JP2516556B2 - Sealant made of heat-expandable inorganic fiber composite material - Google Patents

Sealant made of heat-expandable inorganic fiber composite material

Info

Publication number
JP2516556B2
JP2516556B2 JP5161780A JP16178093A JP2516556B2 JP 2516556 B2 JP2516556 B2 JP 2516556B2 JP 5161780 A JP5161780 A JP 5161780A JP 16178093 A JP16178093 A JP 16178093A JP 2516556 B2 JP2516556 B2 JP 2516556B2
Authority
JP
Japan
Prior art keywords
heat
inorganic fiber
expansion
binder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5161780A
Other languages
Japanese (ja)
Other versions
JPH0718249A (en
Inventor
哲 橋本
正典 関
聡康 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP5161780A priority Critical patent/JP2516556B2/en
Publication of JPH0718249A publication Critical patent/JPH0718249A/en
Application granted granted Critical
Publication of JP2516556B2 publication Critical patent/JP2516556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば防火ドア用シ
ール材、セラミック触媒保持材、あるいはケーブル挿通
孔に対する延焼防止用の填隙材などに使用される熱膨張
性無機質繊維複合材製シール材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealant made of a heat-expandable inorganic fiber composite material, which is used as, for example, a sealant for fireproof doors, a ceramic catalyst holding material, or a gap filling material for preventing the spread of fire to a cable insertion hole. It is about.

【0002】[0002]

【従来の技術】この種の複合材、例えば防火ドア用シー
として、従来、特公昭58−12315号公報に示
されているように、膨張剤としての酸処理黒鉛100w
t部、有機結合剤としてのポリクロロプレン24wt
部、フエノール樹脂20wt部、無機結合剤としての水
酸化アルミニウム48wt部、アスベスト繊維10wt
部、安定剤2wt部の混練物をガラス繊維からなる極薄
のシート状基材に層状に被覆したものが知られている。
2. Description of the Related Art As a composite material of this type, for example, a sealing material for fireproof doors, as disclosed in Japanese Patent Publication No. 58-12315, acid-treated graphite 100w as an expanding agent has hitherto been used.
t part, 24 wt% of polychloroprene as an organic binder
Parts, 20 wt parts of phenolic resin, 48 wt parts of aluminum hydroxide as an inorganic binder, 10 wt% of asbestos fibers
It is known that an extremely thin sheet-like base material made of glass fiber is coated in a layered manner with a kneaded product of 1 part by weight and 2 parts by weight of a stabilizer.

【0003】また、これとは別に、ガラス繊維布を基材
とし、これに水ガラス(水含有のケイ酸アルカリ)を充
填被覆したものも知られている。
Separately from this, a glass fiber cloth as a base material, which is filled with water glass (water-containing alkali silicate), is also known.

【0004】[0004]

【発明が解決しようとする課題】上記したような構成の
従来における複合材のうち、前者のものは、加熱時に補
強するものがなく、500℃程度の加熱で形態が崩れる
傾向にあり、しかも単に混練物をシート状基材に被覆さ
せただけのものであるから、膨張の方向性がランダムで
あって、膨張性に劣り、高いシール性を期待することは
できない。また、後者のものは、高温時の形態保持性の
面で前者のものよりは優れているものの、高い膨張率が
得られないために、防火、防煙などのシール機能を十分
に発揮することができないものであった。
Among the conventional composite materials having the above-mentioned structure, the former composite material has no reinforcement when heated, and tends to lose its shape when heated to about 500 ° C. Since the sheet-like base material is simply coated with the kneaded product, the direction of expansion is random, the expandability is poor, and high sealing properties cannot be expected. Also, the latter one is superior to the former one in terms of shape retention at high temperatures, but it cannot exhibit a high expansion coefficient, so it must fully exhibit the sealing function such as fire and smoke prevention. It was something that could not be done.

【0005】本発明は上記の実情に鑑みてなされたもの
で、加熱時の膨張性能に優れ、高温時の形態保持も確実
で、シール機能の著しい向上を図ることができる熱膨張
性無機質繊維複合材製シール材を提供することを目的と
している。
The present invention has been made in view of the above-mentioned circumstances, and it is excellent in expansion performance at the time of heating, surely retains its shape at high temperature, and is capable of significantly improving the sealing function. The purpose is to provide a sealing material made of wood .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る熱膨張性無機質繊維複合材製シール材
は、膨張剤としての酸処理黒鉛と、耐熱補強剤としての
無機繊維と、耐熱結合剤としての無機結合材と、加熱前
の形態保持材としての有機結合材とからなる混合物を抄
造法によりシート状に成形したものである。
In order to achieve the above object, a heat-expandable inorganic fiber composite sealing material according to the present invention comprises an acid-treated graphite as an expanding agent and a heat-resistant reinforcing agent. A mixture of inorganic fibers, an inorganic binder as a heat-resistant binder, and an organic binder as a shape-retaining material before heating is formed into a sheet by a papermaking method.

【0007】また、上記熱膨張性無機質繊維複合材製シ
ール材の配合比率としては、上記酸処理黒鉛が30〜7
0wt%、無機繊維が15〜45wt%、無機結合剤が
1〜20wt%に設定することが好ましい。
Further, the thermally expandable inorganic fiber composite papermaking
The blending ratio of Lumpur material, the acid-treated graphite 30-7
It is preferable to set 0 wt%, inorganic fiber 15 to 45 wt%, and inorganic binder 1 to 20 wt%.

【0008】[0008]

【作用】本発明によれば、酸処理黒鉛は加熱によって膨
張するが、このとき、この酸処理黒鉛だけを膨張させた
のでは、飛散して形態を保持することができないので、
元のシート形状を保持させながら膨張させる必要があ
る。このため、無機繊維と無機結合剤を所定量配合し、
これらを酸処理黒鉛と均一に分散してシート状に作成す
ることで、無機繊維が層状の基材となって上記酸処理黒
鉛を補強し、さらに無機結合材がシート全体を補強する
ことになるので、酸処理黒鉛の膨張は少し抑制される
が、シートの形態を保持したままでの膨張が可能とな
る。したがって、加熱状態でのシートの強度が保たれる
ので、高い膨張圧が得られるとともに、その膨張圧の長
時間にわたる維持が可能である。
According to the present invention, the acid-treated graphite expands by heating, but at this time, if only the acid-treated graphite is expanded, it cannot scatter and maintain its shape.
It is necessary to expand while maintaining the original sheet shape. Therefore, a predetermined amount of inorganic fiber and inorganic binder are blended,
By uniformly dispersing these with acid-treated graphite to form a sheet, the inorganic fibers serve as a layered base material to reinforce the acid-treated graphite, and further, the inorganic binder reinforces the entire sheet. Therefore, the expansion of the acid-treated graphite is slightly suppressed, but it is possible to expand while maintaining the shape of the sheet. Therefore, since the strength of the sheet in the heated state is maintained, a high expansion pressure can be obtained and the expansion pressure can be maintained for a long time.

【0009】また、請求項2のような配合比率からなる
混合物は、水を媒体として抄造法によって均一に分散さ
れる。とくに、この抄造法によると、薄片状(鱗状)の
酸処理黒鉛が一方向へ積層されるので、膨張方向が一定
の方向に揃うために、該酸処理黒鉛の膨張性をシール機
能の上で有効に生かすことができる。
The mixture having the compounding ratio as set forth in claim 2 is uniformly dispersed by a papermaking method using water as a medium. In particular, according to this papermaking method, flaky (scale-like) acid-treated graphite is laminated in one direction, so that the expansion direction is aligned in a certain direction. It can be used effectively.

【0010】上記酸処理黒鉛は、黒鉛を硫酸や塩酸ある
いは発煙硝酸などで酸処理されたもので、その配合比率
は30〜70wt%にするのが好ましく、30wt%未
満になると、膨張剤の不足によって所望の膨張力が得ら
れなくなり、また、70wt%を越えると、シート状に
成形し加熱した時にわたのように膨らんで十分な剛性が
得られず、機械的強度の点で不安が残る。また、無機繊
維としては、セラミック繊維、例えばSCバルクなどが
使用される。この無機繊維の配合比率は15〜45wt
%にするのが好ましく、15wt%未満では、加熱後の
強度が低下し、また、45wt%を越えると、膨張特性
が抑制される。
The acid-treated graphite is obtained by subjecting graphite to acid treatment with sulfuric acid, hydrochloric acid, fuming nitric acid or the like, and the compounding ratio thereof is preferably 30 to 70 wt%, and when it is less than 30 wt%, the expansion agent is insufficient. As a result, the desired expansion force cannot be obtained, and when it exceeds 70 wt%, it swells like a cotton when it is formed into a sheet and heated, and sufficient rigidity cannot be obtained, and anxiety remains in terms of mechanical strength. Further, as the inorganic fiber, a ceramic fiber such as SC bulk is used. The compounding ratio of this inorganic fiber is 15 to 45 wt.
%, The strength after heating is lowered when it is less than 15 wt%, and the expansion characteristics are suppressed when it exceeds 45 wt%.

【0011】さらに、無機結合剤としては、例えばシリ
カゾルやアルミナゾルが好適であり、その配合比率は5
〜25wt%にするのが好ましい。5wt%未満であれ
ば、加熱後の機械的強度が低くなり、また、25wt%
を越えると、膨張特性の低下が著しい。さらにまた、有
機結合剤としては、ゴムラテックス(スミカフレック
ス)などが使用され、その配合比率は1〜20wt%が
好ましく、1wt%未満では、初期の取り扱い性におい
ての効果がほとんど発揮されず、また、20wt%を越
えると、加熱時に焼失し、機械的強度が低下する。
Furthermore, as the inorganic binder, for example, silica sol or alumina sol is suitable, and the compounding ratio thereof is 5
It is preferably about 25 wt%. If it is less than 5 wt%, the mechanical strength after heating will be low, and 25 wt%
If it exceeds, the deterioration of the expansion property is remarkable. Furthermore, as the organic binder, rubber latex (Sumikaflex) or the like is used, and the compounding ratio thereof is preferably 1 to 20 wt%, and if it is less than 1 wt%, the effect on the initial handling property is hardly exhibited, and If it exceeds 20 wt%, it will be burnt out during heating and the mechanical strength will decrease.

【0012】[0012]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。図1は本発明に係る熱膨張性無機質繊維複合材
製シール材を組み込んだ防火ドアの一部を破断して示す
ものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a heat-expandable inorganic fiber composite material according to the present invention.
A part of a fireproof door incorporating a sealing material is shown in a broken view.

【0013】図1において、防火ドア1は、内外両側の
外装板2,3間に断熱材4が充填されており、木口被覆
板5,6の内側に熱膨張性無機質繊維複合材製シール材
Mを配設している。この複合材製シール材Mは、火災時
に膨張し、その膨張力で上記外装板2,3と被覆板5,
6との接着を引き剥がし、被覆板5,6をドア枠(図示
せず)に密着させるように働くものである。この複合材
製シール材Mの構成を以下の実施例に示す。
In FIG. 1, a fire door 1 has a heat insulating material 4 filled between exterior plates 2 and 3 on both inner and outer sides, and a heat-expandable inorganic fiber composite sealing material inside the wood cover plates 5 and 6. M is installed. The sealing material M made of the composite material expands in the event of a fire, and the expansion force causes the exterior plates 2 and 3 and the cover plate 5 to be expanded.
The adhesive plate 6 is peeled off and the covering plates 5 and 6 are brought into close contact with a door frame (not shown). This composite
The structure of the sealing material M is shown in the following examples.

【0014】実施例1 膨張剤としての発煙硝酸で処理した黒鉛を55wt%、
耐熱補強剤としてのセラミック繊維(SCバルク 12
60−D 新日化製)を25wt%、耐熱結合剤として
の無機結合剤(アルミナゾル 200 日産化学製)を
10wt%、加熱前形態保持剤としての有機結合剤(ス
ミカフレックス 900 住友化学製)を10wt%の
配合比で混合し、これを抄造して、かさ密度0.73g
/cm3、厚さ2.54mmのシート状に成形した。
Example 1 55 wt% of graphite treated with fuming nitric acid as a swelling agent,
Ceramic fiber as heat resistant reinforcement (SC Bulk 12
60-D Shin Nikka) 25 wt%, inorganic binder (alumina sol 200 Nissan Chemical) 10 wt% as a heat resistant binder, organic binder (Sumikaflex 900 Sumitomo Chemical) as a pre-heating shape retainer Mix at a compounding ratio of 10 wt%, make a paper, and have a bulk density of 0.73 g.
/ Cm 3 and a thickness of 2.54 mm.

【0015】実施例2 硫酸で処理した黒鉛を55wt%、セラミック繊維(S
Cバルク 1260−D2 新日化製)を25wt%、
耐熱結合剤としての無機結合剤(アルミナゾル200
日産化学製)を10wt%、加熱前形態保持剤としての
有機結合剤(スミカフレックス900 住友化学製)を
10wt%の配合比で混合し、これを抄造して、かさ密
度0.73g/cm3 、厚さ2.54mmのシート状に成
形した。
Example 2 55 wt% graphite treated with sulfuric acid, ceramic fiber (S
25% by weight of C bulk 1260-D2 manufactured by Shin Nikka,
Inorganic binder as heat-resistant binder (alumina sol 200
10% by weight of Nissan Chemical Co., Ltd. and 10% by weight of an organic binder (Sumikaflex 900 Sumitomo Chemical Co., Ltd.) as a pre-heating morphological agent are mixed at a compounding ratio of 10% by weight, and this is made into paper to have a bulk density of 0.73 g / cm 3 , And formed into a sheet having a thickness of 2.54 mm.

【0016】比較例1 発煙硝酸で処理した黒鉛を50wt%、有機結合剤とし
てのポリクロロプレンを12wt%、フエノール樹脂を
10wt%、無機結合剤としての水酸化アルミニウムを
24wt%、ガラス繊維を4wt%の配合比で、これら
の混練物をガラス繊維からなる極薄のシートに層状に被
覆して、かさ密度0.91g/cm3 、厚さ2.54mm
のシート状に成形した。
Comparative Example 1 50 wt% graphite treated with fuming nitric acid, 12 wt% polychloroprene as an organic binder, 10 wt% phenol resin, 24 wt% aluminum hydroxide as an inorganic binder, and 4 wt% glass fiber. An extremely thin sheet made of glass fibers was coated in layers at a blending ratio of to obtain a bulk density of 0.91 g / cm 3 and a thickness of 2.54 mm.
Was formed into a sheet shape.

【0017】比較例2 ガラス繊維布を基材として、水ガラス(水含有のケイ酸
アルカリ)を充填し、その表面をエポキシ樹脂で被覆し
た。
Comparative Example 2 Using a glass fiber cloth as a base material, water glass (water-containing alkali silicate) was filled, and the surface thereof was coated with an epoxy resin.

【0018】実施例1,2と比較例1,2の評価とし
て、まずそれぞれの試料を電気炉内で加熱した際の自由
率の測定を行なった。その結果を図4の図表1に示
す。図4の図表1から明らかなように、実施例1,2の
ものは、無機結合剤(アルミナゾル)と無機繊維(セラ
ミック繊維)の補強により、高い自由膨張量を示すこと
が判った。これに対して、比較例1のものは、加熱時に
補強するものがなく、500℃で形態が崩れてしまう。
また、発煙硝酸処理黒鉛は150℃付近から膨張を開始
し、硫酸処理黒鉛の方が大きな値を示している。水ガラ
スは125℃付近から膨張を開始する。
[0018] Evaluation of the Comparative Examples 1 and 2 Examples 1 and 2, the first each sample were measured in the free <br/> Rise Zhang rate when heated in an electric furnace. The results are shown in Table 1 of FIG. As is clear from Table 1 in FIG. 4, it was found that those of Examples 1 and 2 exhibited a high free expansion amount due to the reinforcement of the inorganic binder (alumina sol) and the inorganic fiber (ceramic fiber). On the other hand, in Comparative Example 1, there is nothing to reinforce at the time of heating, and the shape collapses at 500 ° C.
Further, the fuming nitric acid-treated graphite started to expand at around 150 ° C., and the sulfuric acid-treated graphite showed a larger value. Water glass begins to expand at around 125 ° C.

【0019】ついで、上記実施例1,2と比較例1,2
の評価として、17KPaの面圧を負荷した状態で昇温
速度11℃/分で昇温させた時の各試料の膨張量の測定
を行なった。図2はそのための測定装置を示し、同図に
おいて、21,22は電気炉のヒータ23で加熱される
試料Mを挟持する上下一対の石英棒であり、上記の昇温
速度で昇温する試料Mが膨張を開始すると、石英棒21
を押し上げるので、その変位をダイヤルゲージ24で測
定するようになしたものであり、上記ダイヤルゲージ2
4と石英棒21の荷重で試料Mには、17KPaの負荷
が加わるようになっている。この測定結果を図5の図表
2に示す。
Next, Examples 1 and 2 and Comparative Examples 1 and 2
As the evaluation, the amount of expansion of each sample was measured when the temperature was raised at a temperature rising rate of 11 ° C./min while a surface pressure of 17 KPa was applied. FIG. 2 shows a measuring device therefor. In FIG. 2, reference numerals 21 and 22 denote a pair of upper and lower quartz rods sandwiching a sample M heated by a heater 23 of an electric furnace. When M starts to expand, the quartz rod 21
Since it is pushed up, the displacement is measured by the dial gauge 24.
The load of 4 and the quartz rod 21 applies a load of 17 KPa to the sample M. The measurement results are shown in Table 2 of FIG.

【0020】図5の図表2から明らかなように、実施例
1,2のものは、無機結合剤と無機繊維の補強によりシ
ート状の形態を損なうことなく膨張し、しかも、その膨
張量も高いレベルで安定することが判った。一方、比較
例1のものは、高温時に形態を維持することができず、
320℃をピークにして膨張量が低下する。また、比較
例2のものでは、膨張量がかなり低い結果となってい
る。膨張量が0〜100%まで膨張する時間に関して、
発煙硝酸で処理した黒鉛では100秒要し、硫酸で処理
した黒鉛、水ガラスでは150秒要している。この結果
から、実施例1,2のものが大きな膨張量で広い隙間の
シールに追従できるほか、高い加熱温度で長時間にわた
り保形性が維持されるので、外気の圧力に対して隙間を
安定的に充填できることが明らかとなった。
As is clear from Table 2 in FIG. 5, the products of Examples 1 and 2 expand due to the reinforcement of the inorganic binder and the inorganic fiber without impairing the sheet form, and the expansion amount is also high. It turned out to be stable at the level. On the other hand, in Comparative Example 1, the shape could not be maintained at high temperature,
The expansion amount decreases at a peak of 320 ° C. Further, in Comparative Example 2, the expansion amount is considerably low. With regard to the time that the expansion amount expands from 0 to 100%,
Graphite treated with fuming nitric acid required 100 seconds, and graphite treated with sulfuric acid and water glass required 150 seconds. From these results, the examples 1 and 2 can follow the seal of a wide gap with a large expansion amount, and the shape retention property is maintained at a high heating temperature for a long time, so that the gap is stable against the pressure of the outside air. It has become clear that they can be filled in a desired manner.

【0021】最後に、実施例1,2と比較例1,2の評
価として、各試料Mの厚さに合せた隙間に該試料Mを充
填し、一定の昇温速度で試料Mを昇温させた時の発生膨
張圧の測定を行なった。図3はそのための測定装置を示
し、同図に示すように、電気炉内のヒータ31で加熱さ
れる試料Mを、その厚さに合うように設定された上下の
石英棒32,33の隙間gに充填し、一定の昇温速度1
1℃/分で試料Mが膨張を開始した際の膨張圧をロード
セル34で測定するようにしたものである。この測定結
果を図6の図表3に示す。
Finally, as an evaluation of Examples 1 and 2 and Comparative Examples 1 and 2, the sample M is filled in a gap corresponding to the thickness of each sample M, and the sample M is heated at a constant heating rate. The expansion pressure generated when the pressure was applied was measured. FIG. 3 shows a measuring device therefor. As shown in FIG. 3, a sample M heated by a heater 31 in an electric furnace is provided with a gap between upper and lower quartz rods 32 and 33 set to match its thickness. Filling g to a constant heating rate 1
The expansion pressure when the sample M starts expanding at 1 ° C./min is measured by the load cell 34. The measurement results are shown in Table 3 of FIG.

【0022】図6の図表3から明らかなように、実施例
1,2のものは高い膨張圧を発生し得るので、図1に示
すような防火ドアのシール材として使用した際、火災時
に被覆板5,6を押し広げる力が長時間にわたって発生
し続け、有効な密封効果を発揮させることができ、ま
た、膨張圧の低下がないことから、例えばセラミック触
媒の保持材としても有効に使用することができる。
As is clear from Table 3 in FIG. 6, the ones of Examples 1 and 2 can generate a high expansion pressure. Therefore, when used as a seal material for a fire door as shown in FIG. Since the force to spread the plates 5 and 6 continues to be generated for a long time, an effective sealing effect can be exhibited, and since the expansion pressure does not decrease, it is also effectively used as a holding material for a ceramic catalyst, for example. be able to.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、膨張剤
としての酸処理黒鉛に、補強剤としての無機繊維や無機
結合剤、さらには、加熱前の形態保持剤としての有機結
合剤を加え、これらを抄造してシート状に成形したの
で、膨張の方向性が一定となり、形崩れのおそれなく高
い膨張特性が得られるとともに、補強作用によって加熱
状態での高い膨張圧が確保されて、防火ドアなどの填隙
用として優れたシール機能を発揮させることができる。
As described above, according to the present invention, acid-treated graphite as a swelling agent, an inorganic fiber or an inorganic binder as a reinforcing agent, and an organic binder as a shape-retaining agent before heating. In addition, since these are formed into a sheet by papermaking, the direction of expansion is constant, high expansion characteristics can be obtained without fear of deformation, and a high expansion pressure in the heated state is secured by the reinforcing action. It is possible to exert an excellent sealing function for gap filling of fire doors and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による熱膨張性無機質繊維複
合材製シール材を組み込んだ防火ドアの一部を破断して
示す斜視図である。
FIG. 1 is a partially cutaway perspective view showing a fire door incorporating a sealing material made of a heat-expandable inorganic fiber composite material according to an embodiment of the present invention.

【図2】膨張率の測定装置を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an expansion rate measuring device.

【図3】膨張圧の測定装置を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing an inflation pressure measuring device.

【図4】自由膨張率の測定結果を示す図表である。FIG. 4 is a chart showing measurement results of free expansion coefficient.

【図5】負荷時の膨張率の測定結果を示す図表である。FIG. 5 is a chart showing the measurement results of the expansion coefficient under load.

【図6】発生膨張圧の測定結果を示す図表である。FIG. 6 is a chart showing measurement results of generated expansion pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷村 聡康 京都府福知山市長田野町2丁目66番地の 3 日本ピラー工業株式会社福知山工場 内 (56)参考文献 特開 平5−295351(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Satoshi Tanimura, Satoshi Tanimura 2-66-3 Nagatano-cho, Fukuchiyama City, Kyoto Prefecture 3 Japan Pillar Industry Co., Ltd., Fukuchiyama Factory (56) Reference JP-A-5-295351 (JP, A) )

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膨張剤としての酸処理黒鉛と、耐熱補強
剤としての無機繊維と、耐熱結合剤としての無機結合材
と、加熱前の形態保持材としての有機結合材とからなる
混合物を抄造法によりシート状に成形したことを特徴と
する熱膨張性無機質繊維複合材製シール材
1. Papermaking a mixture of acid-treated graphite as a swelling agent, inorganic fibers as a heat-resistant reinforcing agent, an inorganic binder as a heat-resistant binder, and an organic binder as a shape-retaining material before heating. A sealant made of a heat-expandable inorganic fiber composite material, which is formed into a sheet by the method.
【請求項2】 上記酸処理黒鉛を30〜70wt%、無
機繊維を15〜45wt%、無機結合剤を5〜25wt
%、有機結合剤を1〜20wt%に設定してなる請求項
1の熱膨張性無機質繊維複合材製シール材
2. The acid-treated graphite is 30 to 70 wt%, the inorganic fiber is 15 to 45 wt%, and the inorganic binder is 5 to 25 wt%.
%, The organic binder is set to 1 to 20 wt%, and the sealing material made of the heat-expandable inorganic fiber composite material according to claim 1.
JP5161780A 1993-06-30 1993-06-30 Sealant made of heat-expandable inorganic fiber composite material Expired - Lifetime JP2516556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161780A JP2516556B2 (en) 1993-06-30 1993-06-30 Sealant made of heat-expandable inorganic fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161780A JP2516556B2 (en) 1993-06-30 1993-06-30 Sealant made of heat-expandable inorganic fiber composite material

Publications (2)

Publication Number Publication Date
JPH0718249A JPH0718249A (en) 1995-01-20
JP2516556B2 true JP2516556B2 (en) 1996-07-24

Family

ID=15741769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161780A Expired - Lifetime JP2516556B2 (en) 1993-06-30 1993-06-30 Sealant made of heat-expandable inorganic fiber composite material

Country Status (1)

Country Link
JP (1) JP2516556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153674A (en) * 1998-01-30 2000-11-28 3M Innovative Properties Company Fire barrier material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538509B2 (en) * 1993-10-01 1996-09-25 日本ピラー工業株式会社 Sheet-like gasket for fluid sealing
JP2645800B2 (en) * 1993-12-14 1997-08-25 日本ピラー工業株式会社 Expanded graphite seal material, method for producing the same, and gasket sheet
JP2003034994A (en) * 2001-07-26 2003-02-07 Bekku Kk Heat insulating structure
US7081294B2 (en) * 2001-11-19 2006-07-25 Karl-Heinz Schofalvi Thermal shock resistant ceramic composites
MY151524A (en) 2006-03-20 2014-05-30 Temptronic Corp Temperature-controlled enclosures and temperature control system using the same
JP2008045298A (en) * 2006-08-11 2008-02-28 Shimizu Corp Fire-resistant covering material
JP5534384B2 (en) 2007-12-27 2014-06-25 株式会社Ihi Multi-chamber heat treatment apparatus and temperature control method
EP3939761B1 (en) * 2019-03-13 2024-03-20 Kuraray Co., Ltd. Space filling material and space filling structure, and methods for using those
CN112430055B (en) * 2020-11-27 2022-05-13 山东鲁阳节能材料股份有限公司 Expansion type inorganic paper and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153674A (en) * 1998-01-30 2000-11-28 3M Innovative Properties Company Fire barrier material

Also Published As

Publication number Publication date
JPH0718249A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JP2516556B2 (en) Sealant made of heat-expandable inorganic fiber composite material
EP0315649B1 (en) Intumescent material
US4663204A (en) Element from intumescent fire-proof composition, and specific method for preparing same
JP2619818B2 (en) Thermal expansion inorganic fiber sealing material
AU734822B2 (en) Low density fire barrier material and method of making
EP1543091B1 (en) Fire-resistant silicone polymer compositions
US4636416A (en) Shaped microporous thermal insulation body with sheathing and process for making same
US4686244A (en) Intumescent foamable compositions
US4746570A (en) Heat-resistant, highly expansible sheet material for supporting catalyst carrier and process for the preparation thereof
KR20000006098A (en) Fire-resistant glazing assembly
JP2002501969A (en) Fire protection material
JP3549204B2 (en) Foamable composition and use thereof
JP2775184B2 (en) Latex bonded flame retardant material
US4719249A (en) Intumescent foamable compositions
JPH10507978A (en) Vacuum insulation panel provided with carbonized asphalt-coated glass fiber filler and method for producing the same
GB1604072A (en) Intumescent fire retardant composites
JP2007039644A (en) Method for producing inorganic material-based foamed article
CA1285342C (en) Silicone water base fire barriers
KR101767441B1 (en) Nonflammable elastic pad attached onto construction pannel to prevent spread of fire
JP3094788B2 (en) Gasket material and its manufacturing method
AU686136B2 (en) Reinforced thermal protective system
JP2666004B2 (en) Flame resistant polyorganosiloxane composition
EP1922452B1 (en) A non-structural multi-part panel
JP2001113616A (en) Noncombustible fire-proof heat insulating panel
EP0878530A1 (en) Heat-resisting material