JP2514488B2 - Optical gyroscope optical ring resonator - Google Patents

Optical gyroscope optical ring resonator

Info

Publication number
JP2514488B2
JP2514488B2 JP3187611A JP18761191A JP2514488B2 JP 2514488 B2 JP2514488 B2 JP 2514488B2 JP 3187611 A JP3187611 A JP 3187611A JP 18761191 A JP18761191 A JP 18761191A JP 2514488 B2 JP2514488 B2 JP 2514488B2
Authority
JP
Japan
Prior art keywords
optical
ring
light
optical waveguide
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3187611A
Other languages
Japanese (ja)
Other versions
JPH0534164A (en
Inventor
良二 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP3187611A priority Critical patent/JP2514488B2/en
Publication of JPH0534164A publication Critical patent/JPH0534164A/en
Application granted granted Critical
Publication of JP2514488B2 publication Critical patent/JP2514488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はリング共振型光ジャイ
ロスコープに使用される光リング共振器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical ring resonator used in a ring resonance type optical gyroscope.

【0002】[0002]

【従来の技術】光リング共振器は、これを構成するリン
グ状光導波路の一周分の実効的光導波路長がこの内部を
周回する光の波長の整数倍であるとき、リング状光導波
路内の多重干渉光は共振条件を満たして明状態となり大
きなエネルギーをもつ。図2に示すように一枚の基板1
0上に直線状の入出力用光導波路20とリング状光導波
路11とを配置して両者を光方向性結合器(以下光結合
器という)13により光学的に結合させ、光源12から
可干渉光を入出力用光導波路20に導入して周回(図で
は右回り)させ、その周回光の一部を光結合器14を介
して導出し、その導出光の光強度を受光器15で検出す
ると、その検出強度Iは光源12の光周波数fに対し、
曲線16で示すように共振条件を満す周波数で鋭いパル
ス状になる特性となる。この時、明状態となる。
2. Description of the Related Art An optical ring resonator has a structure in which an effective optical waveguide length for one round of a ring-shaped optical waveguide forming the optical ring resonator is an integral multiple of a wavelength of light circulating in the inside of the ring-shaped optical waveguide. The multiple interference light satisfies the resonance condition, becomes a bright state, and has large energy. As shown in FIG. 2, one substrate 1
A linear input / output optical waveguide 20 and a ring-shaped optical waveguide 11 are arranged on the optical axis 0, and both are optically coupled by an optical directional coupler (hereinafter referred to as an optical coupler) 13 to cause coherence from the light source 12. The light is introduced into the input / output optical waveguide 20 and circulated (clockwise in the figure), a part of the circulated light is guided out through the optical coupler 14, and the light intensity of the derived light is detected by the photodetector 15. Then, the detected intensity I is relative to the optical frequency f of the light source 12,
As shown by the curve 16, the characteristic becomes a sharp pulse at a frequency satisfying the resonance condition. At this time, it becomes a bright state.

【0003】一方リング状光導波路11に光を導入して
いる光結合器13においても、リング状光導波路11内
の周回光の一部は外部へ導出され、この導出光は入射光
と干渉し、その干渉光の強度を受光器17で検出する
と、その特性は曲線18のようになる。即ち共振条件を
満たす光周波数fで検出強度Iは鋭いパルス状に減少し
て暗状態となる。受光器15で得る特性16を光リング
共振器の透過特性、受光器17で得る特性18を反射特
性と呼ぶことがあり、どちらを用いても光共振角速度計
(光ジャイロ)を構成することができる。通常リング状
光導波路11に光結合器13を付加すると光リング共振
器の特性が劣化するので、反射特性を用いることが多
い。そこで以下反射特性を利用したものを例にとり従来
の光ジャイロの概要を説明する。なお反射特性18は次
式で表される。
On the other hand, also in the optical coupler 13 that introduces light into the ring-shaped optical waveguide 11, a part of the circulating light in the ring-shaped optical waveguide 11 is guided to the outside, and this guided light interferes with the incident light. When the intensity of the interference light is detected by the light receiver 17, the characteristic becomes as shown by the curve 18. That is, at the optical frequency f satisfying the resonance condition, the detection intensity I is reduced in a sharp pulse shape to become a dark state. The characteristic 16 obtained by the light receiver 15 may be called a transmission characteristic of the optical ring resonator, and the characteristic 18 obtained by the light receiver 17 may be called a reflection characteristic. Either of them may be used to configure an optical resonance angular velocity meter (optical gyro). it can. Usually, when the optical coupler 13 is added to the ring-shaped optical waveguide 11, the characteristics of the optical ring resonator are deteriorated, so that the reflection characteristics are often used. Therefore, an outline of a conventional optical gyro will be described below by taking an example using a reflection characteristic. The reflection characteristic 18 is expressed by the following equation.

【0004】 P=Iν〔1−α/(1+βsin2(fτ/2))〕 P:出力光強度、I:入射光強度、ν:光結合器損失 α,β:光学系で決まる定数、f:光周波数 τ:リング状光導波路11のリング1周伝搬時間 光ジャイロの原理は方式によらず一般にサニャック効果
に依っている。サニャック効果は、有限の閉面積を囲む
リング状光導波路が、閉面積法線方向を軸に角速度運動
をすると、リング状光導波路内を周回する光に対する位
相が△φだけずれることを云い、次式で表される。
P = Iν [1-α / (1 + βsin 2 (fτ / 2))] P: output light intensity, I: incident light intensity, ν: optical coupler loss α, β: constants determined by the optical system, f : Optical frequency τ: Propagation time around the ring of the ring-shaped optical waveguide 11 The principle of the optical gyro depends on the Sagnac effect regardless of the method. The Sagnac effect means that when a ring-shaped optical waveguide that encloses a finite closed area makes angular velocity motion about the normal direction of the closed area, the phase with respect to the light circulating in the ring-shaped optical waveguide deviates by Δφ. It is represented by a formula.

【0005】△φ=(8πS/Cλ)Ω S:閉面積、 C:光速、 Ω:角速度、λ:光源波長 いまリング状光導波路が光リング共振器を構成する場
合、光の共振条件 fr =m/τ (fr :光共振周波数、 m:整数) もこのサニャック効果により両回り光で差を生じ、両回
り光の共振周波数差Δfr は Δfr =(4S/λL)Ω λ:光波長、 L:リング状光導波路の周長 となる。そこで光リング共振器を用意し、これに外部か
ら可干渉光を導入しつつ、なんらかの方法で両回り光の
共振周波数差を検出すれば、光リング共振器に入力した
光の角速度を定量できる。この原理に基く角速度計が受
動形リング共振器式光ジャイロと呼ばれる。
Δφ = (8πS / Cλ) Ω S: closed area, C: speed of light, Ω: angular velocity, λ: wavelength of light source When the ring-shaped optical waveguide constitutes an optical ring resonator, the resonance condition of light fr = m / τ (fr: optical resonance frequency, m: integer) also causes a difference between the two-direction light due to the Sagnac effect, and the resonance frequency difference Δfr of the two-direction light is Δfr = (4S / λL) Ω λ: optical wavelength, L : It is the circumference of the ring-shaped optical waveguide. Therefore, if an optical ring resonator is prepared and coherent light is externally introduced into the optical ring resonator and the resonance frequency difference between the two-direction light is detected by some method, the angular velocity of light input to the optical ring resonator can be quantified. An angular velocity meter based on this principle is called a passive ring resonator type optical gyro.

【0006】この発明の要旨には直接関係しないが、図
3に従来の光ジャイロの一例を示して説明する。光源1
2からの光は光結合器19により2分岐され、これら両
光は光周波数シフタ21,22でそれぞれ光周波数変調
され、これら光周波数変調された両光は光結合器13に
より、ガラス又は光学結晶の光導波路よりなるリング状
光導波路11に互いに逆回り光として導入される。発振
器23の発振出力は通常正弦波とされ、その正弦波信号
がそれぞれ加算回路24,25を通じて可変周波数発振
器(以下VCOという)26,27に制御信号として印
加され、VCO26,27の各発振周波数が正弦波時に
変化される。これらVCO26,27の各発振出力によ
りそれぞれ光周波数シフタ21,22が変調駆動され
る。
Although not directly related to the gist of the present invention, an example of a conventional optical gyro will be described with reference to FIG. Light source 1
The light from 2 is split into two by an optical coupler 19, both of these lights are subjected to optical frequency modulation by optical frequency shifters 21 and 22, respectively, and both of these optical frequency-modulated lights are subjected to a glass or optical crystal by the optical coupler 13. The light beams are introduced into the ring-shaped optical waveguide 11 formed of the optical waveguides as light beams that are opposite to each other. The oscillation output of the oscillator 23 is usually a sine wave, and the sine wave signals are applied as control signals to variable frequency oscillators (hereinafter referred to as VCOs) 26 and 27 through addition circuits 24 and 25, respectively, and the oscillation frequencies of the VCOs 26 and 27 are changed. It is changed at the time of sine wave. The optical frequency shifters 21 and 22 are modulated and driven by the oscillation outputs of the VCOs 26 and 27, respectively.

【0007】リング状光導波路11をそれぞれ多重周回
し、それぞれ多重干渉した両回り光の一部が光結合器1
3で外部に導出され、これら導出された光は光結合器1
3において、これらに入射される光周波数シフタ21,
22よりの光とそれぞれ干渉し、その各干渉光はそれぞ
れ光結合器28,29を介して受光器31,32でそれ
ぞれ電気信号に変換される。これら受光器31,32の
出力はそれぞれロックイン増幅器33,34において、
発振器23の出力で同期検波され、それら検波出力はそ
れぞれ加算回路24,25で発振器23の出力と加算さ
れてVCO26,27へ制御信号として供給される。
The ring-shaped optical waveguide 11 is multi-circulated, and a part of the double-rotated light that has undergone multi-interference is partially coupled to the optical coupler 1.
3 is guided to the outside, and the guided light is guided to the optical coupler 1
3, the optical frequency shifter 21, which is incident on them,
The light from 22 interferes with the light, and the respective interference lights are converted into electric signals by the light receivers 31 and 32 via the optical couplers 28 and 29, respectively. The outputs of these light receivers 31 and 32 are respectively supplied to lock-in amplifiers 33 and 34,
Synchronous detection is performed by the output of the oscillator 23, and the detected outputs are added to the output of the oscillator 23 by the adder circuits 24 and 25, respectively, and supplied to the VCOs 26 and 27 as control signals.

【0008】一方の光周波数シフタ21の出力光の周波
数fが、図4Aの曲線35に示すように発振器23の正
弦波出力で周波数変調され、その中心周波数を、図2中
の反射特性18の1つの落ち込みの最小値における周波
数と一致させると、その1つの落ち込み特性36に対
し、受光器31から得られる信号(光結合器28よりの
出力)の強度Iは曲線37に示すように、発振器23の
出力周波数の2倍の周波数で変動する。よってロックイ
ン増幅器33の出力、つまり同期検波出力は零になる。
The frequency f of the output light of one optical frequency shifter 21 is frequency-modulated by the sine wave output of the oscillator 23 as shown by the curve 35 in FIG. 4A, and the center frequency thereof is set to the reflection characteristic 18 in FIG. When the frequency at the minimum value of one dip is matched, the intensity I of the signal (output from the optical coupler 28) obtained from the photodetector 31 with respect to the one dip characteristic 36 is as shown in the curve 37. It fluctuates at a frequency twice the output frequency of 23. Therefore, the output of the lock-in amplifier 33, that is, the synchronous detection output becomes zero.

【0009】しかしリング状光導波路11にその軸心囲
りの角速度が入力されると、サニャック効果によりリン
グ状光導波路11の共振周波数がずれ、例えば図4Bに
示すように、光周波数シフタ21の出力光の周波数の中
心に対し、反射特性の落ち込み特性36の最小値をとる
周波数がずれ、この結果、受光器31の出力に得られる
信号強度は曲線37に示すように、発振器23の出力周
波数を主成分とする。よってロックイン増幅器33の出
力、つまり同期検波出力はその入力角速度と対応したも
のとなる。このロックイン増幅器33の出力が加算回路
24を通じてVCO26へ負帰還され、反射特性の落ち
込み特性36の最小値をとる周波数に対するずれが戻さ
れるように光周波数シフタ21による光周波数変調の中
心周波数がずらされる。
However, when the angular velocity around the axis of the ring-shaped optical waveguide 11 is input, the resonance frequency of the ring-shaped optical waveguide 11 shifts due to the Sagnac effect. For example, as shown in FIG. With respect to the center of the frequency of the output light, the frequency at which the minimum value of the drop characteristic 36 of the reflection characteristic is shifted, and as a result, the signal intensity obtained at the output of the photodetector 31 is as shown in the curve 37, the output frequency of the oscillator 23. Is the main component. Therefore, the output of the lock-in amplifier 33, that is, the synchronous detection output corresponds to the input angular velocity. The output of the lock-in amplifier 33 is negatively fed back to the VCO 26 through the adder circuit 24, and the center frequency of the optical frequency modulation by the optical frequency shifter 21 is shifted so that the deviation with respect to the frequency having the minimum value of the drop characteristic 36 of the reflection characteristic is returned. Be done.

【0010】他方の光周波数シフタ22から出力され、
リング状光導波路11に導入された光についても、受光
器32、ロックイン増幅器34、加算回路25、VCO
27により同様に動作する。従ってリング状光導波路1
1内の両回り光はそれぞれ、常に、その各周波数の中心
がリング状光導波路11で共振するように制御される。
これら両回り光の周波数差として、VCO26,27の
各出力の周波数差がダブルバランスドミキサ38で検出
され、この差周波数はリング状光導波路11への入力角
速度を示す検出量となる。
Output from the other optical frequency shifter 22,
Regarding the light introduced into the ring-shaped optical waveguide 11, the light receiver 32, the lock-in amplifier 34, the adding circuit 25, the VCO
27 operates in the same manner. Therefore, the ring-shaped optical waveguide 1
The bidirectional light in 1 is controlled so that the center of each frequency always resonates in the ring-shaped optical waveguide 11.
The frequency difference between the outputs of the VCOs 26 and 27 is detected by the double balanced mixer 38 as the frequency difference between the two-direction light, and the difference frequency is a detection amount indicating the input angular velocity to the ring-shaped optical waveguide 11.

【0011】[0011]

【発明が解決しようとする課題】ところで以上述べたよ
うな光ジャイロにおいては、多重干渉によって感度の向
上が計れるため、光ファイバージャイロスコープに比べ
て光導波路長が短くて済むという利点がある。しかしな
がら図2に示すような光リング共振器を構成した場合は
その光導波路長が極端に短く、リングの直径が例えば直
径20mm程度となり、これにより囲まれる面積Sが極
めて狭くなるので、光リング共振器としての感度が低下
する問題点があった。この発明は上述した問題点を回避
し、同じ大きさの基板で光リング共振器の感度を向上さ
せるようにしたものである。
The optical gyro described above has an advantage that the optical waveguide length can be shorter than that of the optical fiber gyroscope because the sensitivity can be improved by multiple interference. However, when the optical ring resonator as shown in FIG. 2 is configured, the optical waveguide length is extremely short, the diameter of the ring becomes, for example, about 20 mm, and the area S surrounded by this becomes extremely narrow, so the optical ring resonance There was a problem that the sensitivity as a container decreased. The present invention avoids the above-mentioned problems and improves the sensitivity of the optical ring resonator by using substrates of the same size.

【0012】[0012]

【課題を解決するための手段】一端に光導入用の光源1
2が設けられ、他端に導出された光の強度を検出する受
光器17が設けられ、基板10上に配置された光の入出
力用光導波路20と、基板10上に配置された複数n個
(n:正の整数)のリング状光導波路11とを有する光
ジャイロスコープの光リング共振器において、入出力用
光導波路20と最外側の第1リング状光導波路11aと
を第1光結合器13aにより光学的に結合し、以下、第
1リング状光導波路11aとその内側の第2リング状光
導波路11bとを第2光結合器13bにより光学的に結
合し、第2リング状光導波路11bとその内側の第3リ
ング状光導波路11cとを第3光結合器13cにより光
学的に結合し、同様に、第(n−1)リング状光導波路
とその内側の第nリング状光導波路とを第n光結合器に
より光学的に結合した光ジャイロスコープの光リング共
振器を構成した。
A light source 1 for introducing light at one end
2 is provided, a photodetector 17 for detecting the intensity of the emitted light is provided at the other end, and a light input / output optical waveguide 20 is provided on the substrate 10, and a plurality of optical waveguides 20 are provided on the substrate 10. In an optical ring resonator of an optical gyroscope having (n: positive integer) ring-shaped optical waveguides 11, an input / output optical waveguide 20 and an outermost first ring-shaped optical waveguide 11a are first optically coupled. Optical coupling by the optical coupler 13a, and thereafter, the first ring-shaped optical waveguide 11a and the second ring-shaped optical waveguide 11b inside thereof are optically coupled by the second optical coupler 13b. 11b and the third ring-shaped optical waveguide 11c inside thereof are optically coupled by the third optical coupler 13c, and similarly, the (n-1) th ring-shaped optical waveguide and the n-th ring-shaped optical waveguide inside thereof are formed. And are optically coupled by the nth optical coupler It was constructed an optical ring resonator optical gyroscope.

【0013】[0013]

【実施例】図1にこの発明に係わるリング共振型光ジャ
イロスコープの実施例を示し、図2と対応する部分には
同一符号を付けてある。基板10上に、入出力用光導波
路20と複数(図示の例においては3個)の第1,第
2,第3リング状光導波路11a,11b,11cとが
配置され、入出力用光導波路20と第1リング状光導波
路11aとが第1光結合器13aで光学的に結合され、
第1リング状光導波路11aと第2リング状光導波路1
1bとが第2光結合器13bで光学的に結合され、第2
リング状光導波路11bと第3リング状光導波路11c
とが第3光結合器13cで光学的に結合されている。な
おこれら複数のリング状光導波路11a,11b,11
cは互いに他のリング状光導波路を乗り越えないように
配置されている。
FIG. 1 shows an embodiment of a ring resonance type optical gyroscope according to the present invention, and parts corresponding to those in FIG. 2 are designated by the same reference numerals. An input / output optical waveguide 20 and a plurality of (three in the illustrated example) first, second, and third ring-shaped optical waveguides 11a, 11b, and 11c are arranged on the substrate 10, and the input / output optical waveguide is provided. 20 and the first ring-shaped optical waveguide 11a are optically coupled by the first optical coupler 13a,
First ring-shaped optical waveguide 11a and second ring-shaped optical waveguide 1
1b is optically coupled with the second optical coupler 13b,
Ring-shaped optical waveguide 11b and third ring-shaped optical waveguide 11c
And are optically coupled by the third optical coupler 13c. The plurality of ring-shaped optical waveguides 11a, 11b, 11
c is arranged so as not to cross over the other ring-shaped optical waveguides.

【0014】この構成によれば、光源12より出射され
て入出力用光導波路20に導入された光の一部が、第1
光結合器13aにより第1リング状光導波路11aに導
入され、残部が光検出手段としての受光器17に直接向
かう。この場合第1光結合器13は、第1リング状光導
波路11aで最適な共振状態を得るように調整され、例
えば光源12から入出力用光導波路20に導入された光
の10%が第1リング状光導波路11aに導入され、9
0%が受光器17に直接向かうように調整される。
According to this structure, a part of the light emitted from the light source 12 and introduced into the input / output optical waveguide 20 is the first light.
The light is introduced into the first ring-shaped optical waveguide 11a by the optical coupler 13a, and the remainder goes directly to the light receiver 17 as the light detecting means. In this case, the first optical coupler 13 is adjusted so as to obtain an optimum resonance state in the first ring-shaped optical waveguide 11a, and for example, 10% of the light introduced from the light source 12 into the input / output optical waveguide 20 is the first 9 is introduced into the ring-shaped optical waveguide 11a,
It is adjusted so that 0% goes directly to the light receiver 17.

【0015】第1リング状光導波路11aに導入された
光はこの内部を周回し、この周回光は第2光結合器13
bにより第2リング状光導波路11bに導入されてこれ
を周回し、この周回光はさらに第3光結合器13cによ
り第3リング状光導波路11cに導入されてこれを周回
する。第3リング状光導波路11cを周回する光は第3
光結合器13cにより再び第2リング状光導波路11b
に導入され、これを周回する光は第2光結合器13bに
より再び第1リング状光導波路11aに導入され、さら
にこれを周回する光は第1光結合器13aにより入出力
用光導波路20に導入され、光源12からの光と干渉し
て受光器17に到達する。
The light introduced into the first ring-shaped optical waveguide 11a circulates in the inside, and the circulated light is the second optical coupler 13.
By b, it is introduced into the second ring-shaped optical waveguide 11b and circulates around it, and this circulated light is further introduced into the third ring-shaped optical waveguide 11c by the third optical coupler 13c and circulates around it. The light circulating in the third ring-shaped optical waveguide 11c is the third light.
The second ring-shaped optical waveguide 11b is again provided by the optical coupler 13c.
The light introduced into the first optical coupler 11a is guided to the first ring-shaped optical waveguide 11a again by the second optical coupler 13b, and the light further circulating therein is input to the input / output optical waveguide 20 by the first optical coupler 13a. It is introduced, interferes with the light from the light source 12, and reaches the light receiver 17.

【0016】ここで第2,第3光結合器13b,13c
は次のリング状光導波路に完全に光が導入するように、
その長さと間隔が調整されている。この光結合器13
b,13cとしては方向性光結合器が使用され、第1リ
ング状光導波路11aから第2リング状光導波路11b
への光の移動が100%の場合、その逆の第2リング状
光導波路11bから第1リング状光導波路11aへの光
の移動も100%である。このような動作を繰り返すこ
とによって多重干渉光が得られ、この干渉光の光強度が
受光器17で検出される。
Here, the second and third optical couplers 13b and 13c
So that light is completely introduced into the next ring-shaped optical waveguide,
Its length and spacing are adjusted. This optical coupler 13
Directional optical couplers are used as b and 13c, and the first ring-shaped optical waveguide 11a to the second ring-shaped optical waveguide 11b are used.
When the movement of light to the first ring-shaped optical waveguide 11a is 100%, the opposite movement of the light to the first ring-shaped optical waveguide 11a is also 100%. By repeating such an operation, multiple interference light is obtained, and the light intensity of this interference light is detected by the light receiver 17.

【0017】[0017]

【発明の効果】以上の通りであって、この発明によれ
ば、光リング共振器を構成するリング状光導波路を囲む
面積Sを従来の光ジャイロスコープのそれに比べて大き
な値とすることができ、光リング共振器の感度を大幅に
向上させることができる効果がある。即ち、第1,第
2,第3リング状光導波路11a,11b,11cのそ
れぞれで囲まれる面積をそれぞれS1 ,S2 ,S3 とす
れば、この構成における光共振器のリング状光導波路の
総面積SはS=S1 +S2 +S3 となり、リング状光導
波路が多数n個ある場合は、S=S1 +S2 +・・・・
・+Snとなる。従ってリング状光導波路を囲む面積S
が、それが一つの場合(従来の場合)と比べて大きな値
となり、上述した△φ=(8πS/Cλ)Ω式における
面積Sを従来の図2で示す場合と比べて大きな値とする
ことができ、従来の光ジャイロスコープに比べて感度を
大幅に、例えばS/S1 に向上させることができる。ま
たこれら複数のリング状光導波路は、図2で示した従来
のリング11内に配置されるので、大型化することもな
い。
As described above, according to the present invention, the area S surrounding the ring-shaped optical waveguide forming the optical ring resonator can be made larger than that of the conventional optical gyroscope. There is an effect that the sensitivity of the optical ring resonator can be significantly improved. That is, first, second, third ring shaped optical waveguide 11a, 11b, if the area surrounded by the respective 11c and S 1, S 2, S 3 respectively, ring-shaped optical waveguide of the optical resonator in this configuration Has a total area S of S = S 1 + S 2 + S 3 , and when there are a large number n of ring-shaped optical waveguides, S = S 1 + S 2 + ...
・ It becomes + Sn. Therefore, the area S surrounding the ring-shaped optical waveguide
However, the value is larger than that in the case of one (conventional case), and the area S in the above-mentioned Δφ = (8πS / Cλ) Ω formula should be set to a larger value than that in the case shown in FIG. 2 of the related art. Therefore, the sensitivity can be greatly improved, for example, S / S 1 as compared with the conventional optical gyroscope. Further, since the plurality of ring-shaped optical waveguides are arranged in the conventional ring 11 shown in FIG. 2, there is no increase in size.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係わるリング共振型光ジャイロスコ
ープの光リング共振器の一例を示す平面図。
FIG. 1 is a plan view showing an example of an optical ring resonator of a ring resonance type optical gyroscope according to the present invention.

【図2】光リング共振器を説明するための平面図。FIG. 2 is a plan view for explaining an optical ring resonator.

【図3】従来のリング共振型光ジャイロスコーブを示す
ブロック図。
FIG. 3 is a block diagram showing a conventional ring resonance type optical gyroscope.

【図4】図2における光周波数変化と導出された光の強
度との関係を示す図。
FIG. 4 is a diagram showing the relationship between the optical frequency change and the derived light intensity in FIG.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一端に光導入用の光源が設けられ、他端
に導出された光の強度を検出する受光器が設けられ、基
板上に配置された光の入出力用光導波路と、基板上に配
置された複数n個(n:正の整数)のリング状光導波路
とを有する光ジャイロスコープの光リング共振器におい
て、 入出力用光導波路と最外側の第1リング状光導波路とを
第1光結合器により光学的に結合し、 以下、第1リング状光導波路とその内側の第2リング状
光導波路とを第2光結合器により光学的に結合し、 第2リング状光導波路とその内側の第3リング状光導波
路とを第3光結合器により光学的に結合し、 同様に、第(n−1)リング状光導波路とその内側の第
nリング状光導波路とを第n光結合器により光学的に結
合したことを特徴とする光ジャイロスコープの光リング
共振器。
1. A light input / output optical waveguide arranged on a substrate, wherein a light source for introducing light is provided at one end, and a photodetector for detecting the intensity of the emitted light is provided at the other end. In an optical ring resonator of an optical gyroscope having a plurality of n (n: positive integer) ring-shaped optical waveguides arranged above, an input / output optical waveguide and an outermost first ring-shaped optical waveguide are provided. Optically coupled by the first optical coupler, and hereinafter, the first ring-shaped optical waveguide and the second ring-shaped optical waveguide inside thereof are optically coupled by the second optical coupler, And the third ring-shaped optical waveguide inside thereof are optically coupled by a third optical coupler, and similarly, the (n-1) th ring-shaped optical waveguide and the n-th ring-shaped optical waveguide inside thereof are coupled to each other. Optical gyroscope characterized by being optically coupled by an n optical coupler Optical ring resonator.
JP3187611A 1991-07-26 1991-07-26 Optical gyroscope optical ring resonator Expired - Fee Related JP2514488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3187611A JP2514488B2 (en) 1991-07-26 1991-07-26 Optical gyroscope optical ring resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3187611A JP2514488B2 (en) 1991-07-26 1991-07-26 Optical gyroscope optical ring resonator

Publications (2)

Publication Number Publication Date
JPH0534164A JPH0534164A (en) 1993-02-09
JP2514488B2 true JP2514488B2 (en) 1996-07-10

Family

ID=16209140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3187611A Expired - Fee Related JP2514488B2 (en) 1991-07-26 1991-07-26 Optical gyroscope optical ring resonator

Country Status (1)

Country Link
JP (1) JP2514488B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190786A (en) * 1993-12-27 1995-07-28 Japan Aviation Electron Ind Ltd Ring type resonance gyroscope
US7369246B2 (en) * 2005-05-27 2008-05-06 Honeywell Bnternational Inc. Method for winding sensing coils and sensing coil for fiber optic gyroscopes
US20080013094A1 (en) 2006-07-14 2008-01-17 Honeywell International Inc. Semiconductor substrate for interferometer fiber optic gyroscopes
CN111578924B (en) * 2020-04-03 2022-08-30 上海新跃联汇电子科技有限公司 Optical gyroscope based on vernier effect of optical resonant cavity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273788A (en) * 1985-09-27 1987-04-04 Fujikura Ltd Passive resonance type ring laser gyroscope

Also Published As

Publication number Publication date
JPH0534164A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
Suzuki et al. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit
JP5690559B2 (en) Optical phase noise error reducer
US4991926A (en) Integrated optics decorrelator
EP0576663B1 (en) Symmetrization of resonator modes
EP0434767B1 (en) Passive ring resonator gyro with polarization rotating ring path
US4661964A (en) Resonant waveguide laser gyro with a switched source
JP5681455B2 (en) System and method for reducing laser phase noise in a resonator fiber optic gyroscope
US4825261A (en) Method for reading out rotation rate with a passive optical resonator
US4896327A (en) Method for frequency stabilization of a semiconductor laser comprising a coupled external ring resonator
JP2514488B2 (en) Optical gyroscope optical ring resonator
US4382681A (en) Measurement of rotation rate using Sagnac effect
JP2766974B2 (en) Passive ring resonant optical gyro
US3861220A (en) Microwave gyro
US5394242A (en) Fiber optic resonant ring sensor and source
US8258774B2 (en) System and method for implementing low-cost electronic gyroscopes and accelerometer
US4533249A (en) Passive ring resonator angular rate sensor
US5390021A (en) Optical ring resonator gyro using coherent light modulated by a rectangular signal having its period divided into four intervals
US5285257A (en) Optic rotation sensing apparatus and related method including providing synchronous detection at a phase at which the AM noise is minimized
US4411526A (en) Measurement of rotation rate using sagnac effect
JPH06273179A (en) Light resonance angular velocity meter
JP3153891B2 (en) Optical resonance angular velocity meter
JPH05164561A (en) Composite resonator for improving scale factor of optical gyro
US3382760A (en) Coherent light frequency difference sensor
JPH05157570A (en) Optical resonance angular velocity meter
Suzuki et al. Integrated optical ring-resonator gyro using a silica planar lightwave circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

LAPS Cancellation because of no payment of annual fees