JP2516372B2 - Viscosity measuring device - Google Patents

Viscosity measuring device

Info

Publication number
JP2516372B2
JP2516372B2 JP62181194A JP18119487A JP2516372B2 JP 2516372 B2 JP2516372 B2 JP 2516372B2 JP 62181194 A JP62181194 A JP 62181194A JP 18119487 A JP18119487 A JP 18119487A JP 2516372 B2 JP2516372 B2 JP 2516372B2
Authority
JP
Japan
Prior art keywords
viscosity
vibration
phase
diaphragm
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62181194A
Other languages
Japanese (ja)
Other versions
JPS6426124A (en
Inventor
稔 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62181194A priority Critical patent/JP2516372B2/en
Publication of JPS6426124A publication Critical patent/JPS6426124A/en
Application granted granted Critical
Publication of JP2516372B2 publication Critical patent/JP2516372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、振動の位相差を利用した粘度測定装置に
関する。
TECHNICAL FIELD The present invention relates to a viscosity measuring device using a phase difference of vibration.

〔従来の技術〕[Conventional technology]

第3図は、従来から使用されている差圧式粘度計の説
明図である。
FIG. 3 is an explanatory view of a conventionally used differential pressure type viscometer.

この図において(1)は粘性流体が流れる主管、
(2)は主管(1)から側流を取出す分岐管、(4)は
分岐管(2)に設けたメータリングポンプ、(6)は分
岐管(2)の途中に設けたオリフイス、(8)のオリフ
イス(6)の前後の位置で分岐管(2)に接続された分
岐管、(10)は分岐管(2)に設けた差圧発信器であ
る。
In this figure, (1) is the main pipe through which the viscous fluid flows,
(2) is a branch pipe for extracting a sidestream from the main pipe (1), (4) is a metering pump provided in the branch pipe (2), (6) is an orifice provided in the middle of the branch pipe (2), and (8) ) Is a branch pipe connected to the branch pipe (2) before and after the orifice (6), and (10) is a differential pressure transmitter provided in the branch pipe (2).

以上の差圧式粘度計において、粘度を測定する場合、
主管(1)の粘性流体を分岐管(2)から取入れ、定容
量ポンプであるメータリングポンプ(4)により定容量
を送ると、オリフイス(6)に抵抗が生じ、差圧は差圧
発信器(10)により検出され、その差圧から粘度を求め
ている。
In the above differential pressure type viscometer, when measuring the viscosity,
When the viscous fluid in the main pipe (1) is taken in from the branch pipe (2) and a constant volume is sent by the metering pump (4) which is a constant volume pump, resistance is generated in the orifice (6) and the differential pressure is the differential pressure transmitter. The viscosity is obtained from the differential pressure detected by (10).

また、従来においても、振動により粘度を測定する装
置がある。
Further, even in the past, there is a device for measuring the viscosity by vibration.

しかしその装置は、静止した状態にあるニユートン流
体中で振動片を振動させて、振動片に作用する力を求め
て、作用する力と粘度との関係から粘度を求めるもので
ある。
However, the apparatus vibrates the vibrating piece in a Newtonian fluid in a stationary state, obtains the force acting on the vibrating piece, and obtains the viscosity from the relationship between the acting force and the viscosity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来差圧式粘度計は、主管(1)から側流を取出
して、差圧を生じさせる手段を設ける必要があるので、
装置全体が大きくなり、広いスペースが必要になる。
Since the above-mentioned conventional differential pressure type viscometer needs to be provided with means for extracting a side flow from the main pipe (1) to generate a differential pressure,
The entire device becomes large and requires a large space.

したがって、船舶の機関室での燃料系などの管路、ま
たは限られた空間に無数の管路が密集するプラントにこ
の粘度計を取付けることは、著しく困難である。
Therefore, it is extremely difficult to install this viscometer in a pipeline such as a fuel system in an engine room of a ship or in a plant where a myriad of pipelines are densely packed in a limited space.

さらに、この差圧式粘度計では、定容量ポンプの設置
が不可欠であるが、定容量ポンプは複雑な運動部分があ
るので、故障すると、粘度測定が中断され、粘性流体を
使用する装置自体が盲運転となり、事故につながる。
Furthermore, in this differential pressure type viscometer, it is indispensable to install a constant volume pump, but since the constant volume pump has complicated moving parts, when it fails, the viscosity measurement is interrupted and the device itself using viscous fluid is blind. It becomes driving and leads to an accident.

また、従来の振動片に作用する力から粘度を測定する
装置は、測定対象となる液体はニユートン流体であり、
かつ静止状態にあることに限定される。
Further, in the conventional device for measuring the viscosity from the force acting on the vibrating piece, the liquid to be measured is a Newtonian fluid,
And it is limited to being stationary.

そして、工業上、測定対象となる液体は通常静止状態
にあることは、少なく管中を流れる流体の粘度を測定し
なければ、工業上の有用性は著しく減殺されることにな
る。
Further, industrially, the liquid to be measured is usually in a stationary state, and the industrial utility is significantly diminished unless the viscosity of the fluid flowing in the pipe is measured.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る粘度測定装置は、 管の内壁面の一部を形成するように弾性体で保持され
て管内を流れる液体に接触する振動板と、 前記振動板に管の外部から振動を与える発振器と、 前記振動板の振動の位相を検出する位相検出器と、 前記発振器の出力振動の位相と前記位相検出器により
検出された前記振動板の位相との差を検出する位相差検
出器と、 少なくとも前記振動板の振動特性、前記振動板の面積
及び質量、及び各種流体のずれ速度に関する定数の既知
データを保持する記憶装置と、 前記位相差検出器からの信号と前記記憶装置に保持さ
れている既知データとから粘度を演算する計算装置と を備えたことを特徴とする。
A viscometer according to the present invention includes a vibrating plate which is held by an elastic body so as to form a part of an inner wall surface of a pipe and is in contact with a liquid flowing in the pipe, and an oscillator which gives vibration to the vibrating plate from outside the pipe. A phase detector that detects the phase of the vibration of the diaphragm; and a phase difference detector that detects the difference between the phase of the output vibration of the oscillator and the phase of the diaphragm detected by the phase detector, At least a vibration characteristic of the vibration plate, an area and a mass of the vibration plate, and a storage device that holds known data of constants relating to displacement rates of various fluids, and a signal from the phase difference detector and the storage device that holds the data. And a calculation device that calculates the viscosity from known data that is present.

〔実施例〕 第1図は、この発明の一実施例の説明図であって、こ
の図において、(20)は主管(1)に設けた穴で、(2
2)は穴(20)に取付けた弾性体であって、ダイヤフラ
ム等が使用される。
[Embodiment] FIG. 1 is an explanatory view of an embodiment of the present invention, in which (20) is a hole provided in the main pipe (1), and (2)
2) is an elastic body attached to the hole (20), for which a diaphragm or the like is used.

(24)は、弾性体(22)に保持されている振動板、
(26)は振動板(24)に所定の振動を与える振動発信
器、(28)は振動板(24)の周波数を検出するための検
出端、(30)は検出端(28)の信号を入力する位相検出
器、(32)は振動発信器(26)の振動の位相と、検出端
(24)で検出された振動板(24)の振動の位相との差を
検出する位相差検出器である。
(24) is a diaphragm held by an elastic body (22),
(26) is a vibration transmitter that gives a predetermined vibration to the diaphragm (24), (28) is a detection end for detecting the frequency of the diaphragm (24), and (30) is a signal from the detection end (28). The input phase detector, (32) is a phase difference detector that detects the difference between the phase of the vibration of the vibration transmitter (26) and the phase of the vibration of the diaphragm (24) detected at the detection end (24). Is.

この発明に係る粘度測定装置は、以上のように構成さ
れ、粘性流体は主管(1)中を振動板(24)に接して流
れる。
The viscosity measuring device according to the present invention is configured as described above, and the viscous fluid flows in the main pipe (1) in contact with the vibrating plate (24).

そして振動発信器(26)から一定の振幅および振動数
の振動が振動板(24)に与えられ、振動板(24)は振動
する。
Then, vibration having a constant amplitude and frequency is given to the diaphragm (24) from the vibration transmitter (26), and the diaphragm (24) vibrates.

しかし、振動板(24)は、粘性流体に接しているの
で、振動発信器(26)から加えられる振動とは異なった
周波数の振動をする。そこで検出端(28)により振動板
(24)の振動の周波数を検出し、位相検出器(30)で振
動の位相が検出されて、その位相と振動発信器(26)が
振動板(24)に加えた振動との位相差が位相差検出器
(32)により検出され、その信号に基いて粘度が算出さ
れる。
However, since the vibrating plate (24) is in contact with the viscous fluid, it vibrates at a frequency different from the vibration applied from the vibration transmitter (26). Therefore, the detection end (28) detects the frequency of the vibration of the diaphragm (24), the phase detector (30) detects the phase of the vibration, and the phase and the vibration transmitter (26) detect the vibration (24). The phase difference with the vibration applied to the is detected by the phase difference detector (32), and the viscosity is calculated based on the signal.

第2図は、位相差の信号に基いて粘度を計算する計算
装置のブロツク図を示したものであり、位相差の信号
は、演算装置(40)に入力され、制御盤(36)からの指
示により制御装置(38)で制御されて、内部記憶装置
(34)に記憶されている既知のデータにより、演算装置
(40)で演算して、粘度の数値が出力される。
FIG. 2 shows a block diagram of a calculator for calculating the viscosity based on the phase difference signal. The phase difference signal is input to the arithmetic unit (40) and sent from the control panel (36). The data is controlled by the control device (38) according to the instruction, and is calculated by the calculation device (40) based on the known data stored in the internal storage device (34), and the numerical value of the viscosity is output.

なお、内部記憶装置(34)のデータには、弾性体(2
2)および振動板(24)のそれぞれの弾性および振動の
特性、振動板(24)の面積、質量および振動の周波数等
の因子と、それら因子と粘度との関係が記憶されてい
る。
The data of the internal storage device (34) includes elastic body (2
2) The characteristics of elasticity and vibration of the diaphragm (24), the area of the diaphragm (24), the factors such as the mass and the frequency of vibration, and the relationship between these factors and the viscosity are stored.

一般に振動片を一定の駆動力により一定の振幅の矩形
波で静止液体中で振動させると、振動片は液体の粘性抵
抗により振幅が変る。
Generally, when a vibrating piece is vibrated in a stationary liquid with a rectangular wave having a constant amplitude by a constant driving force, the amplitude of the vibrating piece changes due to the viscous resistance of the liquid.

そして、液体の粘性により振動片に作用する力は一義
的にはRz・Voe iwt(Voe iwtは振動片の振動数)の関係が
あり、しかもニユートン流体の場合は、Rzについて次の
第(1)式の関係が成立する。
The force acting on the vibrating piece due to the viscosity of the liquid is uniquely related to R z · V oe iwt (V oe iwt is the frequency of the vibrating piece), and in the case of a Newtonian fluid, R z The relationship of the equation (1) is established.

なお、(1)式において、Aは振動片の面積、fは振
動数、τは液体の粘度、ρは液体の密度である。
In the equation (1), A is the area of the vibrating element, f is the frequency, τ is the viscosity of the liquid, and ρ is the density of the liquid.

したがって、振動片に作用する力(Rz・Voe iwt)は、
容易に検出可能であるから、他の既知のデータにより粘
度τを検出できることになる。
Therefore, the force (R z · V oe iwt ) acting on the resonator element is
Since it can be easily detected, the viscosity τ can be detected by other known data.

しかし、工業的に使用される液体は、多くの場合、圧
力流体であることから単に振動片に作用する力を計測し
ても粘度を決め得ない。
However, since the liquids used industrially are pressure fluids in many cases, the viscosity cannot be determined by simply measuring the force acting on the resonator element.

せん断力τのニュートン流体に面した振動板(24)と
振動発信器(26)をバネ定数kの接続片で接続し、振動
発信器(26)をx=a sin wtにて振動させると、振動片
(24)は、 x1=a sin(wt-φ) で振動する。
When the vibration plate (24) facing the Newtonian fluid having a shear force τ and the vibration transmitter (26) are connected by a connecting piece having a spring constant k, and the vibration transmitter (26) is vibrated at x = a sin wt, The vibrating element (24) vibrates with x 1 = a sin (wt-φ).

φは、せん断力τとバネ定数k、振動数wtにより決定
できることから、逆にφを測定できればτを知ることが
できる。
Since φ can be determined by the shear force τ, the spring constant k, and the frequency wt, conversely, if φ can be measured, then τ can be known.

しかし塑性流体、エリス(Elles)流体、ビンガム流
体など種々の非ニュートン流体は、ずれ応力τに対し
て、ずれ速度dv/drが直線とならずに、さまざまの態様
を示す。
However, various non-Newtonian fluids such as a plastic fluid, an Elles fluid, and a Bingham fluid show various modes without a linear deviation velocity dv / dr with respect to the shear stress τ.

したがって、どの流体についても、振動片に作用する
力を検出しただけでは、ずれ応力τ値によって他の因子
が変るから、φの測定のみで粘度を一義的に算出するこ
とは困難である。
Therefore, for any fluid, it is difficult to uniquely calculate the viscosity only by measuring φ, because other factors change depending on the shear stress τ value only by detecting the force acting on the vibrating piece.

しかし、各流体のdv/drに関する定数を内部記憶装置
に保有することにより各種流体振動発振器(26)が一定
の振幅と振動数で振動させ、振動板(24)が流動してい
る粘性流体によって生じる振動の位相差を測定すること
により、粘度を知ることが可能となる。
However, by holding constants related to dv / dr of each fluid in the internal storage device, the various fluid vibration oscillators (26) vibrate with a constant amplitude and frequency, and the vibrating plate (24) is changed by the flowing viscous fluid. The viscosity can be known by measuring the phase difference of the generated vibration.

そこで第1図〜第2図の示すような装置で粘度(厳密
には見掛け粘度)を測定するようにしたものである。
Therefore, the viscosity (strictly speaking, the apparent viscosity) is measured by an apparatus as shown in FIGS.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明に係る粘度測定装置
は、上記のように構成したので次のような効果を生ず
る。
As described above, since the viscosity measuring device according to the present invention is configured as described above, the following effects are produced.

振動板とその位相(周波数)の検出端を管に取付け
れば、それ以外の装置は、離れた場所でよいから、管が
密集して、管の周囲の空間が少ない場所でも容易に取付
けられる。
If the vibration plate and its phase (frequency) detection end are attached to the pipe, the other devices can be placed in a remote place, so that the pipes are densely packed and can be easily attached even in a place where the space around the pipe is small. .

流体と接するのは、振動板などだけであるから、液
体が腐食性であっても容易に粘度の測定が可能となる。
Since only the diaphragm or the like is in contact with the fluid, the viscosity can be easily measured even if the liquid is corrosive.

ニユートン流体は勿論、非ニユートン流体でも粘度
および見掛け粘度の測定が可能となり、測定範囲が広
い。
The viscosity and the apparent viscosity can be measured not only in the Newtonian fluid but also in the non-Newtonian fluid, and the measurement range is wide.

従来の差圧式粘度計では、主管から測流を取出し、
かつその測流を絞って、差圧を発生するので、流体に微
細な物質が混入している場合、測定される粘度に誤差が
生じる。
In the conventional differential pressure type viscometer, the flow measurement is taken out from the main pipe,
In addition, since the pressure measurement is narrowed to generate a differential pressure, when a fine substance is mixed in the fluid, an error occurs in the measured viscosity.

さらに差圧を発生させるオリフイスが詰まり、分岐管
中の測流が不均一になるので、しばしば分解掃除しなけ
ればならなかったり、メーターリングポンプの分解掃除
を必要としたため保守管理に多大の労力を要する。しか
し、本発明に係る粘度測定装置は、主管から側流を取出
す構造ではないため、液体に微細な物質が混入していて
も、これによって粘度の測定値に誤差が生じることはな
い。また、流体に接するのは振動板などだけであるた
め、保守管理にも労力を必要としない。
Furthermore, the orifice that generates the differential pressure is clogged, and the flow in the branch pipe becomes uneven, so it often requires disassembly and cleaning, and disassembling and cleaning the metering pump requires a great deal of maintenance work. It costs. However, since the viscosity measuring device according to the present invention does not have a structure in which the sidestream is taken out from the main pipe, even if a fine substance is mixed in the liquid, this does not cause an error in the measured value of the viscosity. Further, since only the diaphragm and the like come into contact with the fluid, no labor is required for maintenance.

従来の差圧式粘度計では、測流に差圧を発生させる
関係上流体に圧力を生じさせるが、非ニユートン流体で
は、ずれ応力τの変化に対して、ずれ速度dv/drが変化
し、主管を流れる流体のずれ応力τとずれ速度dv/drと
の関係と違ったものとなり、測定した見掛け粘度が、主
管を流れる流体の粘度を著しく異なったものとなる。し
かし、本発明に係る粘度測定装置は、各種流体のずれ速
度に関する定数を内部記憶装置に保有しているため、非
ニュートン流体の見かけ粘度を正確に測定することがで
きる。
In the conventional differential pressure type viscometer, pressure is generated in the fluid due to the differential pressure generated in the flow measurement, but in the non-Newtonian fluid, the deviation velocity dv / dr changes with the change in the deviation stress τ, and the main pipe The relationship between the shear stress τ of the fluid flowing through the pipe and the shear velocity dv / dr is different, and the measured apparent viscosity is significantly different from the viscosity of the fluid flowing through the main pipe. However, since the viscosity measuring device according to the present invention has constants relating to the displacement velocity of various fluids in the internal storage device, it is possible to accurately measure the apparent viscosity of the non-Newtonian fluid.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の一実施例の説明図、第2図は計算
装置のブロック図、第3図は従来の差圧式粘度計の説明
図である。 (1)……主管、(22)……弾性体、(24)……振動
板、(26)……振動発信器、(28)……検出端、(30)
……位相検出器、(32)……位相差検出器、(34)……
内部記憶装置、(36)……制御盤、(38)……制御装
置、(40)……演算装置。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2 is a block diagram of a computer, and FIG. 3 is an explanatory diagram of a conventional differential pressure type viscometer. (1) …… Main pipe, (22) …… Elastic body, (24) …… Vibration plate, (26) …… Vibration transmitter, (28) …… Detecting end, (30)
…… Phase detector, (32) …… Phase difference detector, (34) ……
Internal storage device, (36) ... Control panel, (38) ... Control device, (40) ... Calculation device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】管の内壁面の一部を形成するように弾性体
で保持されて管内を流れる液体に接触する振動板と、 前記振動板に管の外部から振動を与える発振器と、 前記振動板の振動の位相を検出する位相検出器と、 前記発振器の出力振動の位相と前記位相検出器により検
出された前記振動板の位相との差を検出する位相差検出
器と、 少なくとも前記振動板の振動特性、前記振動板の面積及
び質量、及び各種流体のずれ速度に関する定数の既知デ
ータを保持する記憶装置と、 前記位相差検出器からの信号と前記記憶装置に保持され
ている既知データとから粘度を演算する計算装置と を備えたことを特徴とする粘度測定装置
1. A vibrating plate which is held by an elastic body so as to form a part of an inner wall surface of the pipe and is in contact with a liquid flowing in the pipe; an oscillator which vibrates the vibrating plate from the outside of the pipe; A phase detector that detects the phase of vibration of the plate, a phase difference detector that detects the difference between the phase of the output vibration of the oscillator and the phase of the diaphragm detected by the phase detector, and at least the diaphragm. Of the vibration characteristics, the area and mass of the diaphragm, and known data of constants related to the displacement velocity of various fluids, a signal from the phase difference detector, and known data held in the memory device. A viscosity measuring device for calculating the viscosity from the
JP62181194A 1987-07-22 1987-07-22 Viscosity measuring device Expired - Lifetime JP2516372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62181194A JP2516372B2 (en) 1987-07-22 1987-07-22 Viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62181194A JP2516372B2 (en) 1987-07-22 1987-07-22 Viscosity measuring device

Publications (2)

Publication Number Publication Date
JPS6426124A JPS6426124A (en) 1989-01-27
JP2516372B2 true JP2516372B2 (en) 1996-07-24

Family

ID=16096493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62181194A Expired - Lifetime JP2516372B2 (en) 1987-07-22 1987-07-22 Viscosity measuring device

Country Status (1)

Country Link
JP (1) JP2516372B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227040B1 (en) * 1998-02-03 2001-05-08 Caldon, Inc. Method and apparatus for determining the viscosity of a fluid in a container
EP2637237A1 (en) 2010-11-02 2013-09-11 Toyota Jidosha Kabushiki Kaisha Coating method and coating apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115891A (en) * 1974-02-22 1975-09-10
US3967490A (en) * 1975-06-27 1976-07-06 International Telephone And Telegraph Corporation Vibration densitometer
JPH0229979B2 (en) * 1984-12-25 1990-07-03 Tokyo Keiki Kk NENDOKEI

Also Published As

Publication number Publication date
JPS6426124A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
CN101438135B (en) Single and multiphase fluid measurements
JP4831784B2 (en) Coriolis flow meter and method for determining flow characteristics
US7774150B2 (en) Meter electronics and methods for determining one or more of a stiffness coefficient or a mass coefficient
AU637112B2 (en) Coriolis mass flow rate meter having a substantially increased noise immunity
JP4851936B2 (en) Ultrasonic flow meter
US8631712B2 (en) Method for detecting plugging in a coriolis flow measuring device
EP3129754B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
US7424376B2 (en) Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
KR20070026804A (en) Meter electronics and method for detecting a residual material in a flow meter assembly
US5005400A (en) Dual frequency density meter
US2746480A (en) Apparatus for the measurement and control of fluids
JP7086215B2 (en) Flowmeter Phase fraction and concentration measurement adjustment method and equipment
US10539442B2 (en) Fluid momentum detection method and related apparatus
JP2516372B2 (en) Viscosity measuring device
Head A practical pulsation threshold for flowmeters
JP2021528641A (en) Proof of multiple Coriolis flowmeters integrated into a common platform
RU200609U1 (en) VIBRATION METERING CONVERTER
EP0093505B1 (en) Method of measuring fluid oscillation amplitude
RU2062995C1 (en) Ultrasonic flowmeter
WO2023191763A1 (en) Flowmeter primary containment failure detection
RU2371679C2 (en) Coriolis flow metre and method of determining flow characteristics