製法について説明す
る。 【0030】本発明における予備発泡粒子は、基材樹脂
を押出機などを用いて小形のペレットとし、揮発性発泡
剤と接触させて発泡剤を含有させ、ついでこれを加熱発
泡させて予備発泡粒子とする方法、または耐圧容器中で
樹脂粒子と揮発性発泡剤とを分散剤の存在下で水に分散
させ、高温・高圧下で発泡剤を樹脂粒子に含有せしめた
のち、樹脂粒子と水との混合物を容器の下端を開放して
低圧域に放出することにより該粒子を予備発泡させる方
法などによりえられる。 【0031】使用される揮発性発泡剤としては、たとえ
ばプロパン、ブタン、ペンタン、ヘキサン、ヘプタンな
どの脂肪族炭化水素類、シクロペンタン、シクロヘキサ
ンなどの脂環式炭化水素類、モノクロロメタン、ジクロ
ロメタン、モノクロロエタン、トリクロロモノフルオロ
メタン、ジクロロジフルオロメタン、ジクロロモノフル
オロメタン、トリクロロトリフルオロエタン、ジクロロ
テトラフルオロエタンなどのハロゲン化炭化水素類など
があげられる。これらは単独で用いてもよく、2種以上
併用してもよい。これらの揮発性発泡剤は無架橋エチレ
ン系樹脂粒子100 部(重量部、以下同様)に対して5〜
40部程度含有せしめて発泡に供せられる。 【0032】耐圧容器中で樹脂粒子と揮発性発泡剤とを
水に分散させ、高温・高圧下で圧力を開放して予備発泡
粒子をうる方法においては、該容器内でDSC 融解曲線が
2つの融解ピークを示す直鎖状低密度ポリエチレン樹脂
粒子をうるための熱処理を行なったのち、そのまま容器
の一端を開放して予備発泡を行なってもよい。 【0033】(B) 記載のDSC 融解曲線が低温側と高温側
に2つの融解ピークを有する直鎖状低密度ポリエチレン
を用いるばあい、上記いずれの方法を用いて予備発泡を
行なってもDSC 融解曲線の2つのピークは実質的に保持
され、型内成形をおこなうばあいに成形加工幅が広く、
良好な発泡成形品をうることができる。 【0034】このようにして発泡倍率5〜50倍、好まし
くは10〜45倍で、セル構造が均一で連続気泡率が低く、
粒子同士の融着がない本発明の無架橋エチレン系樹脂予
備発泡粒子が製造される。 【0035】本発明の無架橋エチレン系樹脂予備発泡粒
子を用い、通常の方法による型内成形を行なうと、加熱
幅が広くて容易に成形でき、粒子間の融着性がよくて粒
子間間隙が少なく、収縮、変型が少なくて外観の美麗な
成形体がえられる。 【0036】成形方法の具体例としては、たとえばえら
れた予備発泡粒子を直ちにまたは適当な時間の養生・乾
燥ののちにそのままあるいは予備発泡粒子にさらに空気
などの無機ガスおよび(または)揮発性発泡剤を含有さ
せて発泡能を付与したのち成形型内に充填し、水蒸気な
どの加熱媒体により 105〜 150℃程度、3秒〜3分程度
の加熱条件で成形する方法などがあげられる。 【0037】本発明の予備発泡粒子を用いると、上述の
ごとく、とくに発泡能を付与しなくても良好な成形品を
うることができる。 【0038】このようにしてえられる成形品は、耐油
性、耐候性、耐熱性、引き裂き強度、柔軟性、保温性、
圧縮強度、緩衡性などにすぐれ、架橋エチレン系樹脂予
備発泡粒子からえられた成形品の使用される分野と同様
の分野、たとえば包装材、緩衡材、断熱材、建築資材、
浮揚材、かよい箱、食品容器、ショックアブソーバーな
どの分野に好適に使用されうる。 【0039】以下実施例によって本発明の予備発泡粒子
をさらに詳細に説明する。 【0040】実施例1 内容積 100リットルの撹拌機を有する耐圧容器に、密度
0.953g/cm3 、MI0.04g/10の高密度ポリエチレン
70%と密度 0.930g/cm 3 、MI 2.1g/10分の直鎖状低
密度ポリエチレン30%との混合物で、DSC 融点 128℃、
加硫試験機(JSR キャラストメータIII 型)にて温度を
変えて測定したトルク値より算出した複素粘度が 130
150℃の範囲で 0.092〜 0.075kg・sec /cm2 (温度−
複素粘度曲線を図1に示す)である高密度ポリエチレン
粒子(粒子重量約5mg/粒) 100部(22.5kg)を、分散
剤としてパウダー状塩基性第3リン酸カルシウム 1.2部
とC14〜C16のn-パラフィンスルホン酸ソーダ 0.006部
とを用いて水 300部に分散させ、撹拌しながらジクロロ
ジフルオロメタン45部を加えて 135℃まで昇温させた。
このときの耐圧容器の内圧は35kg/cm2 -Gであった。 【0041】ついで液状のジクロロジフルオロメタンを
バルブで調節しながら圧入して、内圧を35kg/cm2 -Gに
保ちながら耐圧容器下部の放出用バルブを開放し、該バ
ルブのうしろに取りつけた内径4mmの1個の円形の孔を
有するオリフィス板を通して、粒子と水との混合物を常
圧の雰囲気に放出した。 【0042】えられた予備発泡粒子の平均発泡倍率は38
倍であった。ついでこの予備発泡粒子を35℃で6時間乾
燥させた。連続気泡率は6%であった。 【0043】この予備発泡粒子を成形機に取付けた 290
× 270×50mmの金型に充填し、 1.0〜 2.0kg/cm2 -Gの
水蒸気で10〜30秒間加熱して成形した。この成形品を80
℃で20時間養生・乾燥させ、室温で1日放置後、以下の
方法により成形品の表面平滑性、ヒケ(部分収縮)およ
び変形、融着性および成形加工幅を調べた。その評価結
果を表2に示す。 【0044】(予備発泡粒子の連続気泡率)予備発泡粒
子の全気泡のうち外部と連通している連続気泡の割合を
示すものであり、次式により求める。 【0045】 【数1】 【0046】(式中、Vは予備発泡粒子の体積(試料を
メスシリンダー中でエチルアルコールに沈めて測定す
る)、vは空気比較式比重計(たとえばベックマン社
製、空気比較式比重計 930型)を用いて測定した予備発
泡粒子の閉鎖気泡部分の体積を表わす。) (成形品の表面平滑性)成形品表面の平滑性を肉眼で観
察し、下記の判定基準に基づいて評価。 【0047】○:成形品の表面凹凸なし △:成形品の表面凹凸少しあり ×:成形品の表面凹凸激しい (成形品のヒケおよび変形)成形品のヒケおよび変形を
肉眼で観察し、下記の判定基準に基づいて評価。 【0048】○:ヒケおよび変形なし △:ヒケおよび変形少しあり ×:ヒケおよび変形激しい (成形品の融着性)成形品内部の粒子同士の融着の度合
を成形品をわって粒子内で破壊している部分の割合を肉
眼にて判定し、これを融着度とし、下記の判定基準に基
づいて評価。 【0049】○:融着度60%をこえる △:融着度40〜60% ×:融着度40%未満 (成形加工幅)成形品の表面平滑性、ヒケおよび変形、
融着性がいずれも△以上を合格とし、合格品をうるため
の成形加熱水蒸気圧の下限と上限との差を形成加工幅の
指標とし、下記の判定基準に基づいて評価。 【0050】○:0.15kg/cm2 をこえる △:0.05〜0.15kg/cm2 ×:0.05kg/cm2 未満 実施例2および比較例1〜2 エチレン系樹脂として表1に示す樹脂を使用し、予備発
泡条件を表1に示す条件にした以外は実施例1と同様に
して予備発泡粒子、ついで成形品をえた。 【0051】予備発泡直後の予備発泡粒子の平均発泡倍
率および連続気泡率を表1に示す。成形品の評価結果は
表2に示す。 【0052】また、実施例1、2および比較例2で使用
したエチレン系樹脂の温度−複素粘度曲線を図1に示
す。 【0053】 【表1】【0054】 【表2】【0055】実施例3〜4および比較例3〜4 表3に示す直鎖状低密度ポリエチレン粒子(粒子重量約
5mg/粒)を内容積100 リットルの撹拌機を有する耐圧
容器を用い、実施例1と同様の方法で水に分散させ、発
泡剤を入れないで表3に示す温度で30分間保持して熱処
理したのち常温まで冷却して、熱処理した樹脂粒子をえ
た。 【0056】えられた樹脂粒子のDSC 融解曲線の2つの
融解ピークの温度および加硫試験機(JSR キュラストメ
ータIII 型)にて求めた複素粘度を表3に示す。また用
いたエチレン系樹脂の温度−複素粘度曲線を図2に示
す。 【0057】表3に示す4種の樹脂粒子をそれぞれ発泡
剤であるジクロロジルフルオロメタンの飽和蒸気と温度
60〜80℃、圧力15.5〜23.5kg/cm2 -Gで1〜2時間接触
させてジクロロジフルオロメタンを含有させ、0.5 〜
1.5kg/cm2 -Gの水蒸気で20秒間加熱発泡させ、予備発
泡粒子をえた。結果を表4に示す。 【0058】 【表3】【0059】 【表4】【0060】実施例3、4でえられた予備発泡粒子を実
施例1と同様にして 0.5〜 1.5kg/cm2 -Gの水蒸気で加
熱成形してえられた成形品は、粒子同士の融着性がよ
く、表面が平滑で、ヒケ・変形が少なく、外観の美麗な
ものであった。 【0061】表4の結果から、実施例3、4では発泡倍
率が高く、連続気泡率の低い良好な予備発泡粒子がえら
れるが、比較例3、4では予備発泡粒子が収縮して高い
発泡倍率がえられず、また連続気泡率も高く、型内成形
に供しえないものであることがわかる。 【0062】 【発明の効果】本発明の予備発泡粒子は、無架橋エチレ
ン系樹脂を基材とするにもかかわらず、高発泡倍率で収
縮が少ない。また該粒子を用いて型内成形すると成形加
工条件の幅が広くて粒子同士の融着性がよく、粒子間間
隙が少なく、外観の美麗な成形体がえられる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention heat-molds a pre-expanded particle with a heating medium such as steam in a mold that can close but cannot close a pre-expanded particle to give a molded product. The present invention relates to non-crosslinked ethylene resin pre-expanded particles applicable to the method. More specifically, it relates to non-crosslinked ethylene resin pre-expanded particles obtained by heat-expanding a non-crosslinked ethylene-based resin having a specific viscosity when melted to form pre-expanded particles, which is then expanded by heating in a mold. In the production of a foamed molded product by in-mold molding of an ethylene-based resin by a bead method, a cross-linked ethylene-based resin particle is made to contain a volatile foaming agent and heated by steam or the like to be a pre-expanded particle. However, a method using the pre-expanded particles is generally used. When an ethylene-based resin is used without being crosslinked, the melt viscosity of the resin is remarkably lowered near the melting point, and the foaming agent gas causes foam breakage and further shrinkage, resulting in pre-expanded particles with a high expansion ratio and little shrinkage. Further, it is extremely difficult to obtain a molded product having a good fusion property between particles, a beautiful appearance, and a small gap between particles. Therefore, it is essential to crosslink the ethylene resin and control the melt viscosity of the resin in the temperature range above the melting point to a range suitable for prefoaming and molding of the obtained prefoamed particles by the formation of crosslinks. Therefore, there is a drawback in that an extra step called a cross-linking step is required, and the cross-linked ethylene resin is difficult to reuse. In addition, low density polyethylene with a structure with many branches is suitable for cross-linking, and there is the problem that even high density polyethylene with few branches is not easy to cross-link. Development of in-mold foam molding technology is highly anticipated. The present invention has been made for the purpose of obtaining pre-expanded ethylene resin particles which are excellent in pre-expandability and moldability of pre-expanded particles without being crosslinked. Yes, even when using a non-crosslinked ethylene-based resin as a base resin, by using one having a specific viscosity during melting, pre-expanded particles with high expansion ratio and less shrinkage can be obtained. In-mold molding gives good fusion between particles, and there are few gaps between particles,
This was done because it was found that a molded product with a beautiful appearance could be obtained. [0005] The present invention has a density of 0.940 g / cm 3 or less
Above, dense with MI 0.01-0.5g / 10min high density polyethylene
Linearity of 0.920 to 0.940 g / cm 3 and MI 0.1 to 10 g / 10 min
Cross-linked ethylene blended with linear low density polyethylene
Resin or Density 0.920 to 0.940 g / cm 3 , MI 0.01 to
It is a linear low-density polyethylene of 10g / 10min, and has a differential running
The DSC melting curves measured by the calorimeter are 2 on the low temperature side and 2 on the high temperature side.
Has two melting peaks and two peaks of the melting peak
It is a non-crosslinked ethylene resin with a temperature difference of 3 ° C or more.
I, which is one type using a vulcanization testing machine angular frequency (omega) 10.5 sec torque value measured by changing the temperature at -1 dynamic viscoelasticity measuring apparatus complex viscosity calculated from (lM * l) (lη * (Ω) l)
In the curve plotted with respect to temperature, foaming using a non-crosslinked ethylene-based resin as a base resin having a portion where the value of complex viscosity takes a value in the range of 0.06 to 0.2 kg / cm 2 over a temperature range of 5 ° C or more. The present invention relates to non-crosslinked ethylene resin pre-expanded particles having a magnification of 5 to 50 times . EXAMPLES The vulcanization tester referred to in this specification is a kind of dynamic viscoelasticity tester developed for the purpose of monitoring the progress of vulcanization of unvulcanized rubber, and its principle is A small angular vibration of reciprocating rotary motion is applied to a sample at a constant temperature, and the stress against the vibration is measured as a torque value.
R Curastometer III type (manufactured by Japan Synthetic Rubber Co., Ltd.) vulcanization tester. The relationship between the torque value (lM * l) measured by the tester and the complex viscosity (lη * (ω) l) of the sample is expressed by the formula: lM * l = kθ o ωlη * (ω) l ( Where k is the vulcanization tester constant, θ o is the angular amplitude, and ω is the angular frequency). Therefore, lη * (ω) l = lm
l η * (ω) l can be obtained as * l / (kθ o ω). The vulcanization tester constant (k), angular amplitude (θ o ), and angular frequency (ω) vary depending on the vulcanization tester used.
The complex viscosity l η * (ω) l is a universal value, although * l is different. From the vulcanization tester and measurement conditions used in the present invention, k = πR 4 /2h=82.45 cm 3 / rad (radian) = 1.44 cm 3
/ Deg (where R is the effective radius (1.8 cm) of the die of the vulcanization tester, h
Is the distance between dies (0.2 cm), θ o = 1 deg and ω = 2π
f = 2π · 100/60 = 10.5 sec −1 (where f is the frequency (100
is a cpm)), and therefore lη * (ω) l = lM * l / (kθ o ω) = lM * l × 0.0662 (k
g · sec / cm 2 ). Η * (ω) and ## EQU1 ## Looking at the correspondence relationship with, the time scale is roughly [2] It is said that the vulcanization tester used in the present invention is generally used at ω = 10.5 sec -1 . Since the present invention is also used under this condition, Corresponds to the steady flow viscosity near 10.5 sec -1 . Generally, the viscosity characteristics of the thermoplastic resin are determined by using a capillary rheometer, a melt indexer or the like. However, these devices cannot measure viscosity in a high viscosity region suitable for pre-expansion and molding of pre-expanded particles, and the present invention is used for measuring the viscosity in the high viscosity region. It is necessary to use equipment such as a vulcanization tester as shown in. The non-crosslinked ethylene-based resin referred to in the present specification includes, for example, various polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene and linear low density polyethylene, as well as ethylene-vinyl acetate copolymer, ethylene- It is a resin that also contains various copolymers containing 50% (wt% or less) of ethylene units, such as methyl methacrylate copolymer and ethylene-acrylic acid copolymer, and is not intentionally crosslinked. The non-crosslinked ethylene resin used in the present invention is
Among the non-crosslinked ethylene-based resins as described above, the temperature was set to 1 at an angular frequency (ω) of 10.5 sec -1 using the vulcanization tester.
In a curve in which the complex viscosity calculated from the torque value measured in the range of 10 to 150 ° C is plotted against temperature,
Complex viscosity of 0.06 to 0.2 kg over a temperature range of 5 ° C or more
・ Sec / cm 2 , preferably 0.065-0.17kg ・ sec / cm 2
It is a non-crosslinked ethylene-based resin having a portion having a value in the range (hereinafter, referred to as a specific non-crosslinked ethylene-based resin).
These may be used alone or in combination. The complex viscosity over the temperature range above 5 ° C.
If it is less than 0.06 kg · sec / cm 2, the fluidity of the resin will be too large and the foaming and shrinkage will occur easily during pre-foaming or molding from pre-expanded particles, and if it exceeds 0.2 kg · sec / cm 2 , it will flow. Poor properties make pre-expansion and molding from pre-expanded particles difficult. Further, the temperature range showing the complex viscosity needs to be at least 5 ° C. in view of workability. [0022] Among the specific non-crosslinked ethylene-based resin, (A) Density 0.940 g / cm 3 or more, MI 0.01 ~ 0.5g / 10 min density polyethylene and density 0.920~ 0.940g / cm 3,
MI 0.1 to 10 g / 10 min blended linear low density polyethylene resin, or (B) density 0.920 to 0.940 g / cm 3 , MI 0.01 to 10 g / 10
Of a linear low-density polyethylene, the DSC melting curve measured by a differential scanning calorimeter has two melting peaks on the low temperature side and the high temperature side, and the temperature difference between the two peak temperatures of the melting peak is Those having a temperature of 3 ° C. or higher are particularly preferable. [0023] (A) Symbol mounting uncrosslinked ethylene-based resin of not also lowered melt viscosity much above the melting point, when the production of pre-expanded particles using these resins, a wide temperature above the temperature range melting point Pre-expanded particles with a high expansion ratio and less shrinkage can be obtained across the width. Further, when the particles are molded in a mold, the particles have a good fusion property with each other, there are few interparticle gaps, and a molded product having a beautiful appearance can be obtained. Further, in the non-crosslinked ethylene resin described in (B), the melting peak of the crystal was 3 ° C or more.
When the pre-expanded particles are produced by using this resin, the melting temperature range is broadened by the separation into two parts, and when the pre-expanded particles are produced using this resin, shrinkage at a high expansion ratio is achieved over a relatively wide temperature range. Fewer pre-expanded particles are obtained.
Further, when the particles are molded in a mold, the particles have a good fusion property with each other, there are few interparticle gaps, and a molded product having a beautiful appearance can be obtained. The resin described in (B) has a density of 0.920 g / cm 3
When the amount is less than the above, the obtained molded article becomes too soft and does not exhibit good physical properties, and when it exceeds 0.940 g / cm 3 , peak separation of the DSC melting curve due to heat treatment of resin particles described later hardly occurs. When MI is less than 0.01g / 10min, the fluidity is poor and prefoaming or molding becomes difficult. When it exceeds 10g / 10min, the viscosity is high even if it has two melting peaks with a DSC melting curve of 3 ° C or more. Becomes too low, and open cells, breakage, and shrinkage are likely to occur during pre-foaming and molding. Furthermore, the temperature difference between the two peaks of the DSC melting curve is 3 ° C.
When the amount is less than the above, the DSC melting curve becomes close to having only one peak, the melt viscosity near the melting point is largely lowered, and open cells, foam breakage, and shrinkage are likely to occur during prefoaming and molding. [0026] (A) Resin according density 0.940 g / cm 3 or more, MI 0.01 high-density polyethylene and a density of ~ 0.5 g / 10 min 0.920~ 0.940g / cm 3, MI 0.1~10g / 10 min linear A resin composition having fluidity equivalent to that of the resin described in (B) can be obtained by blending the low-density polyethylene with an appropriate ratio. The linear low-density polyethylene resin particles having a DSC melting curve described in (B) having two melting peaks on the low temperature side and the high temperature side are heat treated for 5 minutes or more near the melting point of the resin and then cooled. It is obtained by doing. This heat treatment may be a dry heat treatment, but since the particles are easily fused to each other during the heat treatment, it is preferable to disperse the resin particles in a heating medium such as water and perform the heat treatment. The resin density and MI can be measured according to JIS K 6760. The DSC melting curve can be measured by using a differential scanning calorimeter and heating the sample to 200 ° C at a rate of 10 ° C / min. Next, a method for producing the pre-expanded particles will be described. The pre-expanded particles in the present invention are prepared by making a base resin into small pellets by using an extruder or the like, bringing the pellet into contact with a volatile foaming agent to contain the foaming agent, and then heat-foaming the pre-expanded particles. Or the resin particles and a volatile foaming agent in a pressure vessel are dispersed in water in the presence of a dispersant, and after the foaming agent is contained in the resin particles at high temperature and high pressure, the resin particles and water The mixture can be obtained by a method of pre-foaming the particles by opening the lower end of the container and discharging into the low pressure region. Examples of the volatile blowing agent used include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, monochloromethane, dichloromethane and mono. Examples thereof include halogenated hydrocarbons such as chloroethane, trichloromonofluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, trichlorotrifluoroethane and dichlorotetrafluoroethane. These may be used alone or in combination of two or more. These volatile foaming agents are 5 to 5 parts per 100 parts by weight of non-crosslinked ethylene resin particles (parts by weight, the same applies below).
About 40 parts of it is included for foaming. In a method in which resin particles and a volatile foaming agent are dispersed in water in a pressure resistant container and pressure is released at high temperature and high pressure to obtain pre-expanded particles, two DSC melting curves are obtained in the container. After heat treatment for obtaining linear low-density polyethylene resin particles exhibiting a melting peak, one end of the container may be opened as it is for pre-foaming. When a linear low-density polyethylene having a DSC melting curve described in (B) having two melting peaks on the low temperature side and the high temperature side is used, the DSC melting curve is obtained by pre-foaming using any of the above methods. The two peaks of the curve are substantially retained, and the molding width is wide during in-mold molding,
A good foam molded article can be obtained. [0034] In this way, the foaming magnification 5-50 times, preferably at 10 to 45 times, the cell structure has low open cell ratio uniform,
The non-crosslinked ethylene-based resin pre-expanded particles of the present invention having no fusion of particles are produced. When the non-crosslinked ethylene-based resin pre-expanded particles of the present invention are used for in-mold molding by a conventional method, the heating width is wide and molding is easy, and the fusion between particles is good and the inter-particle gap is good. It is possible to obtain a molded product with a good appearance and less shrinkage and deformation. As a specific example of the molding method, for example, the obtained pre-expanded particles are immediately or after curing and drying for an appropriate time as they are, or the pre-expanded particles are further subjected to an inorganic gas such as air and / or volatile expansion. Examples of the method include a method in which the agent is added to provide foaming ability, the agent is filled in a molding die, and the material is molded with a heating medium such as steam under a heating condition of about 105 to 150 ° C. for about 3 seconds to 3 minutes. By using the pre-expanded particles of the present invention, as described above, a good molded product can be obtained without particularly providing the foaming ability. The molded product obtained in this manner has oil resistance, weather resistance, heat resistance, tear strength, flexibility, heat retention,
It has excellent compressive strength and cushioning properties, and is used in the same fields as used for molded articles made from pre-expanded crosslinked ethylene resin particles, such as packaging materials, cushioning materials, heat insulating materials, building materials,
It can be preferably used in the fields of levitating materials, shaving boxes, food containers, shock absorbers and the like. The pre-expanded particles of the present invention will be described in more detail with reference to the following examples. Example 1 A pressure-resistant container having an agitator with an internal volume of 100 liters was charged with a density
0.953 g / cm 3 , MI 0.04 g / 10 min high density polyethylene
70%, density 0.930 g / cm 3 , MI 2.1 g / 10 min linear low
Mixture with 30% density polyethylene , DSC melting point 128 ℃,
The complex viscosity calculated from the torque value measured by changing the temperature with a vulcanization tester (JSR Charameter III type) is 130-
0.092 to 0.075 kg · sec / cm 2 (Temperature −
100 parts (22.5 kg) of high-density polyethylene particles having a complex viscosity curve (particle weight of about 5 mg / particle) having a complex viscosity curve of 1.2 parts by weight of powdery basic tribasic calcium phosphate and C 14 -C 16 Using 0.006 parts of n-paraffin sodium sulfonate, the mixture was dispersed in 300 parts of water, and 45 parts of dichlorodifluoromethane was added with stirring and the temperature was raised to 135 ° C.
The internal pressure of the pressure vessel at this time was 35 kg / cm 2 -G. Then, liquid dichlorodifluoromethane was press-fitted while adjusting with a valve, and while maintaining the internal pressure at 35 kg / cm 2 -G, the discharge valve at the bottom of the pressure resistant container was opened and mounted behind this valve. The mixture of particles and water was discharged into an atmosphere of normal pressure through an orifice plate having a circular hole with an inner diameter of 4 mm. The average expansion ratio of the obtained pre-expanded particles is 38.
It was double. Then, the pre-expanded particles were dried at 35 ° C. for 6 hours . Continuous air bubble rate was 6%. The pre-expanded particles were mounted on a molding machine.
It was filled in a metal mold of 270 mm x 270 mm and heated by steam of 1.0 to 2.0 kg / cm 2 -G for 10 to 30 seconds for molding. 80 this molded product
After curing and drying at 20 ° C. for 20 hours and leaving at room temperature for 1 day, the surface smoothness, sink marks (partial shrinkage) and deformation, fusion property and molding width of the molded product were examined by the following methods . The evaluation results of that shown in Table 2. (Open cell ratio of pre-expanded particles) This shows the proportion of open cells communicating with the outside out of all the cells of the pre-expanded particles, and is calculated by the following formula. [Equation 1] (Wherein V is the volume of the pre-expanded particles (measured by immersing the sample in ethyl alcohol in a graduated cylinder), and v is an air-comparison hydrometer (for example, air-comparison hydrometer 930 type manufactured by Beckman). ) Is used to represent the volume of the closed-cell portion of the pre-expanded particles.) (Surface smoothness of molded product) The smoothness of the surface of the molded product is visually observed and evaluated based on the following criteria. ◯: No surface irregularity of the molded product Δ: Some irregularity of surface of the molded product ×: Severe surface irregularity of the molded product (sink and deformation of the molded product) Sink and deformation of the molded product were observed with the naked eye, and Evaluated based on the criteria. ◯: No sink mark and deformation Δ: Sink mark and slight deformation X: Sink mark and deformation severe (fusion property of molded product) The degree of fusion of particles inside the molded product was measured within the molded product within the particles. The ratio of the broken portion is visually judged, and this is taken as the fusion degree, and evaluated based on the following judgment criteria. ◯: The degree of fusion is over 60% Δ: The degree of fusion is 40 to 60% ×: The degree of fusion is less than 40% (molding width) The surface smoothness, sink marks and deformation of the molded product,
The meltability was rated as Δ or higher, and the difference between the lower limit and the upper limit of the steam pressure for forming and heating to obtain a passing product was used as an index of the forming width and evaluated based on the following criteria. [0050] ○: 0.15 kg / cm 2 to more than △: 0.05~0.15kg / cm 2 ×: a resin shown in Table 1 as 0.05 kg / cm 2 less than in Example 2 Contact and Comparative Examples 1 to 2 ethylene resin Then, pre-expanded particles and then a molded article were obtained in the same manner as in Example 1 except that the pre-expanding conditions were changed to those shown in Table 1. Table 1 shows the average expansion ratio and the open cell ratio of the pre-expanded particles immediately after the pre-expansion. The evaluation results of the molded products are shown in Table 2. The temperature-complex viscosity curves of the ethylene resins used in Examples 1 and 2 and Comparative Example 2 are shown in FIG. [Table 1] [Table 2] Examples 3 to 4 and Comparative Examples 3 to 4 The linear low-density polyethylene particles shown in Table 3 (particle weight: about 5 mg / particle) were used in a pressure resistant vessel having an agitator with an internal volume of 100 liters. In the same manner as in Example 1, the resin particles were dispersed in water, kept at the temperature shown in Table 3 for 30 minutes without adding a foaming agent, heat-treated, and then cooled to room temperature to obtain heat-treated resin particles. Table 3 shows the temperatures of the two melting peaks of the DSC melting curve of the obtained resin particles and the complex viscosities determined by a vulcanization tester (JSR Curastometer III type). The temperature-complex viscosity curve of the ethylene resin used is shown in FIG. The four kinds of resin particles shown in Table 3 were respectively treated with saturated steam of dichlorodylfluoromethane as a foaming agent and temperature.
Contact at 60-80 ° C, pressure 15.5-23.5kg / cm 2 -G for 1-2 hours to contain dichlorodifluoromethane, 0.5-
Pre-expanded particles were obtained by heat-foaming with steam of 1.5 kg / cm 2 -G for 20 seconds. The results are shown in Table 4. [Table 3] [Table 4] The pre-expanded particles obtained in Examples 3 and 4 were heat-molded in the same manner as in Example 1 with 0.5 to 1.5 kg / cm 2 -G steam to obtain a molded product. It had good wearability, a smooth surface, few sink marks and deformation, and a beautiful appearance. From the results shown in Table 4, in Examples 3 and 4 , good pre-expanded particles having a high expansion ratio and a low open cell ratio were obtained, but in Comparative Examples 3 and 4, the pre-expanded particles contracted to give high expansion. It can be seen that the magnification cannot be obtained, and the open cell ratio is high, so that it cannot be used for in-mold molding. INDUSTRIAL APPLICABILITY The pre-expanded particles of the present invention have a high expansion ratio and little shrinkage, even though they use a non-crosslinked ethylene resin as a base material. Further, when the particles are used for in-mold molding, a wide range of molding processing conditions, good fusion of particles with each other, small interparticle gaps, and a molded product with a beautiful appearance can be obtained.

【図面の簡単な説明】 【図1】実施例1、2、比較例2で用いたエチレン系樹
脂の温度−複素粘度の関係を示すグラフである。 【図2】実施例3、4、比較例3、4で用いたエチレン
系樹脂の温度−複素粘度の関係を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] Example 1, 2, the ethylene-based resin used in a ratio Comparative Examples 2 Temperature - is a graph showing the relationship between complex viscosity. FIG. 2 is a graph showing the temperature-complex viscosity relationship of the ethylene resins used in Examples 3 and 4 and Comparative Examples 3 and 4.

Claims (1)

(57)【特許請求の範囲】 1 密度 0.940g/cm 3 以上、MI 0.01 〜 0.5g/10分
の高密度ポリエチレンと密度 0.920〜 0.940g/cm 3
MI 0.1〜10g/10分の直鎖状低密度ポリエチレンとをブ
レンドした無架橋エチレン系樹脂または密度 0.920〜
0.940g/cm 3 、MI 0.01 〜10g/10分の直鎖状低密度
ポリエチレンであり、示差走査熱量計で測定したDSC 融
解曲線が低温側と高温側に2つの融解ピークを有し、か
つ該融解ピークの2つのピーク温度の温度差が3℃以上
の無架橋エチレン系樹脂であって、動的粘弾性測定装置
の一種である加硫試験機を用いて角周波数(ω)10.5 s
ec-1で温度を変えて測定したトルク値(lM* l)から算出
した複素粘度(lη* (ω)l)を温度に対してプロットし
た曲線において、複素粘度の値が5℃以上の温度幅にわ
たり0.06〜 0.2kg・sec /cm2 の範囲の値をとる部分を
有する無架橋エチレン系樹脂を基材樹脂とする発泡倍率
5〜50倍の無架橋エチレン系樹脂予備発泡粒子。
(57) [Claims] 1 density 0.940 g / cm 3 or more, MI 0.01 to 0.5 g / 10 minutes
High density polyethylene and density 0.920〜0.940g / cm 3 ,
MI 0.1-10 g / 10 min linear low density polyethylene
Lend non-crosslinked ethylene resin or density 0.920〜
0.940g / cm 3, MI of 0.01 to 10 g / 10 min linear low density
Polyethylene, DSC melt measured by differential scanning calorimeter
The solution curve has two melting peaks on the low temperature side and the high temperature side,
The temperature difference between the two peak temperatures of the melting peak is 3 ° C or more
This is a non-cross-linked ethylene-based resin and is a type of dynamic viscoelasticity measuring device.
On the curve where the complex viscosity (l η * (ω) l) calculated from the torque value (lM * l) measured by changing the temperature at ec -1 was plotted against the temperature, Foaming ratio using non-crosslinked ethylene-based resin as a base resin, which has a portion that takes a value in the range of 0.06 to 0.2 kg · sec / cm 2 across the width
Pre-expanded particles of non-crosslinked ethylene resin of 5 to 50 times .
JP5260785A 1993-10-19 1993-10-19 Pre-expanded particles of non-crosslinked ethylene resin Expired - Lifetime JP2517208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260785A JP2517208B2 (en) 1993-10-19 1993-10-19 Pre-expanded particles of non-crosslinked ethylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260785A JP2517208B2 (en) 1993-10-19 1993-10-19 Pre-expanded particles of non-crosslinked ethylene resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61264715A Division JPH078929B2 (en) 1986-11-05 1986-11-05 Method for selecting base resin for pre-expanded non-crosslinked ethylene resin

Publications (2)

Publication Number Publication Date
JPH06316645A JPH06316645A (en) 1994-11-15
JP2517208B2 true JP2517208B2 (en) 1996-07-24

Family

ID=17352705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260785A Expired - Lifetime JP2517208B2 (en) 1993-10-19 1993-10-19 Pre-expanded particles of non-crosslinked ethylene resin

Country Status (1)

Country Link
JP (1) JP2517208B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018260A1 (en) * 1995-11-15 1997-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Pre-expanded polyethylene beads and process for the production thereof
JP5295730B2 (en) * 2008-11-19 2013-09-18 株式会社カネカ Method for producing polypropylene resin pre-expanded particles
MY175462A (en) 2013-11-20 2020-06-29 Kaneka Corp Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof
JP6390912B2 (en) * 2015-02-10 2018-09-19 西本 孝一 Anti-resin foam
WO2017169568A1 (en) * 2016-03-30 2017-10-05 株式会社カネカ Process for producing expanded polyethylene-based resin beads and process for producing polyethylene-based molded resin object by in-mold foaming
JP7130080B1 (en) * 2021-03-15 2022-09-02 株式会社ジェイエスピー Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020943A (en) * 1983-07-14 1985-02-02 Asahi Chem Ind Co Ltd Non-crosslinked polyethylene resin expanded particle
JPH078929B2 (en) * 1986-11-05 1995-02-01 鐘淵化学工業株式会社 Method for selecting base resin for pre-expanded non-crosslinked ethylene resin

Also Published As

Publication number Publication date
JPH06316645A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
EP0075897B1 (en) Process for producing pre-foamed particles of polyolefin resin
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
US4968723A (en) Pre-expanded particles of non-crosslinked linear low density polyethylene
US4617323A (en) Prefoamed particles of crosslinked propylene-type resin and molded article prepared therefrom
CA2247557A1 (en) Rotational moulding
JP2517208B2 (en) Pre-expanded particles of non-crosslinked ethylene resin
EP0933389B1 (en) Polypropylene resin pre-expanded particles
EP1055701B1 (en) Polycarbonate resin foam and shock absorber using the same
WO1997018260A1 (en) Pre-expanded polyethylene beads and process for the production thereof
EP0722974B1 (en) Expandable rubber-modified styrene resin beads, expanded beads thereof, and expanded molded articles obtained therefrom
JPS581732A (en) Polypropylene synthetic resin expanded molding
JPH078929B2 (en) Method for selecting base resin for pre-expanded non-crosslinked ethylene resin
JPS58213028A (en) In-mold expansion polypropylene resin molding
EP0575958B1 (en) Pre-expanded particles of LLDPE
JP3514046B2 (en) Pre-expanded particles of polypropylene resin
EP0924244B1 (en) Non-crosslinked linear low density polyethylene preexpanded particles
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JPS6244778B2 (en)
EP0359032B1 (en) Method for manufacturing pre-expanded particles of polyolefin resin
JP3537001B2 (en) Expanded polypropylene resin particles and method for producing the same
KR860001742B1 (en) Preparation of foam particles of ethylenic resin
JPS61113627A (en) Foamed particle of high-density polyethylene resin and production thereof
JPH0367106B2 (en)
JPS6311974B2 (en)
JPS6019523A (en) Molding method of straight chain type polyethylene expandable particle in mold