JP2513655B2 - Novel diterpenes and method for producing the same - Google Patents

Novel diterpenes and method for producing the same

Info

Publication number
JP2513655B2
JP2513655B2 JP61309877A JP30987786A JP2513655B2 JP 2513655 B2 JP2513655 B2 JP 2513655B2 JP 61309877 A JP61309877 A JP 61309877A JP 30987786 A JP30987786 A JP 30987786A JP 2513655 B2 JP2513655 B2 JP 2513655B2
Authority
JP
Japan
Prior art keywords
compound
data
represented
diterpenes
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61309877A
Other languages
Japanese (ja)
Other versions
JPS63162644A (en
Inventor
秀治 糸川
博史 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP61309877A priority Critical patent/JP2513655B2/en
Publication of JPS63162644A publication Critical patent/JPS63162644A/en
Application granted granted Critical
Publication of JP2513655B2 publication Critical patent/JP2513655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規ジテルペン類及びその製造方法に関す
る。更に詳しくは、野性のアルピニアガランガ(ショウ
ガ科)の種子から2種類の新規な骨格ジテルペン(ガラ
ナルA及びBと称する)を、1種類のラブダン型ジテル
ペン及び(E)−8,17−エポキシ−ラブド−12−エン−
15,16−ジアールと共に単離する方法に関する。
TECHNICAL FIELD The present invention relates to novel diterpenes and a method for producing the same. More specifically, two kinds of novel skeleton diterpenes (referred to as guaranal A and B) from wild Alpinia galanga (Ginger family) seeds are converted into one labdane type diterpene and (E) -8,17-epoxy- Loved-12-En-
It relates to a method of isolating with 15,16-Dial.

〔従来の技術及び問題点〕[Conventional technology and problems]

ショウガ科植物からのジテルペン類の単離に関して
は、数例が報告されているにすぎない(J.Chem.Soc.,Pe
rkin Trans.1,1979,1303;Phytochemistry,14,1059(197
5);ibid.,15,827(1976))。
Only a few cases have been reported regarding the isolation of diterpenes from ginger plants (J. Chem. Soc., Pe.
rkin Trans.1, 1979 , 1303; Phytochemistry, 14 , 1059 (197
5); ibid., 15 , 827 (1976)).

アルピニアガランガの根茎は肉料理及びカレー料理の
調理の際に食物に風味をつけるために用いられている。
本発明者らは以前にアルピニアガランガの根茎と種子か
ら抗腫瘍性物質と辛味性成分とを単離し、論文に報告し
たが、更に本発明者らはアルピニアガランガの植物化学
的要素に関する研究を続けた結果、2種類の新規な骨格
ジテルペンを、1種類のラブダン型ジテルペン及び
(E)−8,17−エポキシ−ラブド−12−エン−15,16−
ジアールと共に、抗腫瘍性作用の期待される物質として
単離することができ、本発明を完成するに至った。
Alpinia galanga rhizome is used to flavor foods during cooking of meat and curry dishes.
The present inventors previously isolated an antitumor substance and a pungency component from rhizomes and seeds of Alpinia galanga, and reported in a paper. Furthermore, the present inventors further studied the phytochemical elements of Alpinia galanga. As a result, two kinds of novel skeleton diterpenes were added to one kind of labdane type diterpene and (E) -8,17-epoxy-labd-12-ene-15,16-
It could be isolated as a substance expected to have an antitumor effect together with Diar, and completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、下記一般式(I)または(II)で表
される新規ジテルペン類、及びアルピニアガランガ(シ
ョウガ科)の種子から誘導することを特徴とする下記一
般式(I)または(II)で表される新規ジテルペン類の
製造方法に係わるものである。
That is, the present invention is characterized by being derived from novel diterpenes represented by the following general formula (I) or (II) and seeds of Alpinia galanga (Ginger family), or the following general formula (I) or ( It relates to a method for producing a new diterpene represented by II).

以下、本発明の新規ジテルペン類の製造方法を具体的
に説明する。
Hereinafter, the method for producing the novel diterpenes of the present invention will be specifically described.

市販品として購入したアルピニアガランガの種子をメ
タノールで抽出し、メタノール抽出物に水を添加した
後、n−ヘキサンと共に振盪する。n−ヘキサンに可溶
なフラクションをクロマトグラフィー精製して一般式
(I)及び(II)で表される2種類の新規な骨格ジテル
ペン(ガラナルA及びB)と、下記一般式(III)で表
される1種類のラブダン型ジテルペン、及び下記一般式
(IV)で表される(E)−8,17−エポキシ−ラブド−12
−エン−15,16−ジアールを単離した。
Seeds of Alpinia galanga purchased as a commercial product are extracted with methanol, water is added to the methanol extract, and then shaken with n-hexane. Fractions soluble in n-hexane were purified by chromatography and represented by the two new skeleton diterpenes (Galanal A and B) represented by the general formulas (I) and (II) and the general formula (III) below. One type of labdane-type diterpene, and (E) -8,17-epoxy-labd-12 represented by the following general formula (IV)
The ene-15,16-dial was isolated.

一般式(I)で表されるガラナルAと名付けた化合物
(1)は無色針状結晶として得られ、融点は167.0〜16
9.0℃であった。高分解能マススペクトル(318.2214)
に基づく分子式はC20H30O3であった。
The compound (1) named Galanal A represented by the general formula (I) is obtained as colorless needle crystals and has a melting point of 167.0-16.
It was 9.0 ° C. High resolution mass spectrum (318.2214)
Molecular formula based on was C 20 H 30 O 3.

この化合物(1)の13C‐NMRスペクトルのデータを表
1に、1H‐NMRスペクトルのデータを表2に示す。又、
マススペクトル(MS),比旋光度,赤外線吸収スペクト
ル(IR),紫外線吸収スペクトル(UV)のデータを以下
に示す。
The data of 13 C-NMR spectrum and the data of 1 H-NMR spectrum of this compound (1) are shown in Table 1 and Table 2, respectively. or,
The data of mass spectrum (MS), specific rotation, infrared absorption spectrum (IR) and ultraviolet absorption spectrum (UV) are shown below.

MS m/z(%):318(M+,48),300(34),271(25),207
(27),194(59),189(42),163(46),149(57),137
(81),123(94),112(75),95(89),91(94),81(9
4),69(100) 〔α〕−44.0°(c0.1,CHCl3) IR(CHCl3)cm-1:3620,2940,1710,1685,1640,1460,144
5,1390,1370,1165,1055 UV(EtOH):232nm,ε7600 この化合物(1)の1H‐NMR(CDCl3),IR(CHCl3)及
びUV(EtOH)スペクトルはジアルデヒドの存在を示し
た。即ち、1つは通常のアルデヒド(δ10.10;1710c
m-1)、他の1つは不飽和アルデヒド(δ9.38;1685c
m-1;232nm,ε7600)であった。
MS m / z (%): 318 ( M + , 48), 300 (34), 271 (25), 207
(27), 194 (59), 189 (42), 163 (46), 149 (57), 137
(81), 123 (94), 112 (75), 95 (89), 91 (94), 81 (9
4), 69 (100) [α] D −44.0 ° (c0.1, CHCl 3 ) IR (CHCl 3 ) cm −1 : 3620,2940,1710,1685,1640,1460,144
5,1390,1370,1165,1055 UV (EtOH): 232nm, ε7600 1 H-NMR (CDCl 3 ), IR (CHCl 3 ) and UV (EtOH) spectra of this compound (1) show the presence of dialdehyde. It was That is, one is a normal aldehyde (δ10.10; 1710c
m -1 ), the other one is unsaturated aldehyde (δ 9.38; 1685c
m −1 ; 232 nm, ε7600).

2級水酸基の存在はIR(3620cm-1)と1H‐NMR(δ4.0
6)によって示された。3個の3級メチルの存在を示す1
H‐NMRシグナル(δ0.77,0.80,0.88)と表1に示す13C
‐NMRシグナルは容易にラブダン骨格に適合させること
ができるものであり、公開されているデーター(Tetrah
edron Lett.,1976,1897)と同じであった。
The presence of secondary hydroxyl groups is due to IR (3620 cm -1 ) and 1 H-NMR (δ4.0
6) indicated by. Indicates the presence of three tertiary methyls 1
1 H-NMR signal (δ 0.77, 0.80, 0.88) and 13 C shown in Table 1
-NMR signals can be easily adapted to the labdane skeleton and published data (Tetrah
edron Lett., 1976 , 1897).

化合物(1)の2個のアルデヒド基と第二ヒドロキシ
ル基との関係は詳しい二重共鳴実験及び化合物(1)の
PCCによる酸化によって得られる下記一般式(V) で表される化合物(5)のスペクトルと比較して決定し
た。
The relationship between the two aldehyde groups of compound (1) and the secondary hydroxyl group is detailed by double resonance experiments and of compound (1).
The following general formula (V) obtained by oxidation with PCC Was determined by comparison with the spectrum of the compound (5) represented by

尚、化合物(5)は無色針状結晶で、融点は193.0〜1
95.0℃であり、13C‐NMRスペクトルのデータは表1に、
1H‐NMRスペクトルのデータは表2に示す通りである。
又、分子式,マススペクトル(MS),比旋光度,赤外線
吸収スペクトル(IR),紫外線吸収スペクトル(UV)の
データは以下に示す通りである。
Compound (5) is a colorless needle crystal and has a melting point of 193.0-1.
95.0 ° C., 13 C-NMR spectrum data are shown in Table 1.
The data of 1 H-NMR spectrum is as shown in Table 2.
The data of molecular formula, mass spectrum (MS), specific rotation, infrared absorption spectrum (IR), and ultraviolet absorption spectrum (UV) are as shown below.

分子式C20H28O3 MS m/z(%):316(M+,24),288(42),205(23),178
(24),151(34),137(70),123(78),110(88),95
(62),91(68),81(75),69(100) 〔α〕−142.9°(c0.07,CHCl3) IR(CHCl3)cm-1:2950,2850,1730,1700,1645,1460,144
0,1390,1370,1285,1275,1150,1115,1060 UV(EtOH):223nm,ε7700 化合物(1)と化合物(5)の相関スペクトルによっ
て、化合物(1)の2個のアルデヒド基と第二ヒドロキ
シル基との関係は次の部分構造 によって示す通りに確立された。
Molecular formula C 20 H 28 O 3 MS m / z (%): 316 ( M + , 24), 288 (42), 205 (23), 178
(24), 151 (34), 137 (70), 123 (78), 110 (88), 95
(62), 91 (68), 81 (75), 69 (100) [α] D -142.9 ° (c0.07, CHCl 3 ) IR (CHCl 3 ) cm -1 : 2950,2850,1730,1700, 1645,1460,144
0,1390,1370,1285,1275,1150,1115,1060 UV (EtOH): 223nm, ε7700 The correlation spectrum between compound (1) and compound (5) shows that the two aldehyde groups of compound (1) and the second The relationship with the hydroxyl group is the following partial structure Established as shown by.

この部分構造をラブダン骨格に結合させるために環C
が7員環として存在すると考えられた。7員環の存在は
表2に示した化合物(5)のNMRとIRスペクトル(1700c
m-1)によっても満足に説明することができる。
In order to attach this partial structure to the labdane skeleton, ring C
Was considered to exist as a 7-membered ring. The presence of the 7-membered ring is shown in Table 2 by the NMR and IR spectra of compound (5) (1700c
It can be satisfactorily explained by m -1 ).

B/C環結合及びヒドロキシル基の相対的配置は、化合
物(1)と化合物(5)のNOE実験によって決定した。
化合物(5)のH-20とH−9を照射すると、それぞれH-
17とH-14の積分吸収強度が7%及び12%増加した。従っ
て、この環結合はトランスであると結論された。更に、
4%NOEが化合物(1)のC-15とC-17のプロトンの間で
観察されたことはヒドロキシル基の相対的配置がαであ
ることを実証した。
The relative configurations of the B / C ring bond and the hydroxyl group were determined by NOE experiments of compound (1) and compound (5).
When compound (5) was irradiated with H-20 and H-9, H-
The integrated absorption intensities of 17 and H-14 increased by 7% and 12%. Therefore, it was concluded that this ring bond is trans. Furthermore,
The 4% NOE observed between the C-15 and C-17 protons of compound (1) demonstrated that the relative configuration of the hydroxyl groups was α.

一般式(II)で表されるガラナルBと名付けた化合物
(2)は、無色針状結晶として得られ、融点は134.0〜1
34.5℃であり、高分解能マススペクトル(318.2213)に
基づく分子式はC20H30O3であった。
The compound (2) named Galanal B represented by the general formula (II) is obtained as colorless needle crystals and has a melting point of 134.0 to 1
Was 34.5 ° C., molecular formula based on high resolution mass spectrum (318.2213) was C 20 H 30 O 3.

この化合物(2)の13C‐NMRスペクトルのデータを表
1に、1H‐NMRスペクトルのデータを表2に示す。又、
マススペクトル(MS),比旋光度,赤外線吸収スペクト
ル(IR),紫外線吸収スペクトル(UV)のデータを以下
に示す。
The 13 C-NMR spectrum data and the 1 H-NMR spectrum data of this compound (2) are shown in Table 1 and Table 2, respectively. or,
The data of mass spectrum (MS), specific rotation, infrared absorption spectrum (IR) and ultraviolet absorption spectrum (UV) are shown below.

MS m/z(%):318(M+,15),300(9),271(7),194
(17),189(17),163(27),149(29),137(100),12
3(56),109(53),95(65),91(68),81(72),69(9
0) 〔α〕−48.0°(c0.1,CHCl3) IR(CHCl3)cm-1:3610,2950,1710,1680,1650,1460,144
0,1390,1370,1160,1085,1050 UV(EtOH):236nm,ε8000 この化合物(2)はスペクトルデータによって化合物
(1)に密接に関係した構造であると考えられた。化合
物(1)と(2)は、化合物(2)のPCCによる酸化が
あらゆる点で化合物(5)と同じ化合物を生じたことに
よって、ヒドロキシル基に関するエピマーであることが
実証された。化合物(2)のC−9とC-15のプロトンの
間では5%のNOEが観察され、このことはヒドロキシル
基の相対的配置がβであることを示した。
MS m / z (%): 318 ( M + , 15), 300 (9), 271 (7), 194
(17), 189 (17), 163 (27), 149 (29), 137 (100), 12
3 (56), 109 (53), 95 (65), 91 (68), 81 (72), 69 (9
0) [α] D −48.0 ° (c0.1, CHCl 3 ) IR (CHCl 3 ) cm −1 : 3610,2950,1710,1680,1650,1460,144
0,1390,1370,1160,1085,1050 UV (EtOH): 236 nm, ε8000 This compound (2) was considered to have a structure closely related to compound (1) according to the spectral data. Compounds (1) and (2) were demonstrated to be epimers with respect to the hydroxyl group by oxidation of PCC of compound (2) with PCC in all respects yielding the same compound as compound (5). A NOE of 5% was observed between the C-9 and C-15 protons of compound (2), indicating the relative configuration of the hydroxyl groups was β.

一般式(III)で表される化合物(3)は不安定な無
色油状物として得られ、分子式C20H30O2(302.2238),
〔α〕+15.8°の主要なジテルペンであった。この化
合物(3)の13C‐NMRスペクトルのデータを表1に示
す。このスペクトルデータは本発明者らの以前の報告
(Chem.Pharm.Bull.,28,3452(1980))で他のアルピニ
ア属植物(Alpinia speciosa)から単離したラブダー8
(17),12−ジエン−15,16−ジアール(下記一般式(V
I)で表される化合物(6):〔α〕−15.0°)と、
比旋光度以外は完全に同じであった。
The compound (3) represented by the general formula (III) is obtained as an unstable colorless oily substance and has a molecular formula of C 20 H 30 O 2 (302.2238),
It was the major diterpene of [α] D + 15.8 °. The data of 13 C-NMR spectrum of this compound (3) are shown in Table 1. This spectral data was obtained from our previous report (Chem.Pharm.Bull., 28 , 3452 (1980)) and was isolated from other Alpinia plants (Alpinia speciosa).
(17), 12-diene-15, 16-diar (the following general formula (V
Compound (6) represented by I): [α] D -15.0 °),
Except for the specific rotation, they were exactly the same.

化合物(3)の絶対構造を決定するために、化合物
(3)のオゾン分解によって得られた下記一般式(VI
I)で表される化合物(7)にオクタントルールを適用
した。
In order to determine the absolute structure of compound (3), the following general formula (VI
The octant rule was applied to the compound (7) represented by I).

化合物(7)のCDスペクトルは負のコットン効果(28
9nm,Δε=−2.79,c=0.18,EtOH)を示した。従って化
合物(3)の絶対構造は上記の式(III)に示す通りに
決定された。アルピニア属植物(Alpinia speciosa)か
ら単離した化合物(6)の絶対構造も上記の式(VI)に
示す通りに決定された。
The CD spectrum of compound (7) shows a negative Cotton effect (28
9 nm, Δε = −2.79, c = 0.18, EtOH). Therefore, the absolute structure of compound (3) was determined as shown in formula (III) above. The absolute structure of compound (6) isolated from Alpinia speciosa was also determined as shown in formula (VI) above.

化合物(4)の13C‐NMRスペクトルのデータは表1に
示す通りであり、これは抗真菌性ラブダンジアルデヒド
である(E)−8,17−エポキシ−ラブド−12−エン−1
5,16−ジアールと完全に同じであった。
The data of the 13 C-NMR spectrum of the compound (4) are shown in Table 1, which is an antifungal labdane dialdehyde (E) -8,17-epoxy-labd-12-ene-1.
It was exactly the same as the 5,16-Gir.

生合成的の見地から、ガラナルAとガラナルBは化合
物(4)のエポキシドの開裂後の閉環によって誘導され
ると考えられた。
From a biosynthetic point of view, it was considered that Galanal A and Galanal B were derived by ring closure after cleavage of the epoxide of compound (4).

本発明の化合物(1)、化合物(2)及び化合物
(3)は抗腫瘍剤としての有用性が期待される。
The compounds (1), (2) and (3) of the present invention are expected to be useful as antitumor agents.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I)または(II)で表される新規
ジテルペン類。
1. A novel diterpene represented by the general formula (I) or (II).
【請求項2】アルピニアガランガ(ショウガ科)の種子
から誘導することを特徴とする一般式(I)または(I
I)で表される新規ジテルペン類の製造方法。
2. A general formula (I) or (I), which is derived from seeds of Alpinia galanga (Ginger family).
A method for producing a novel diterpene represented by I).
JP61309877A 1986-12-26 1986-12-26 Novel diterpenes and method for producing the same Expired - Lifetime JP2513655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309877A JP2513655B2 (en) 1986-12-26 1986-12-26 Novel diterpenes and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309877A JP2513655B2 (en) 1986-12-26 1986-12-26 Novel diterpenes and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63162644A JPS63162644A (en) 1988-07-06
JP2513655B2 true JP2513655B2 (en) 1996-07-03

Family

ID=17998377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309877A Expired - Lifetime JP2513655B2 (en) 1986-12-26 1986-12-26 Novel diterpenes and method for producing the same

Country Status (1)

Country Link
JP (1) JP2513655B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE350048T1 (en) * 1998-04-16 2007-01-15 Eurovita As NEW SYNERGISTIC COMPOSITIONS CONTAINING AROMATIC COMPOUNDS AND TERPENOIDS PRESENTED IN ALPINIA GALANGA
JP4849388B2 (en) * 2005-03-03 2012-01-11 国立大学法人名古屋大学 Physiologically active substance and method for producing the same, tasting method of pungent physiologically active substance, and health / medical composition
CN103965088B (en) * 2013-02-05 2016-03-16 中国科学院沈阳应用生态研究所 A kind of compound and Synthesis and applications thereof deriving from China fir
TWI516474B (en) * 2013-05-27 2016-01-11 中央研究院 Synthesis of galanal compounds and analogues thereof
TWI478902B (en) * 2013-06-07 2015-04-01 Dev Center Biotechnology Glp-1 potentiators and their applications
CN104529733B (en) * 2015-01-05 2016-04-06 海南医学院 The monomer be separated in a kind of Rhizoma Alpiniae Officinarum and for anticancer usage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KuoLiChung−KuoIYaoYenChiuSoYeuChiuPanKao,(1982),(July),P.147−162

Also Published As

Publication number Publication date
JPS63162644A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
Kashman et al. New diterpenoids from the soft corals Xenia macrospiculata and Xenia obscuronata
Bennett et al. Triterpenoids, tocotrienols and xanthones from the bark of Cratoxylum cochinchinense
Asakawa et al. Insect antifeedant secoaromadendrane-type sesquiterpenes from Plagiochila species
Stipanovic et al. Pentaketide metabolites of Verticillium dahliae. 3. Identification of (-)-3, 4-dihydro-3, 8-dihydroxy-1 (2H) naphthalenone [(-)-vermelone] as a precursor to melanin
Bohlmann et al. Caryophyllene derivatives and a hydroxyisocomene from Pulicaria dysenterica
Semmelhack et al. Synthesis of racemic fomannosin and illudol using a biosynthetically patterned common intermediate
Chakravarty et al. Swertane triterpenoids from Swertia chirata
Glotter et al. Steroidal constituents of Physalis minima (Solanaceae)
House et al. Perhydroindan Derivatives. V. The Synthesis of Some 3a-Substituted Derivatives1a
JP2513655B2 (en) Novel diterpenes and method for producing the same
Ahmed et al. Eudesmanolides and other constituents from Artemisia herba-alba
Bohlmann et al. New germacranolides and other sesquiterpene lactones from Dicoma species
Herz et al. Sesquiterpene lactones of Eupatorium perfoliatum
Nilsson The structure of ceroptene
Singh et al. 3β, 24-Dihydroxyolean-12-en-28-oic acid, a pentacyclic triterpene acid from Lantana indica
Franck Structure and biosynthesis of the ergot pigments
Bohlmann et al. A daucanolide further farnesene derivatives from Ageratum fastigiatum
Morita et al. New diterpenes from Alpinia galanga Wild.
Huffman Resin acids. V. Preparation and reactions of ring-A olefins from dehydroabietic acid
Herz et al. Woodhousin, a new germacranolide from Bahia woodhousei (Gray) Gray'
Herz et al. New pseudoguaianolides from Hymenoxys species. A new type of lactone closure
Steyn et al. Structure and carbon-13 nuclear magnetic resonance assignments of versiconal acetate, versiconol acetate, and versiconol, metabolites from cultures of Aspergillus parasiticus treated with dichlorvos
Snider et al. Intramolecular Diels-Alder and ene reactions of 2, 6-dimethyl-2, 7-octadienal
Sankaram et al. Bharangin, a novel diterpenoid quinonemethide from pygmacopremna herbacea (Roxb.) moldenke
Kimbu et al. The structure of a labdane dialdehyde from Afromomum daniellii (Zingiberaceae)