JP2517009B2 - Lysine derivative and sweetener containing the same - Google Patents

Lysine derivative and sweetener containing the same

Info

Publication number
JP2517009B2
JP2517009B2 JP62264587A JP26458787A JP2517009B2 JP 2517009 B2 JP2517009 B2 JP 2517009B2 JP 62264587 A JP62264587 A JP 62264587A JP 26458787 A JP26458787 A JP 26458787A JP 2517009 B2 JP2517009 B2 JP 2517009B2
Authority
JP
Japan
Prior art keywords
yield
group
lys
phe
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62264587A
Other languages
Japanese (ja)
Other versions
JPH01106851A (en
Inventor
秀雄 岡井
康晴 納庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62264587A priority Critical patent/JP2517009B2/en
Publication of JPH01106851A publication Critical patent/JPH01106851A/en
Application granted granted Critical
Publication of JP2517009B2 publication Critical patent/JP2517009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Seasonings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリジン誘導体およびその塩ならびにそれを有
効成分として含有する甘味剤に関する。
TECHNICAL FIELD The present invention relates to a lysine derivative and a salt thereof and a sweetener containing the same as an active ingredient.

[従来の技術] 近年、糖分の摂取過多による肥満およびこれに伴う各
種の疾病が問題となっており砂糖に代わる低カロリーま
たは無カロリー甘味剤の開発が望まれている。現在、こ
れらの要望を満たすものとして、サッカリン、ステビ
ア、アスパルテームなどが使用されているが、サッカリ
ンは、継続して摂取したばあいの発がん性などの安全性
が問題とされており、ステビアをはじめとする天然甘味
料は、その味質、糖製技術、価格などの面で問題を残す
ものが多いのが現状である。アスパルテームは、味質の
面ではかなり砂糖に近いとされているが、やはり後味に
苦味が混在し、さらに良質の甘味剤の開発が望まれてい
る。また、アスパルテームは安全性は確認されているも
のの、アスパルテームに含まれるC端メチルエステルは
体内で分解され、メタノールとなって蓄積される恐れが
ある。
[Prior Art] In recent years, obesity due to excessive intake of sugar and various diseases associated therewith have become problems, and development of low-calorie or non-caloric sweeteners to replace sugar has been desired. Currently, saccharin, stevia, aspartame, etc. are used to meet these demands, but saccharin is considered to be a safety issue such as carcinogenicity when continuously ingested, and saccharine, etc. Currently, many natural sweeteners leave problems in terms of quality, sugar technology, price, and the like. Aspartame is said to be quite similar to sugar in terms of taste quality, but also bitterness is mixed in the aftertaste, and further development of high-quality sweeteners is desired. Although the safety of aspartame has been confirmed, the C-terminal methyl ester contained in aspartame may be decomposed in the body and accumulated as methanol.

アスパルテームの甘味発現機構は、シャルレンベルガ
ー(Shallenberger)らにより提唱されたエーエイチ・
ビー(AH,B)システムにより説明され(シャルレンベル
ガーおよびアクレー(Shallenberger and Acree)、ネ
イチャー(ロンドン)(Nature(London))216巻、480
頁(1967)参照)、そののち多くのアスパルテームに関
する合成的研究により、アミノ基(AH)、カルボキシル
基(B)に加え、疎水性基(X)の必要性が明らかにさ
れ、これら、三者の立体的な位置関係により甘味が発現
すると結論された(フジマキら、ケミカル・アンド・フ
ァーマシューティカル・ブレティン(Chem.Pharm.Bul
l.)24巻、2112頁(1976)参照)。
The mechanism of sweetness of aspartame is the H.S.C. proposed by Shallenberger et al.
Explained by the Bee (AH, B) system (Shallenberger and Acree, Nature (London) 216, 480
Page (1967)), and then synthetic research on many aspartames revealed the necessity of a hydrophobic group (X) in addition to an amino group (AH) and a carboxyl group (B). It was concluded that the sweetness is expressed by the three-dimensional positional relationship of (Fujimaki et al., Chemical & Pharmaceutical Bulletin (Chem.Pharm.Bul.
l.) 24, page 2112 (1976)).

一方、有吉は、それに加え、メチルエステルの関与に
ついても検討している。その結果、メチルエステルは疎
水性基(X)に相当し、甘味力を増強するために不可欠
であると結論している(アリヨシ・ワイ(Ariyoshi
Y.)、アグリカルチュラル・アンド・バイオロジカル・
ケミストリー(Agric.Biol.Chem.)40巻、983頁(197
6)参照)。
On the other hand, Ariyoshi is also examining the involvement of methyl esters. As a result, we conclude that the methyl ester corresponds to the hydrophobic group (X) and is essential for enhancing sweetness (Ariyoshi Wai).
Y.), Agricultural and Biological
Chemistry (Agric. Biol. Chem.) 40, 983 (197
See 6)).

[発明が解決しようとする問題点] 本発明の目的は、さわやかな甘味を有し、かつ体内で
のメタノールの蓄積の恐れがあるメチルエステルを有し
ていない新規なリジン誘導体およびその塩、ならびにこ
れらを有効成分として含有してなる低カロリー甘味剤を
提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a novel lysine derivative and a salt thereof, which have a refreshing sweetness and do not have a methyl ester which may accumulate methanol in the body, and It is intended to provide a low-calorie sweetener containing these as active ingredients.

[問題点を解決するための手段] 本発明者らは、AH、B、Xの三成分が、立体的に、あ
る特定の位置関係に配置すれば甘味が発現すると考え、
AH、B、Xの成分を有し、メチルエステルを有さないリ
ジン誘導体およびその塩類を多数合成し、その呈味挙動
について鋭意検討を重ねた結果、苦味のない良質な甘味
を有するリジン誘導体を見出し、その知見に基づいて発
明を完成するに至った。すなわち本発明は、一般式
(I): (式中、Rはフェニルアセチル基、フェニルプロピオニ
ル基、ベンゾイル基、L−フェニルアラニン残基、D−
フェニルアラニン残基、一般式(II): (式中、R1はベンゾイル基、フェニルアセチル基または
フェニルプロピオニル基、およびR2はメチル基、エチル
基またはヒドロキシメチル基を表わす)で示される基、
または一般式(III): (式中、mは1または2、およびnは1、2または3を
表わす)で示される基を表わす)で示されるリジン誘導
体およびその塩ならびにそれを有効成分として含有する
甘味剤に関する。
[Means for Solving Problems] The inventors of the present invention considered that three components AH, B, and X are three-dimensionally arranged in a certain specific positional relationship to develop sweetness,
As a result of synthesizing a large number of lysine derivatives having salts AH, B, and X and having no methyl ester and salts thereof, and conducting intensive studies on their taste behavior, a lysine derivative having a good sweetness without bitterness was obtained. The invention was completed based on the findings and the findings. That is, the present invention has the general formula (I): (In the formula, R is a phenylacetyl group, phenylpropionyl group, benzoyl group, L-phenylalanine residue, D-
Phenylalanine residue, general formula (II): (Wherein R 1 represents a benzoyl group, a phenylacetyl group or a phenylpropionyl group, and R 2 represents a methyl group, an ethyl group or a hydroxymethyl group),
Or general formula (III): (In the formula, m represents 1 or 2, and n represents 1, 2 or 3) and a salt thereof and a sweetener containing the same as an active ingredient.

[実施例] 本発明のリジン誘導体は、通常のペプチド合成の手法
にもとづいて合成されるが、たとえばベンジルオキシカ
ルボニル基などの保護基でNα窒素原子が保護されたリ
ジンに一般式(I)のRに相当するアミノ酸残基、アシ
ル基またはアシルアミノ酸誘導体残基をたとえばテトラ
ヒドロフラン(以下、THFという)、N,N−ジメチルホル
ムアミド(以下、DMFという)、クロロホルムなどの溶
媒中で活性エステル法を用いる縮合によって導入し、つ
いで接触還元などにより保護基を除去すれば本発明の化
合物またはその塩をうることができる。この際に使用す
る保護基、縮合法、保護基の除去法は上記方法に限定さ
れるものではなく、他の公知の方法を使用してもよい。
[Examples] The lysine derivative of the present invention is synthesized according to a general peptide synthesis method. For example, lysine having the N α nitrogen atom protected by a protecting group such as a benzyloxycarbonyl group can be used in the formula (I). The amino acid residue, acyl group or acylamino acid derivative residue corresponding to R of is subjected to the active ester method in a solvent such as tetrahydrofuran (hereinafter referred to as THF), N, N-dimethylformamide (hereinafter referred to as DMF) or chloroform. The compound of the present invention or a salt thereof can be obtained by introducing the compound by condensation used and then removing the protecting group by catalytic reduction or the like. The protecting group, the condensation method, and the method for removing the protecting group used at this time are not limited to the above methods, and other known methods may be used.

本発明の化合物は、遊離もしくは塩の形態でえられる
が、これらは適当な溶媒でイオン交換樹脂を通すなど公
知の方法によって遊離のものは塩に、塩のものは遊離の
ものに容易に変換することができる。たとえばメタノー
ル−塩酸などの溶媒で処理することにより、遊離のもの
は塩酸塩などへ変換することができる。
The compound of the present invention can be obtained in a free or salt form, and these can be easily converted into a salt and a salt can be converted into a free salt by a known method such as passing an ion exchange resin in a suitable solvent. can do. For example, by treating with a solvent such as methanol-hydrochloric acid, the free one can be converted into a hydrochloride or the like.

本発明のリジン誘導体およびその塩の単離、精製は通
常の方法で行なうことができ、適当な溶媒を用いて再結
晶、再沈殿、クロマトグラフィーなどによって目的を達
成することができる。
The lysine derivative of the present invention and its salt can be isolated and purified by a conventional method, and the object can be achieved by recrystallization, reprecipitation, chromatography or the like using an appropriate solvent.

本発明のリジン誘導体の塩としては、たとえば、塩
酸、硫酸、リン酸などの無機酸との塩、酢酸、ギ酸、プ
ロピオン酸、スルファミン酸、アスコルビン酸、桂皮
酸、シュウ案、クエン酸、酒石酸、乳酸、リンゴ酸、マ
ロン酸、マレイン酸、コハク酸などの有機酸との塩、な
らびにナトリウム、カリウムなどのアルカリ金属、カル
シウム、マグネシウムなどのアルカリ土類金属、および
モノエタノールアミンなどのアミン類との塩があげられ
る。
Examples of the salt of the lysine derivative of the present invention include, for example, salts with inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, acetic acid, formic acid, propionic acid, sulfamic acid, ascorbic acid, cinnamic acid, Shu plan, citric acid, tartaric acid, Salts with organic acids such as lactic acid, malic acid, malonic acid, maleic acid, succinic acid, as well as alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, and amines such as monoethanolamine. I can give you some salt.

本発明のリジン誘導体またはその塩は甘味剤として用
いるばあい、各単独で使用しても、あるいは2種以上を
組み合わせても、ほかの甘味料と組み合わせて用いても
よいのはもちろんである。
When the lysine derivative of the present invention or a salt thereof is used as a sweetener, it may be used alone or in combination of two or more kinds, or may be used in combination with other sweeteners.

他の甘味料としてはズルチン、サッカリン、アスパル
テーム、グリチルリチン、ステビオシド、ネオヘスペリ
ジンジヒドロカルコン、モネリンなどがあげられる。ま
た調剤の方法としてはたとえば該甘味料としてステビオ
シドを2:1の割合で混合し、使用することにより苦味を
感じないまろやかな甘味が持続するなど、それぞれの特
長と使用法に応じて調整することができる。また、えら
れた甘味剤をシクロデキストリンで包接することによ
り、溶解性や安定性を向上させることも可能である。
Other sweeteners include dultin, saccharin, aspartame, glycyrrhizin, stevioside, neohesperidin dihydrochalcone, monerin and the like. Further, as a method of preparation, for example, by mixing stevioside as the sweetener in a ratio of 2: 1 and using it, a mellow sweetness that does not feel bitterness lasts, and the like, and adjust according to each characteristic and usage. You can In addition, it is possible to improve solubility and stability by including the obtained sweetener in cyclodextrin.

本発明のリジン誘導体は、リジンのε−アミノ基(A
H)とカルボキシル基(B)およびRに含まれる疎水性
基(X)がアスパルテームにおけるアスパラギン酸のα
−アミノ基(AH)、γ−カルボキシル基(B)およびPh
eに含まれる疎水性基(X)の空間配置と同様の立体的
関係があるとき甘味が発現する。
The lysine derivative of the present invention is a lysine ε-amino group (A
H), the carboxyl group (B) and the hydrophobic group (X) contained in R are α of aspartic acid in aspartame.
-Amino group (AH), γ-carboxyl group (B) and Ph
Sweetness develops when there is a steric relationship similar to the spatial arrangement of the hydrophobic group (X) contained in e.

以下に実施例を用いて本発明をさらに詳細に説明する
が、本発明はもとよりこれら実施例のみに限定されるも
のではない。なお、実施例における略号は以下の通りで
ある。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The abbreviations used in the examples are as follows.

Bz−:ベンゾイル基 Z−:ベンジルオキシカルボニル基 DCC:ジシクロヘキシルカルボジイミド DCUrea:ジシクロヘキシルウレア TLC:薄層クロマトグラフィー Rf1:n−ブタノール:酢酸:ピリジン:水=4:1:1:2(容
量比)展開溶媒によるRf値 Rf2:クロロホルム:メタノール=5:1(容量比)展開溶
媒によるRf値 HONSu:N−ヒドロキシスクシンイミド −ONSu:N−ヒドロキシスクシンイミドエステル基 DMF:N,N−ジメチルホルムアミド Ph−ac−:フェニルアセチル基 Ph−pr−:フェニルプロピオニル基 Phe:フェニルアラニン Ala:アラニン Lys:リジン Gly:グリシン α−Abu:α−アミノ酪酸 Ser:セリン 実施例1 Bz−Lysの合成 (1)Lys(Z)の合成 Lys・HCl11g(60mmol)を熱水150mlに溶解し、CuCO3
・Cu(OH)・H2O12g(50mmol)を加え、10分間煮沸し
たのち、これを濾過し、濾液を放冷した。ついで、濾液
に氷冷下でNaHCO310.1g(120mmol)およびZ−Cl12ml
(75mmol)を攪拌しながら数回に分けて加えた。3〜4
時間氷冷下で攪拌したのち、沈殿するLys(Z)・1/2Cu
を濾取し、冷水、エタノール、アセトン、エーテルで洗
浄し、これを水250mlに懸濁し、6NUHCl400mlを加え、H2
Sを2時間通した。ハイフロスーパーセルでCuSを除き、
1N HClで洗浄、空気を通したのち、この溶液を濾過し、
濾液を氷冷下アンモニア水でpH6.5に調整した。冷蔵庫
で結晶を析出させ、水、エタノール、エーテルで洗浄
し、乾燥してLys(Z)の結晶をえた。
Bz-: benzoyl group Z-: benzyloxycarbonyl group DCC: dicyclohexylcarbodiimide DCUrea: dicyclohexylurea TLC: thin layer chromatography Rf 1 : n-butanol: acetic acid: pyridine: water = 4: 1: 1: 2 (volume ratio) Rf value with developing solvent Rf 2 : Chloroform: Methanol = 5: 1 (volume ratio) Rf value with developing solvent HONSu: N-hydroxysuccinimide-ONSu: N-hydroxysuccinimide ester group DMF: N, N-dimethylformamide Ph-ac -: Phenylacetyl group Ph-pr-: Phenylpropionyl group Phe: Phenylalanine Ala: Alanine Lys: Lysine Gly: Glycine α-Abu: α-Aminobutyric acid Ser: Serine Example 1 Synthesis of Bz-Lys (1) Lys (Z ) Lys.HCl 11 g (60 mmol) was dissolved in hot water 150 ml, and CuCO 3
· Cu and (OH) 2 · H 2 O12g (50mmol) was added, after boiling for 10 minutes, which was filtered and allowed to cool the filtrate. Then, the filtrate was ice-cooled with NaHCO 3 10.1 g (120 mmol) and Z-Cl 12 ml.
(75 mmol) was added in several portions with stirring. 3-4
Lys (Z) ・ 1 / 2Cu which precipitates after stirring under ice cooling for 1 hour
Was collected by filtration, washed with cold water, ethanol, acetone and ether, suspended in 250 ml of water, added with 400 ml of 6NUHCl, and added with H 2
I passed S for 2 hours. Except CuS in high flow super cell,
After washing with 1N HCl and passing air through, the solution was filtered,
The filtrate was adjusted to pH 6.5 with aqueous ammonia under ice cooling. Crystals were precipitated in a refrigerator, washed with water, ethanol and ether, and dried to obtain Lys (Z) crystals.

以下にえられたLys(Z)の収量(収率)、融点、TLC
によるRf1およびRf2ならびに元素分析値を示す。
Lys (Z) yield (yield), melting point, TLC obtained below
2 shows Rf 1 and Rf 2 and elemental analysis values by.

収量(収率):10.1g(60%) mp:253〜254℃ Rf1:0.81、Rf2:0.06 元素分析(C12H20O4N2) 理論値(%):C60.0 H7.2 N10.0 実測値(%):C59.9 H7.3 N9.8 (2)Bz−Lys(Z)の合成 (1)でえられたLys(Z)1.40g(5mmol)を水10ml
および2N NaOH2.5ml(5mmol)の混合液に溶解し、氷冷
下で攪拌しながらBz−Cl0.69ml(6mmol)と2N NaOH3ml
(6mmol)を5回分注し、そののち2時間攪拌した。エ
ーテルで過剰のBz−Clを抽出し、水層を6N HClでpH1〜
2としたのち酢酸エチルで抽出し、無水硫酸ナトリウム
で乾燥した。この溶液を濾過したのち濾液を減圧下で濃
縮しエーテルで結晶化し冷却放置して結晶成長させた。
そののち、上澄み液を濾去し、結晶を乾燥し、Bz−Lys
(Z)の結晶をえた。
Yield (Yield): 10.1g (60%) mp : 253~254 ℃ Rf 1: 0.81, Rf 2: 0.06 Elemental analysis (C 12 H 20 O 4 N 2) theory (%): C60.0 H7. 2 N10.0 Actual value (%): C59.9 H7.3 N9.8 (2) Synthesis of Bz-Lys (Z) 1.40 g (5 mmol) of Lys (Z) obtained in (1) was added to 10 ml of water.
Dissolve in a mixture of 2.5 ml (5 mmol) of 2N NaOH and 0.69 ml (6 mmol) of Bz-Cl and 3 ml of 2N NaOH while stirring under ice cooling.
(6 mmol) was dispensed 5 times and then stirred for 2 hours. Excess Bz-Cl was extracted with ether and the aqueous layer was adjusted to pH 1--6 with 6N HCl.
After adjusting to 2, the mixture was extracted with ethyl acetate and dried over anhydrous sodium sulfate. After this solution was filtered, the filtrate was concentrated under reduced pressure, crystallized with ether, and left to cool to grow crystals.
After that, the supernatant was filtered off, the crystals were dried, and Bz-Lys
A crystal of (Z) was obtained.

以下にえられたBz−Lys(Z)の収量(収率)、融
点、TLCによるRf1およびRf2、比旋光度ならびに元素分
析値を示す。
The yield (yield) of Bz-Lys (Z), melting point, Rf 1 and Rf 2 by TLC, specific optical rotation and elemental analysis values obtained below are shown below.

収量(収率):1.42g(74.7%) mp:102〜105℃ Rf1:0.81、Rf2:0.39 ▲[α]23 D▼=+0.99(c=1、DMF) 元素分析(C21H24O5N2) 理論値(%):C64.1 H6.2 N7.1 実測値(%):C63.7 H6.1 N7.0 (3)Bz−Lysの合成 (2)でえられたBz−Lys(Z)0.76g(2mmol)を酢
酸5mlに溶解し、パラジウム黒300mgを加えて室温で3時
間攪拌して接触還元した。TLCで反応終了を確認したの
ち、濾過してパラジウム黒を除き、濾液を減圧下で濃縮
し、エーテルで結晶化し冷却放置して結晶成長させた。
そののち上澄み液を濾去し、結晶を乾燥しBz−Lysの結
晶をえた。えられたBz−Lysは吸湿性であった。
Yield (Yield): 1.42g (74.7%) mp: 102-105 ℃ Rf 1 : 0.81, Rf 2 : 0.39 ▲ [α] 23 D ▼ = + 0.99 (c = 1, DMF) Elemental analysis (C 21 H 24 O 5 N 2 ) Theoretical value (%): C64.1 H6.2 N7.1 Actual value (%): C63.7 H6.1 N7.0 (3) Synthesis of Bz-Lys (2) 0.76 g (2 mmol) of the obtained Bz-Lys (Z) was dissolved in 5 ml of acetic acid, 300 mg of palladium black was added, and the mixture was stirred at room temperature for 3 hours for catalytic reduction. After confirming the completion of the reaction by TLC, the reaction mixture was filtered to remove palladium black, and the filtrate was concentrated under reduced pressure, crystallized with ether, and left to cool to grow crystals.
After that, the supernatant was filtered off and the crystals were dried to obtain Bz-Lys crystals. The obtained Bz-Lys was hygroscopic.

以下にその収量(収率)、TLCによるRf1およびRf2
らびに元素分析値を示す。
The yield (yield), Rf 1 and Rf 2 by TLC, and elemental analysis values are shown below.

収量(収率):0.50g(80.7%) Rf1:0.46、Rf2:0.00 実施例2 Ph−ac−Lysの合成 (1)Ph−ac−Lys(Z)の合成 実施例1の(1)と同様の方法にしたがってえられた
Lys(Z)1.40g(5mmol)を水10mlおよび2N NaOH2.5ml
(5mmol)の混合液に溶解し、氷冷下で攪拌しながらPh
−ac−Cl1.11ml(6mmol)と2N NaOH2.5ml(5mmol)を5
回分注し、そののち1晩攪拌した。この反応液からエー
テルで過剰のPh−ac−Clを除き、6N HClを加えpH1〜2
としたのち、酢酸エチルで抽出し、酢酸エチル層を0.5N
HClで洗浄し、ついで無水硫酸ナトリウムで乾燥した。
この溶液を濾過したのち濾液を減圧下で濃縮しエーテル
で結晶化し、冷却放置して結晶成長させ、さらに酢酸エ
チル−エーテル混合溶媒で再結晶しPh−ac−Lys(Z)
の結晶をえた。
Yield (yield): 0.50 g (80.7%) Rf 1 : 0.46, Rf 2 : 0.00 Example 2 Synthesis of Ph-ac-Lys (1) Synthesis of Ph-ac-Lys (Z) (1 of Example 1 ) Was obtained according to the same method as
Lys (Z) 1.40 g (5 mmol) 10 ml of water and 2.5 ml of 2N NaOH
Dissolve in a mixture of (5mmol), Ph
-Ac-Cl 1.11 ml (6 mmol) and 2N NaOH 2.5 ml (5 mmol) 5
It was dispensed in batches and then stirred overnight. Excess Ph-ac-Cl was removed from the reaction solution with ether, and 6N HCl was added to pH 1-2.
After that, extract with ethyl acetate and extract the ethyl acetate layer with 0.5N.
It was washed with HCl and then dried over anhydrous sodium sulfate.
After filtering this solution, the filtrate was concentrated under reduced pressure, crystallized with ether, allowed to cool and allowed to grow crystals, and recrystallized with a mixed solvent of ethyl acetate-ether to obtain Ph-ac-Lys (Z).
I got a crystal.

以下にえられたPh−ac−Lys(Z)の収量(収率)、
融点、TLCによるRf1およびRf2、比旋光度ならびに元素
分析値を示す。
The yield (yield) of Ph-ac-Lys (Z) obtained below,
The melting point, Rf 1 and Rf 2 by TLC, specific rotation and elemental analysis values are shown.

収量(収率):1.20g(60.3%) mp:101〜102℃ Rf1:0.85、Rf2:0.30 ▲[α]23 D▼=−3.97(c=1,DMF) 元素分析(C22H26O5N2) 理論値(%):C66.3 H6.6 N7.0 実測値(%):C66.2 H6.5 N7.1 (2)Ph−ac−Lysの合成 (1)でえられたPh−ac−Lys(Z)0.40g(1mmol)
を実施例1の(3)と同様の方法により処理し、目的と
する化合物Ph−ac−Lysの結晶をえた。
Yield (Yield): 1.20 g (60.3%) mp: 101-102 ° C Rf 1 : 0.85, Rf 2 : 0.30 ▲ [α] 23 D ▼ = -3.97 (c = 1, DMF) Elemental analysis (C 22 H 26 O 5 N 2 ) Theoretical value (%): C66.3 H6.6 N7.0 Actual value (%): C66.2 H6.5 N7.1 (2) Synthesis of Ph-ac-Lys (1) The obtained Ph-ac-Lys (Z) 0.40 g (1 mmol)
Was treated in the same manner as in (3) of Example 1 to obtain crystals of the target compound Ph-ac-Lys.

以下にえられたPh−ac−Lysの収量(収率)、融点、T
LCによるRf1およびRf2、比旋光度ならびに元素分析値を
示す。
The yield of Ph-ac-Lys (yield), melting point, T
Rf 1 and Rf 2 by LC, specific rotation and elemental analysis values are shown.

収量(収率):0.24g(75.0%) mp:227〜230℃ Rf1:0.51、Rf2:0.00 ▲[α]23 D▼=−14.97(c=1、DMF) 元素分析(C14H20O3N2・CH3COOH) 理論値(%):C59.2 H7.5 N8.6 実測値(%):C59.5 H7.6 N8.4 実施例3 L−Phe−Lysの合成 (1)Z−L−Pheの合成 L−Phe1.65g(10mmol)を4N NaOH2.5ml(10mmol)に
溶かし、氷冷下で激しく攪拌しながら4N NaOH3ml(12mm
ol)とZ−Cl1.87g(11mmol)とを20〜30分かけて同時
に滴下した。反応液は常にアルカリ性に保つようにし
た。滴下終了後さらに、20分攪拌し、反応終了後、反応
液をエーテルで洗浄し未反応のZ−Clを除去した。氷冷
しながら水層に5N HClを滴下しpH2.5〜3にした。この
水溶液を冷蔵庫に入れて結晶を成長させ濾取し冷水で洗
浄したのち、デシケーターで乾燥し、Z−L−Pheの結
晶をえた。
Yield (yield): 0.24 g (75.0%) mp: 227-230 ° C Rf 1 : 0.51, Rf 2 : 0.00 ▲ [α] 23 D ▼ = -14.97 (c = 1, DMF) Elemental analysis (C 14 H 20 O 3 N 2 · CH 3 COOH) Theoretical value (%): C59.2 H7.5 N8.6 Actual value (%): C59.5 H7.6 N8.4 Example 3 Synthesis of L-Phe-Lys (1) Synthesis of ZL-Phe L-Phe (1.65 g, 10 mmol) was dissolved in 4N NaOH (2.5 ml, 10 mmol), and 4N NaOH (3 ml, 12 mm) was vigorously stirred under ice cooling.
ol) and 1.87 g (11 mmol) of Z-Cl were simultaneously added dropwise over 20 to 30 minutes. The reaction solution was always kept alkaline. After completion of dropping, the mixture was further stirred for 20 minutes, and after completion of the reaction, the reaction solution was washed with ether to remove unreacted Z-Cl. While cooling with ice, 5N HCl was added dropwise to the aqueous layer to adjust the pH to 2.5-3. This aqueous solution was put in a refrigerator to grow crystals, which was collected by filtration, washed with cold water, and then dried with a desiccator to obtain ZL-Phe crystals.

以下にえられたZ−L−Pheの収量(収率)、融点、T
LCによるRf1およびRf2、比旋光度ならびに元素分析値を
示す。
Yield (yield), melting point, T of ZL-Phe obtained below
Rf 1 and Rf 2 by LC, specific rotation and elemental analysis values are shown.

収量(収率):2.70g(90.3%) mp:81〜84℃ Rf1:0.67、Rf2:0.35 ▲[α]23 D▼=+3.99(c=1,EtOH) 元素分析(C17H17O4N) 理論値(%):C68.2 H5.7 N4.7 実測値(%):C68.0 H5.7 N4.6 (2)Z−L−Phe−ONSuの合成 (1)でえられたZ−L−Phe1.50g(5mmol)とHONSu
0.58g(5mmol)をアセトニトル20mlに溶解し、氷冷下で
10分攪拌したのち、DCC1.03g(5mmol)を加えて一晩攪
拌した。析出したDCUreaを濾去し、濾液を減圧下で濃縮
して、エーテルで2〜3回デカンテーションし、油状の
Z−L−Phe−ONSuをえた。
Yield (Yield): 2.70 g (90.3%) mp: 81-84 ° C Rf 1 : 0.67, Rf 2 : 0.35 ▲ [α] 23 D ▼ = + 3.99 (c = 1, EtOH) Elemental analysis (C 17 H 17 O 4 N) Theoretical value (%): C68.2 H5.7 N4.7 Actual value (%): C68.0 H5.7 N4.6 (2) Synthesis of ZL-Phe-ONSu (1 ) Obtained ZL-Phe 1.50g (5mmol) and HONSu
Dissolve 0.58 g (5 mmol) in 20 ml of acetonitol, and under ice cooling
After stirring for 10 minutes, DCC (1.03 g, 5 mmol) was added and the mixture was stirred overnight. The precipitated DC Urea was filtered off, the filtrate was concentrated under reduced pressure, and decanted with ether 2 to 3 times to obtain oily ZL-Phe-ONSu.

以下にえられたZ−L−Phe−ONSuの収量(収率)な
らびにTLCによるRf1およびRf2を示す。
The yield (yield) of ZL-Phe-ONSu and Rf 1 and Rf 2 by TLC are shown below.

収量(収率):1.95g(98.2%) Rf1:0.81、Rf2:0.33 (3)Z−L−Phe−Lys(Z)の合成 (2)でえられたZ−L−Phe−ONSu1.59g(4mmol)
をDMF10mlに溶かした溶液を、実施例1の(1)の方法
にしたがってえられたLys(Z)1.12g(4mmol)をDMF10
mlに溶かした溶液に加え一晩攪拌した。反応終了後2%
HClで反応液をpH1〜2とし、酢酸エチルで抽出し、酢酸
エチル層を2%HClで洗浄し、無水硫酸ナトリウムで乾
燥した。この溶液を濾過したのち、濾液を減圧下で濃縮
し、貧溶媒として石油エーテルを用いて結晶化し、さら
にエーテルで再結晶し、Z−L−Phe−Lys−(Z)の結
晶をえた。
Yield (yield): 1.95 g (98.2%) Rf 1 : 0.81, Rf 2 : 0.33 (3) Synthesis of Z-L-Phe-Lys (Z) Z-L-Phe-ONSu1 obtained in (2) .59 g (4 mmol)
Was dissolved in 10 ml of DMF, and 1.12 g (4 mmol) of Lys (Z) obtained according to the method of (1) of Example 1 was added to DMF10.
It was added to the solution dissolved in ml and stirred overnight. 2% after completion of reaction
The reaction solution was adjusted to pH 1-2 with HCl, extracted with ethyl acetate, the ethyl acetate layer was washed with 2% HCl, and dried over anhydrous sodium sulfate. After this solution was filtered, the filtrate was concentrated under reduced pressure, crystallized using petroleum ether as a poor solvent, and recrystallized from ether to give ZL-Phe-Lys- (Z) crystals.

以下にえられたZ−L−Phe−Lys(Z)の収量(収
率)、融点、TLCによるRf1およびRf2、比旋光度ならび
に元素分析値を示す。
The yield (yield) of Z-L-Phe-Lys (Z) obtained below, melting point, Rf 1 and Rf 2 by TLC, specific optical rotation and elemental analysis values are shown below.

収量(収率):0.71g(31.6%) mp:117〜121℃ Rf1:0.85、Rf2:0.49 ▲[α]23 D▼=−6.90(c=1,DMF) 元素分析(C31H35O7N3) 理論値(%):C66.3 H6.3 N7.5 実測値(%):C66.4 H6.1 N7.7 (4)L−Phe−Lys・HClの合成 (3)でえられたZ−L−Phe−Lys(Z)0.56g(1mm
ol)を実施例1の(3)と同様に処理することにより目
的物の酢酸塩L−Phe−Lys・CH3COOHをえた。この油状
物をメタノールで数回洗浄し、0.5N MeOH−HCl8ml(2mm
ol)を加えて、濃縮し、さらにメタノールで数回洗浄し
た。えられた目的物の塩塩酸L−Phe−Lys・HClは油状
の塩酸塩であった。その収量(収率)ならびにTLCによ
るRf1およびRf2を示す。
Yield (Yield): 0.71 g (31.6%) mp: 117-121 ° C Rf 1 : 0.85, Rf 2 : 0.49 ▲ [α] 23 D ▼ = -6.90 (c = 1, DMF) Elemental analysis (C 31 H 35 O 7 N 3 ) Theoretical value (%): C66.3 H6.3 N7.5 Actual value (%): C66.4 H6.1 N7.7 (4) Synthesis of L-Phe-Lys.HCl (3 ) Obtained Z-L-Phe-Lys (Z) 0.56g (1mm
ol) was treated in the same manner as in (3) of Example 1 to obtain the target acetate, L-Phe-Lys.CH 3 COOH. The oil was washed several times with methanol, and 8 mL of 0.5N MeOH-HCl (2 mm
ol) was added, and the mixture was concentrated and further washed several times with methanol. The target hydrochloric acid salt L-Phe-Lys.HCl thus obtained was an oily hydrochloride. The yield (yield) and Rf 1 and Rf 2 by TLC are shown.

収量(収率):0.33g(100%) Rf1:0.33、Rf2:0.00 実施例4 D−Phe−Lysの合成 実施例3において、L−PheのかわりにD−Pheを用い
るほかは実施例3と同様の方法にしたがって、D−Phe
−Lysを合成した。
Yield (yield): 0.33 g (100%) Rf 1 : 0.33, Rf 2 : 0.00 Example 4 Synthesis of D-Phe-Lys In Example 3, except that D-Phe was used instead of L-Phe. Following the same procedure as in Example 3, D-Phe
-Lys was synthesized.

以下にD−PheからD−Phe−Lysを合成する際の各工
程においてえられる中間体の収量(収率)ならびにTLC
によるRf1およびRf2などの物性値を示す。
The yield (yield) of the intermediates obtained in each step in synthesizing D-Phe-Lys from D-Phe and the TLC are shown below.
The physical properties such as Rf 1 and Rf 2 are shown.

(1)Z−D−Phe(結晶状) 収量(収率):2.55g(85.2%) mp:92〜95℃ Rf1:0.63、Rf2:0.19 ▲[α]23 D▼=−5.20(C=1、EtOH) 元素分析(C17H17O4N) 理論値(%):C68.2 H5.7 N4.7 実測値(%):C68.5 H5.5 N4.5 (2)Z−D−Phe−ONSu(油状) 収量(収率):1.89g(95.2%) Rf1:0.77、Rf2:0.35 (3)Z−D−Phe−Lys(Z)(結晶状) 収量(収率):0.79g(35.2%) mp:136〜139℃ Rf1:0.89、Rf2:0.51 ▲[α]23 D▼=+2.98(C=1、DMF) 元素分析(C31H35O7N3) 理論値(%):C66.3 H6.3 N7.5 実測値(%):C66.2 H6.3 N7.6 (4)D−Phe−Lys・HCl(油状) 収量(収率):0.33g(100%) Rf1:0.35、Rf2:0.00 実施例5 Ph−ac−Gly−Lysの合成 (1)Ph−ac−Glyの合成 Gly0.38g(5mmol)を水10mlおよび2N NaOH2.5ml(5mm
ol)の混合液に溶解し、氷冷下で攪拌しながらPh−ac−
Cl1.11ml(6mmol)と2N NaOH2.5ml(5mmol)を5回分注
したのち一晩攪拌した。反応終了後反応液に6N HClを加
えてpH1〜2とし、酢酸エチルで抽出し、酢酸エチル層
を0.5N HClで洗浄したのち、無水硫酸ナトリウムで乾燥
した。この溶液を濾過したのち濾液を減圧下で濃縮し、
エーテルで結晶化し、冷却放置して結晶化させ、さらに
これを酢酸エチル−エーテル混合溶媒中で再結晶し、Ph
−ac−Glyの結晶をえた。
(1) Z-D-Phe (Crystalline) Yield (Yield): 2.55 g (85.2%) mp: 92-95 ° C Rf 1 : 0.63, Rf 2 : 0.19 ▲ [α] 23 D ▼ = -5.20 ( C = 1, EtOH) Elemental analysis (C 17 H 17 O 4 N) Theoretical value (%): C68.2 H5.7 N4.7 Actual value (%): C68.5 H5.5 N4.5 (2) Z-D-Phe-ONSu (oil) Yield (Yield): 1.89 g (95.2%) Rf 1 : 0.77, Rf 2 : 0.35 (3) Z-D-Phe-Lys (Z) (Crystalline) Yield ( Yield): 0.79 g (35.2%) mp: 136-139 ° C Rf 1 : 0.89, Rf 2 : 0.51 ▲ [α] 23 D ▼ = + 2.98 (C = 1, DMF) Elemental analysis (C 31 H 35 O 7 N 3 ) Theoretical value (%): C66.3 H6.3 N7.5 Actual value (%): C66.2 H6.3 N7.6 (4) D-Phe-Lys.HCl (oil) Yield ( Yield): 0.33 g (100%) Rf 1 : 0.35, Rf 2 : 0.00 Example 5 Synthesis of Ph-ac-Gly-Lys (1) Synthesis of Ph-ac-Gly 0.38 g (5 mmol) of Gly in 10 ml of water. And 2.5 ml of 2N NaOH (5 mm
ol) mixed solution and stirred under ice cooling with stirring Ph-ac-
Cl1.11 ml (6 mmol) and 2N NaOH 2.5 ml (5 mmol) were dispensed 5 times and then stirred overnight. After completion of the reaction, 6N HCl was added to the reaction solution to adjust the pH to 1-2, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with 0.5N HCl and then dried over anhydrous sodium sulfate. After filtering this solution, the filtrate was concentrated under reduced pressure,
Crystallize with ether, leave to cool to crystallize, and recrystallize this in ethyl acetate-ether mixed solvent, Ph
A crystal of -ac-Gly was obtained.

以下にえられたPh−ac−Glyの収量(収率)、融点、T
LCによるRf1、Rf2ならびに元素分析値を示す。
The yield of Ph-ac-Gly (yield), melting point, T
The Rf 1 , Rf 2 and elemental analysis values by LC are shown.

収量(収率):0.60g(62%) mp:138〜143℃ Rf1:0.63、Rf2:0.30 元素分析(C10H11O3N) 理論値(%):C62.2 H5.7 N7.2 実測値(%):C62.1 H5.5 N7.3 (2)Ph−ac−Gly−ONSuの合成 Ph−ac−Gly1.35g(7mmol)とHONSu0.81g(7mmol)を
DMF10mlに溶解し、0℃に保ちながらDCC1.59g(7.7mmo
l)を加えたのち、0〜5℃で20時間攪拌した。反応終
了後DCUreaを濾去し、濾液を減圧下で濃縮し、えられた
残渣1.15gをイソプロパノールで希釈して冷却放置して
再結晶し、Ph−ac−Gly−ONSuの結晶をえた。
Yield (Yield): 0.60 g (62%) mp: 138-143 ° C Rf 1 : 0.63, Rf 2 : 0.30 Elemental analysis (C 10 H 11 O 3 N) Theoretical value (%): C62.2 H5.7 N7.2 measured value (%): C62.1 H5.5 N7.3 (2) Synthesis of Ph-ac-Gly-ONSu Ph-ac-Gly1.35 g (7 mmol) and HONSu 0.81 g (7 mmol)
Dissolve in 10 ml of DMF and keep it at 0 ℃, DCC 1.59g (7.7mmo
l) was added, and the mixture was stirred at 0 to 5 ° C for 20 hours. After completion of the reaction, DC Urea was filtered off, the filtrate was concentrated under reduced pressure, and 1.15 g of the obtained residue was diluted with isopropanol and allowed to cool and recrystallized to obtain Ph-ac-Gly-ONSu crystals.

以下にえられたPh−ac−Gly−ONSuの収量(収率)、T
LCによるRf1およびRf2ならびに元素分析値を示す。
The yield (yield) of Ph-ac-Gly-ONSu obtained below, T
The Rf 1 and Rf 2 and elemental analysis values by LC are shown.

収量(収率):0.87g(43%) Rf1:0.81、Rf2:0.62 元素分析(C14H14O5N2) 理論値(%):C57.9 H4.9 N9.7 実測値(%):C57.7 H5.1 N9.8 (3)Ph−ac−Gly−Lys(Z)の合成 Ph−ac−Gly−ONSu1.45g(5mmol)および実施例1の
(1)と同様の方法にしたがってえられたLys(Z)1.4
0g(5mmol)を用いて実施例3の(3)と同様に処理す
ることにより目的とするPh−ac−Gly−Lys(Z)をえ
た。
Yield (Yield): 0.87 g (43%) Rf 1 : 0.81, Rf 2 : 0.62 Elemental analysis (C 14 H 14 O 5 N 2 ) Theoretical value (%): C57.9 H4.9 N9.7 Measured value (%): C57.7 H5.1 N9.8 (3) Synthesis of Ph-ac-Gly-Lys (Z) Ph-ac-Gly-ONSu 1.45 g (5 mmol) and the same as (1) of Example 1. Lys (Z) 1.4 obtained according to the method of
The target Ph-ac-Gly-Lys (Z) was obtained by treating with 0 g (5 mmol) in the same manner as in (3) of Example 3.

以下にえられたPh−ac−Gly−Lys(Z)の収量(収
率)、TLCによるRf1およびRf2ならびに元素分析値を示
す。
The yield (yield) of Ph-ac-Gly-Lys (Z), Rf 1 and Rf 2 by TLC, and elemental analysis values obtained below are shown.

収量(収率):1.37g(60%) Rf1:0.76、Rf2:0.32 元素分析(C24H29O6N3) 理論値(%):C63.3 H6.4 N9.2 実測値(%):C63.2 H6.5 N9.0 (4)Ph−ac−Gly−Lysの合成 Ph−ac−Gly−Lys(Z)0.46g(1mmol)を用いて実施
例1の(3)と同様の処理をすることにより目的とする
Ph−ac−Gly−Lysをえた。えられたPh−ac−Gly−Lysは
吸湿性の結晶であった。その収量(収率)、TLCによるR
f1およびRf2ならびに元素分析値を示す。
Yield (Yield): 1.37 g (60%) Rf 1 : 0.76, Rf 2 : 0.32 Elemental analysis (C 24 H 29 O 6 N 3 ) Theoretical value (%): C63.3 H6.4 N9.2 Measured value (%): C63.2 H6.5 N9.0 (4) Synthesis of Ph-ac-Gly-Lys Ph-ac-Gly-Lys (Z) 0.46 g (1 mmol), (3) of Example 1 Aim by performing the same processing as
Ph-ac-Gly-Lys was obtained. The obtained Ph-ac-Gly-Lys was a hygroscopic crystal. Its yield (yield), R by TLC
f 1 and Rf 2 and elemental analysis values are shown.

収量(収率):0.31g(82%) Rf1:0.45、Rf2:0.00 実施例6 実施例5でえられた所定量のPh−ac−Gly−Lysをあら
かじめ用意しておいた所定濃度のシクロデキストリン水
溶液に添加し、溶解して30分間10000rpmでホモジナイズ
したのち凍結乾燥してPh−ac−Gly−Lysの包接物粉末を
えた。
Yield (yield): 0.31 g (82%) Rf 1 : 0.45, Rf 2 : 0.00 Example 6 Predetermined concentration of the prescribed amount of Ph-ac-Gly-Lys obtained in Example 5 Was added to the cyclodextrin aqueous solution of Example 1, dissolved, homogenized at 10,000 rpm for 30 minutes, and then freeze-dried to obtain a Ph-ac-Gly-Lys inclusion complex powder.

(呈味試験) 第1表に示す化合物について18〜55才の男女50人のパ
ネラーの倍数希釈による官能検査法により呈味を評価し
た。その結果を第1表に示す。甘味強度は倍数希釈系列
に調整されたサンプルを低濃度から呈味することにより
測定した味の閾値を示し、50人の平均値である。味質は
味を充分に感じる濃度において他の味の混在および甘味
の質を評価し、◎は純粋な甘味であること、○はやや他
の味の混在があることを示す。
(Taste test) The taste of each of the compounds shown in Table 1 was evaluated by a sensory test method using a multiple dilution of 50 panelists of 18 to 55 years old. The results are shown in Table 1. The sweetness intensity indicates a taste threshold value measured by tasting a sample adjusted to a multiple dilution series from a low concentration, and is an average value of 50 persons. Regarding the taste quality, the mixture of other tastes and the quality of sweetness were evaluated at a concentration at which the taste was sufficiently felt, and ⊚ indicates pure sweetness, and ∘ indicates that there is a mixture of other tastes.

第1表に示すようにリジンにBz−を導入したものは甘
味を発現するものの、その強度は低く、Ph−ac−および
Ph−pr−を導入したものについては、甘味を有するもの
の、苦味の混在があった。
As shown in Table 1, Bz-introduced into lysine exhibits sweetness, but its intensity is low, and Ph-ac- and
Regarding those into which Ph-pr- was introduced, there was a mixture of bitterness although it had sweetness.

また、リジンにL−Phe、D−Pheを導入したものにつ
いても同様に、苦味の混在があった。また、一般式
(I)のRがBz−Ala−、Bz−α−Abu−、Bz−Ser−、P
h−ac−Ala−、Ph−ac−α−Abu−、Ph−ac−Ser−、Ph
−pr−Ala−、Ph−pr−α−Abu−、Ph−pr−Ser−を導
入したものについても苦味の混在があったが、Bz−α−
Abu−Lysは若干の渋味を持つものの、砂糖の10倍程度の
比較的良質の甘味を呈した。
Similarly, bitterness was also mixed in the lysine in which L-Phe and D-Phe were introduced. Further, R in the general formula (I) is Bz-Ala-, Bz-α-Abu-, Bz-Ser-, P
h-ac-Ala-, Ph-ac-α-Abu-, Ph-ac-Ser-, Ph
There was a mixture of bitterness in the case of introducing -pr-Ala-, Ph-pr-α-Abu-, and Ph-pr-Ser-, but Bz-α-
Abu-Lys had a slight astringency, but exhibited a relatively good sweetness, which was about 10 times that of sugar.

つぎに、ペプチド主鎖鎖長をさらに延長したPh−ac−
Gly−Lys、Ph−pr−Gly−Lysの呈味を調べたところ、い
ずれも苦味を含まない良質の甘味を持つことが見出され
た。とくに、Ph−ac−Gly−Lysは砂糖の50倍の甘味を呈
することがわかった。しかしながら、さらに鎖長を延長
した化合物Ph−ac−β−Ala−Lys、Ph−pr−β−Ala−L
ysなどについては、再び甘味に加えて苦味が見出され
た。
Next, a Ph-ac-
When the tastes of Gly-Lys and Ph-pr-Gly-Lys were examined, it was found that each had a good quality sweetness that did not contain bitterness. In particular, Ph-ac-Gly-Lys was found to be 50 times as sweet as sugar. However, compounds with further extended chain lengths Ph-ac-β-Ala-Lys, Ph-pr-β-Ala-L
Regarding ys and the like, bitterness was found again in addition to sweetness.

これらはジペプチド誘導体で、砂糖とほぼ同程度のカ
ロリー数(4kcal/g)であるが、とくにPh−ac−Gly−Ly
sは50倍の甘味の強さを有することから、1/50のカロリ
ーですむので、低カロリーの甘味剤としてとくに有用で
ある。
These are dipeptide derivatives, which have almost the same number of calories as sugar (4 kcal / g), but especially Ph-ac-Gly-Ly.
Since s has 50 times the sweetness intensity, it requires only 1/50 calories, so it is particularly useful as a low-calorie sweetener.

[発明の効果] 本発明のリジン誘導体およびその塩はさわやかな甘味
を発現するという効果を奏し、それを含有する甘味剤は
低カロリー甘味剤として有用なものである。
[Effects of the Invention] The lysine derivative and its salt of the present invention have an effect of expressing a refreshing sweetness, and a sweetener containing the same is useful as a low-calorie sweetener.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07K 5/06 C07K 5/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C07K 5/06 C07K 5/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I): (式中、Rはフェニルアセチル基、フェニルプロピオニ
ル基、ベンゾイル基、L−フェニルアラニン残基、D−
フェニルアラニン残基、一般式(II): (式中、R1はベンゾイル基、フェニルアセチル基または
フェニルプロピオニル基、およびR2はメチル基、エチル
基またはヒドロキシメチル基を表わす)で示される基、
または一般式(III): (式中、mは1または2、およびnは1、2または3を
表わす)で示される基を表わす)で示されるリジン誘導
体およびその塩。
1. General formula (I): (In the formula, R is a phenylacetyl group, phenylpropionyl group, benzoyl group, L-phenylalanine residue, D-
Phenylalanine residue, general formula (II): (Wherein R 1 represents a benzoyl group, a phenylacetyl group or a phenylpropionyl group, and R 2 represents a methyl group, an ethyl group or a hydroxymethyl group),
Or general formula (III): (In the formula, m represents 1 or 2, and n represents 1, 2 or 3) and a salt thereof.
【請求項2】一般式(I): (式中、Rはフェニルアセチル基、フェニルプロピオニ
ル基、ベンゾイル基、L−フェニルアラニン残基、D−
フェニルアラニン残基、一般式(II): (式中、R1はベンゾイル基、フェニルアセチル基または
フェニルプロピオニル基、およびR2はメチル基、エチル
基またはヒドロキシメチル基を表わす)で示される基、
または一般式(III): (式中、mは1または2、およびnは1、2または3を
表わす)で示される基を表わす)で示されるリジン誘導
体およびその塩を有効成分として含有する甘味剤。
2. General formula (I): (In the formula, R is a phenylacetyl group, phenylpropionyl group, benzoyl group, L-phenylalanine residue, D-
Phenylalanine residue, general formula (II): (Wherein R 1 represents a benzoyl group, a phenylacetyl group or a phenylpropionyl group, and R 2 represents a methyl group, an ethyl group or a hydroxymethyl group),
Or general formula (III): (In the formula, m represents 1 or 2, and n represents 1, 2 or 3) A lysine derivative represented by the formula and a salt thereof as an active ingredient.
【請求項3】有効成分が該甘味剤をシクロデキストリン
で包接したものである特許請求の範囲第2項記載の甘味
剤。
3. The sweetener according to claim 2, wherein the active ingredient is the sweetener clathrated with cyclodextrin.
JP62264587A 1987-10-19 1987-10-19 Lysine derivative and sweetener containing the same Expired - Lifetime JP2517009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264587A JP2517009B2 (en) 1987-10-19 1987-10-19 Lysine derivative and sweetener containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264587A JP2517009B2 (en) 1987-10-19 1987-10-19 Lysine derivative and sweetener containing the same

Publications (2)

Publication Number Publication Date
JPH01106851A JPH01106851A (en) 1989-04-24
JP2517009B2 true JP2517009B2 (en) 1996-07-24

Family

ID=17405366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264587A Expired - Lifetime JP2517009B2 (en) 1987-10-19 1987-10-19 Lysine derivative and sweetener containing the same

Country Status (1)

Country Link
JP (1) JP2517009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009070631A2 (en) * 2007-11-28 2009-06-04 University Of Virginia Patent Foundation Ethoid compounds for use as food additives

Also Published As

Publication number Publication date
JPH01106851A (en) 1989-04-24

Similar Documents

Publication Publication Date Title
JPH022327A (en) Sweetener having heterocyclic group
JPS6193194A (en) Alpha-l-aspartyl-d-phenylglycin ester and amide useful as high strength sweetener
AU603052B2 (en) Aminomalonyl alanine compounds and use as dietary sweeteners
KR100631306B1 (en) Aspartyl dipeptide ester derivatives and sweeteners containing the same
JP2517009B2 (en) Lysine derivative and sweetener containing the same
WO1999020648A1 (en) Process for the purification of aspartame derivative
US5795612A (en) Aspartyldipeptideamine derivatives and sweetner
US4692513A (en) Alpha-L-aspartyl-D-heteroaromatic-substituted glycine esters and amides useful as high intensity sweeteners
US4692512A (en) Alpha-L-aspartyl-D-phenylglycine esters and amides useful as high intensity sweeteners
WO2000017230A1 (en) N-alkylaspartyldipeptide ester derivatives and sweeteners
US6649784B2 (en) Aspartyl dipeptide ester derivatives and sweeteners
JPH02108697A (en) Dipeptide derivative and peptide sweetener containing the same
EP0199257A2 (en) L-Aminodicarboxylic acid esters and an edible composition containing same as sweeteners
JPH01106853A (en) Dipeptide derivative and sweetener containing same
JPH07100708B2 (en) Novel thyronine derivative
JPH057985B2 (en)
KR910002551B1 (en) L-amino dicarboxylic acid esters
JPH1028548A (en) New glycyrrhetinic acid derivative and sweetener
JPH08109193A (en) New peptide derivative and sweetener containing the same
JP2001322996A (en) Novel n-alkylaspartyl dipeptide ester derivative and sweetener
JPS6332800B2 (en)
JPS6267098A (en) Novel tripeptide compound and sweetener
JPH039119B2 (en)
JPS58128352A (en) Novel peptide compound
JPH0547558B2 (en)