JP2512637B2 - Method for producing allyl chloride - Google Patents

Method for producing allyl chloride

Info

Publication number
JP2512637B2
JP2512637B2 JP2413782A JP41378290A JP2512637B2 JP 2512637 B2 JP2512637 B2 JP 2512637B2 JP 2413782 A JP2413782 A JP 2413782A JP 41378290 A JP41378290 A JP 41378290A JP 2512637 B2 JP2512637 B2 JP 2512637B2
Authority
JP
Japan
Prior art keywords
activated carbon
reaction
dichloropropane
allyl chloride
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2413782A
Other languages
Japanese (ja)
Other versions
JPH04224531A (en
Inventor
武夫 鈴木
信一 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2413782A priority Critical patent/JP2512637B2/en
Publication of JPH04224531A publication Critical patent/JPH04224531A/en
Application granted granted Critical
Publication of JP2512637B2 publication Critical patent/JP2512637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アリルクロライドの製
造方法に関する。さらに詳しくは、1,2−ジクロルプ
ロパンから、接触分解による脱塩化水素反応により、ア
リルクロライドを製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing allyl chloride. More specifically, it relates to a method for producing allyl chloride from 1,2-dichloropropane by a dehydrochlorination reaction by catalytic decomposition.

【0002】[0002]

【従来の技術】1,2−ジクロルプロパンは、プロピレ
ンをクロルヒドリン化し、プロピレンオキサイド中間体
を製造する際に副生する。また、プロピレンの高温塩素
化によりアリルクロライドを製造する際にも副生する。
この副生物である1,2−ジクロルプロパンの有効利用
として、脱塩化水素反応によりアリルクロライドを製造
することが知られている。該アリルクロライドは、エピ
クロルヒドリン、アリルアルコール、ジアリルフタレー
トなどの工業薬品、樹脂の原料として有用である。
2. Description of the Related Art 1,2-Dichloropropane is a by-product when propylene is converted into chlorohydrin to produce a propylene oxide intermediate. It is also produced as a by-product in the production of allyl chloride by high temperature chlorination of propylene.
As an effective use of this by-product, 1,2-dichloropropane, it is known to produce allyl chloride by a dehydrochlorination reaction. The allyl chloride is useful as a raw material for resins such as epichlorohydrin, allyl alcohol, diallyl phthalate and other industrial chemicals.

【0003】従来、1,2−ジクロルプロパンの脱塩化
水素反応は熱分解および接触分解による方法が知られて
いる。熱分解反応は、500〜700℃の高温下で脱塩
化水素反応が行なわれ、アリルクロライドの選択率は5
0〜60%である。さらに、塩素、四塩化炭素などのラ
ジカル源を添加することで、転化率が向上すること及び
酸素を添加することで選択率が向上することが知られて
いる。接触分解反応は、塩化カルシウム、シリカアルミ
ナ、活性炭などの触媒を用いて、200〜500℃の低
温下に脱塩化水素反応が行なわれる。
Conventionally, the dehydrochlorination reaction of 1,2-dichloropropane is known to be a method of thermal decomposition or catalytic decomposition. In the thermal decomposition reaction, dehydrochlorination reaction is carried out at a high temperature of 500 to 700 ° C., and the selectivity for allyl chloride is 5.
It is 0 to 60%. Further, it is known that addition of a radical source such as chlorine or carbon tetrachloride improves the conversion rate and addition of oxygen improves the selectivity. In the catalytic cracking reaction, a dehydrochlorination reaction is carried out at a low temperature of 200 to 500 ° C. using a catalyst such as calcium chloride, silica-alumina and activated carbon.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、熱分解
反応では転化率を高めると炭素質の生成が起こり、収率
の低下および反応管の閉塞などの問題がある。また、接
触分解反応では1−クロルプロペンおよび2−クロルプ
ロペンが主生成物であり、アリルクロライドの選択率が
低いという問題がある。
However, in the thermal decomposition reaction, when the conversion rate is increased, carbonaceous matter is generated, which causes problems such as a decrease in yield and clogging of the reaction tube. Further, in the catalytic decomposition reaction, 1-chloropropene and 2-chloropropene are the main products, and there is a problem that the selectivity of allyl chloride is low.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねてきた。その結果、上記
接触分解による脱塩化水素反応において、塩化水素の存
在下で加熱された活性炭を触媒として用いて、1,2−
ジクロルプロパンを脱塩化水素することにより、アリル
クロライドを高い選択率で製造できることを見い出し本
発明を完成するに至った。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above problems. As a result, in the dehydrochlorination reaction by the catalytic cracking described above, activated carbon heated in the presence of hydrogen chloride was used as a catalyst to give 1,2-
We have found that allyl chloride can be produced with high selectivity by dehydrochlorinating dichloropropane and completed the present invention.

【0006】即ち、本発明は、塩化水素の存在下で加熱
処理された活性炭の存在下において、1,2−ジクロル
プロパンを加熱することを特徴とするアリルクロライド
の製造方法である。
That is, the present invention is a method for producing allyl chloride, which comprises heating 1,2-dichloropropane in the presence of activated carbon heat-treated in the presence of hydrogen chloride.

【0007】本発明では、脱塩化水素反応の触媒とし
て、塩化水素の存在下で加熱処理された活性炭を用い
る。該活性炭は、炭素質原料、賦活方法、細孔径分布、
細孔容積、比表面積等には特に限定されるものではな
く、公知のものが何ら制限なく使用される。アリルクロ
ライドの空時収量を考えると、細孔容積が0.3cm3
/g以上で比表面積が300m2/g以上の活性炭が好
ましい。また、その形状についても特に限定されるもの
ではないが、取扱いの容易さなどから、通常は破砕品や
球状、円筒状などの成型品が好適である。
In the present invention, activated carbon heat-treated in the presence of hydrogen chloride is used as a catalyst for the dehydrochlorination reaction. The activated carbon is a carbonaceous raw material, activation method, pore size distribution,
The pore volume, specific surface area, etc. are not particularly limited, and known ones can be used without any limitation. Considering the space-time yield of allyl chloride, the pore volume is 0.3 cm 3
/ G or more and activated carbon having a specific surface area of 300 m 2 / g or more is preferable. Further, the shape thereof is not particularly limited, but a crushed product or a molded product such as a spherical shape or a cylindrical shape is usually preferable because of easy handling.

【0008】塩化水素は、塩化水素ガスまたは塩酸水溶
液の形で使用される。通常、市販の活性炭はアルミニウ
ム、鉄などの金属が不純物として含まれているので、こ
れらを除くために鉱酸水溶液による洗浄が行なわれる。
本発明の場合、上記塩化水素を塩酸水溶液の形で用いる
と、この活性炭の不純物の洗浄が同時に行なうことがで
き好ましい。尚、活性炭の加熱処理を、塩酸以外の鉱
酸、例えば硝酸、硫酸等の水溶液の存在下に行ない、得
られた活性炭をアリルクロライドの製造に供しても、本
発明の如く高い選択率でアリルクロライドを製造するこ
とはできない。
Hydrogen chloride is used in the form of hydrogen chloride gas or an aqueous hydrochloric acid solution. Usually, commercially available activated carbon contains metals such as aluminum and iron as impurities, and therefore, it is washed with a mineral acid aqueous solution to remove them.
In the case of the present invention, it is preferable to use the above-mentioned hydrogen chloride in the form of an aqueous solution of hydrochloric acid because the impurities of the activated carbon can be washed at the same time. Even if the activated carbon is subjected to a heat treatment in the presence of an aqueous solution of a mineral acid other than hydrochloric acid, such as nitric acid or sulfuric acid, and the activated carbon obtained is subjected to the production of allyl chloride, allyl is obtained at a high selectivity as in the present invention. It is not possible to produce chloride.

【0009】本発明において、塩化水素の存在下での活
性炭の加熱処理は、塩酸水溶液に活性炭を浸漬、攪拌し
た後、乾燥させ、さらに加熱する液相法および、活性炭
に塩化水素ガスを流通させながら加熱する気相法で行う
のが好ましい。以下、それぞれについて説明する。
In the present invention, the heat treatment of the activated carbon in the presence of hydrogen chloride is carried out by dipping the activated carbon in an aqueous hydrochloric acid solution, stirring and then drying, and further heating the liquid phase method, or by passing hydrogen chloride gas through the activated carbon. It is preferable to carry out the heating by a vapor phase method. Hereinafter, each will be described.

【0010】液相法における塩酸水溶液の濃度は、活性
炭の処理量、塩酸水溶液の使用量により異なるが、通常
は1〜10mol/lの範囲内であれば良い。また、浸
漬時の液温は通常室温〜70℃位の範囲内であれば良
く、浸漬時間は塩酸水溶液が活性炭の細孔内に進入し終
わる程度以上であれば良く、通常は1〜10時間の範囲
内である。次に、塩酸水溶液から引き上げた活性炭は、
表面に付着した液を乾燥させた後、電気炉または反応器
内で加熱する。加熱温度は、通常300〜700℃の範
囲内であり、好ましくは後述する1,2−ジクロルプロ
パンの脱塩化水素反応の反応温度より50〜100℃高
い温度に設定する。加熱時間は、吸着された塩化水素ガ
ス、水蒸気および分解ガスなどが脱離し終わる程度以上
であれば良く、通常は1〜20時間の範囲内である。ま
た、加熱時の雰囲気は、空気あるいは窒素、ヘリウムな
どの不活性ガスであれば良く、通常は、これらのガスを
流通させて使用する。
The concentration of the aqueous hydrochloric acid solution in the liquid phase method varies depending on the amount of activated carbon treated and the amount of the aqueous hydrochloric acid solution used, but it is usually in the range of 1 to 10 mol / l. The liquid temperature at the time of immersion is usually within the range of room temperature to 70 ° C, and the immersion time may be at least as long as the aqueous hydrochloric acid solution has entered the pores of the activated carbon, usually 1 to 10 hours. Within the range of. Next, the activated carbon pulled up from the hydrochloric acid aqueous solution
After the liquid adhering to the surface is dried, it is heated in an electric furnace or a reactor. The heating temperature is usually in the range of 300 to 700 ° C., and preferably set to a temperature 50 to 100 ° C. higher than the reaction temperature of the dehydrochlorination reaction of 1,2-dichloropropane described later. The heating time may be at least as long as the adsorbed hydrogen chloride gas, water vapor, decomposed gas and the like are completely desorbed, and is usually in the range of 1 to 20 hours. The atmosphere during heating may be air or an inert gas such as nitrogen or helium, and these gases are usually used by flowing them.

【0011】次に、気相法における塩化水素ガスの濃度
は、特に限定されるものではなく、通常は20〜100
体積%の範囲内で用いられる。また、塩化水素ガスの希
釈には、空気あるいは窒素、ヘリウムなどの不活性ガス
が使用できる。加熱温度は、通常300〜700℃の範
囲内であり、好ましくは1,2−ジクロルプロパンの脱
塩化水素反応の反応温度より50〜100℃高い温度で
ある。また、加熱時間は、活性炭と塩化水素ガスとが吸
着平衡に達する程度以上であれば良く、通常は、1〜1
0時間の範囲内で行なう。
Next, the concentration of hydrogen chloride gas in the vapor phase method is not particularly limited and is usually 20 to 100.
Used within the range of volume%. Further, for diluting the hydrogen chloride gas, air or an inert gas such as nitrogen or helium can be used. The heating temperature is usually in the range of 300 to 700 ° C, preferably 50 to 100 ° C higher than the reaction temperature of the dehydrochlorination reaction of 1,2-dichloropropane. The heating time may be at least as long as the activated carbon and hydrogen chloride gas reach the adsorption equilibrium, and usually 1 to 1
Perform within 0 hours.

【0012】本発明は、上記塩化水素の存在下で加熱処
理された活性炭の存在下に、1,2−ジクロルプロパン
の脱塩化水素反応を行なう。該脱塩化水素反応の反応温
度は、好ましくは100〜500℃の範囲、さらに好ま
しくは200〜500℃の範囲で行なうのが良い。ま
た、圧力は、好ましくは0.5〜10気圧の範囲であ
り、さらに好ましくは0.5〜5気圧の範囲である。
In the present invention, the dehydrochlorination reaction of 1,2-dichloropropane is carried out in the presence of activated carbon heat-treated in the presence of hydrogen chloride. The reaction temperature for the dehydrochlorination reaction is preferably 100 to 500 ° C, more preferably 200 to 500 ° C. Further, the pressure is preferably in the range of 0.5 to 10 atm, more preferably 0.5 to 5 atm.

【0013】尚、反応の形式は、特に制限されるもので
はなく回分式あるいは連続式のいずれでも良いが、工業
的には連続式で行うのが好ましい。本発明を連続式で行
う場合、空間速度SV(1,2−ジクロルプロパン供給
量/活性炭充填量)は、通常100〜500000hr
-1で行なわれる。尚、活性炭の使用方法は、固定床式及
び流動床式のいずれでも良い。
The reaction system is not particularly limited and may be either a batch system or a continuous system, but industrially it is preferably a continuous system. When the present invention is carried out continuously, the space velocity SV (1,2-dichloropropane supply amount / activated carbon filling amount) is usually 100 to 500,000 hr.
-1 done. The activated carbon may be used in either a fixed bed type or a fluidized bed type.

【0014】塩化水素存在下での加熱処理をしない活性
炭を使用して本反応を行うと、1−クロルプロペン、2
−クロルプロペンなどの生成が増大し、アリルクロライ
ドの選択率が低下する。このことにより、本発明におけ
る活性炭の塩化水素存在下での加熱処理は、アリルクロ
ライドの選択率の向上に寄与するものと考えられる。
When this reaction is carried out using activated carbon which is not heat-treated in the presence of hydrogen chloride, 1-chloropropene, 2
-Increased production of chlorpropene and the like and reduced selectivity for allyl chloride. From this, it is considered that the heat treatment of the activated carbon in the present invention in the presence of hydrogen chloride contributes to the improvement of the selectivity of allyl chloride.

【0015】以上の説明より理解されるように、本発明
によれば、1,2−ジクロルプロパンよりアリルクロラ
イドを高い転化率で、かつ高い選択率で製造することが
できる。また、炭素質が生成し、反応管などが閉塞する
こともない。さらに、副生物である1,2−ジクロルプ
ロパンを有効に利用することが可能である。
As can be understood from the above description, according to the present invention, allyl chloride can be produced at a higher conversion rate and a higher selectivity than 1,2-dichloropropane. In addition, carbonaceous substances are not generated and the reaction tube is not blocked. Further, 1,2-dichloropropane, which is a by-product, can be effectively used.

【0016】[0016]

【実施例】以下、本発明を更に具体的に説明するため実
施例を挙げるが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Examples will be given below to describe the present invention more specifically, but the present invention is not limited to these examples.

【0017】実施例1細孔容積が0.8cm3 /gで比
表面積が980m2 /gの粒状活性炭(植物系)20g
を、濃度5mol/lの塩酸水溶液500mlに入れ
て、室温下で6時間攪拌し、活性炭を取り出して120
℃で乾燥させた。活性炭表面に付着した液を乾燥後、活
性炭5gをガラス製反応管(φ=20mm)に入れ、窒
素ガスを流通させながら、表1における1,2−ジクロ
ルプロパンの脱塩化水素反応の反応温度より100℃高
い温度で5時間加熱した。その後、反応温度まで降温
し、反応に供した。反応は、固定床常圧流通装置を使用
し、1,2−ジクロルプロパン30mlをマイクロ定量
ポンプにより0.5ml/分の速度で気化器に送り、ガ
ス化して反応管内へ導入した。反応温度は、200〜4
00℃の範囲で変えた。反応混合物はドライアイス−メ
タノールで冷却し捕集し、PEG・20Mキャピラリー
カラムを備えたFID型ガスクロマトグラフにより分析
した。1,2−ジクロルプロパンの転化率およびアリル
クロライドの選択率は、次式により算出した。 未反応PDC重量 転化率(%)=(1−───────────)×100 PDC供給重量 (ただし、PDCは1,2−ジクロルプロパンを表わす。) アリルクロライド重量 選択率(%)=────────────── ×100 生 成 物 重 量 結果は、表1にまとめて示す。
Example 1 20 g of granular activated carbon (plant-based) having a pore volume of 0.8 cm 3 / g and a specific surface area of 980 m 2 / g
Was added to 500 ml of a hydrochloric acid aqueous solution having a concentration of 5 mol / l, and the mixture was stirred at room temperature for 6 hours.
It was dried at ° C. After drying the liquid adhering to the activated carbon surface, 5 g of activated carbon was put into a glass reaction tube (φ = 20 mm), and the reaction temperature of the dehydrochlorination reaction of 1,2-dichloropropane in Table 1 was carried out while circulating nitrogen gas. Heated at 100 ° C higher for 5 hours. Then, the temperature was lowered to the reaction temperature and the reaction was performed. The reaction was carried out by using a fixed bed atmospheric pressure distribution apparatus, and 30 ml of 1,2-dichloropropane was sent to a vaporizer at a rate of 0.5 ml / min by a micro quantitative pump, gasified and introduced into a reaction tube. The reaction temperature is 200 to 4
The temperature was changed in the range of 00 ° C. The reaction mixture was cooled with dry ice-methanol, collected, and analyzed by an FID gas chromatograph equipped with a PEG-20M capillary column. The conversion of 1,2-dichloropropane and the selectivity of allyl chloride were calculated by the following formulas. Unreacted PDC weight Conversion rate (%) = (1 ------------)-100 PDC supply weight (however, PDC represents 1,2-dichloropropane) Allyl chloride weight selection Rate (%) = ────────────── × 100 Product weight results are summarized in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】比較例1 反応管に活性炭を充填しないで、無触媒反応を行なっ
た。反応操作は、実施例1と同様にした。結果は、表2
に示した。
Comparative Example 1 A non-catalytic reaction was carried out without filling the reaction tube with activated carbon. The reaction procedure was the same as in Example 1. The results are shown in Table 2.
It was shown to.

【0020】[0020]

【表2】 [Table 2]

【0021】比較例2 実施例1における塩酸水溶液に代えて、硝酸水溶液(濃
度は約5mol/l)および硫酸水溶液(濃度は約3m
ol/l)を使用した。その他の操作は、全て実施例1
と同様にして行なった。また、鉱酸水溶液による処理を
行なわずに、活性炭をそのまま用いる反応についても、
行なった。それぞれの結果は、表3にまとめて示した。
Comparative Example 2 Instead of the aqueous hydrochloric acid solution used in Example 1, an aqueous nitric acid solution (concentration: about 5 mol / l) and an aqueous sulfuric acid solution (concentration: about 3 m)
ol / l) was used. All other operations are in Example 1.
Was performed in the same manner as described above. Also, for the reaction using activated carbon as it is, without performing treatment with a mineral acid aqueous solution,
I did. The respective results are summarized in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】実施例2 実施例1の活性炭(植物系)を、細孔容積が0.6cm
3 /gで比表面積が850m2 /gの破砕活性炭(石炭
系)に変え、気相法で塩化水素処理を行なった。つま
り、破砕活性炭5gを反応管に充填し、窒素で希釈した
塩化水素ガス(30体積%)を流通させて、表4におけ
る1,2−ジクロルプロパンの脱塩化水素反応の反応温
度より100℃高い温度で10時間の加熱処理をした。
その後、反応温度まで降温し、反応に供した。反応操作
は、実施例1と同様にした。結果は、まとめて表4に示
した。
Example 2 The activated carbon of Example 1 (plant type) was used, and the pore volume was 0.6 cm.
The crushed activated carbon (coal-based) having a specific surface area of 3 / g and a specific surface area of 850 m 2 / g was replaced with hydrogen chloride treatment by a gas phase method. That is, 5 g of crushed activated carbon was charged into a reaction tube, hydrogen chloride gas diluted with nitrogen (30% by volume) was circulated, and the reaction temperature of the dehydrochlorination reaction of 1,2-dichloropropane in Table 4 was 100 ° C. Heat treatment was performed at a high temperature for 10 hours.
Then, the temperature was lowered to the reaction temperature and the reaction was performed. The reaction procedure was the same as in Example 1. The results are summarized in Table 4.

【0024】[0024]

【表4】 [Table 4]

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩化水素の存在下で加熱処理された活性炭
の存在下において、1,2−ジクロルプロパンを加熱す
ることを特徴とするアリルクロライドの製造方法。
1. A process for producing allyl chloride, which comprises heating 1,2-dichloropropane in the presence of activated carbon heat- treated in the presence of hydrogen chloride.
JP2413782A 1990-12-25 1990-12-25 Method for producing allyl chloride Expired - Fee Related JP2512637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413782A JP2512637B2 (en) 1990-12-25 1990-12-25 Method for producing allyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413782A JP2512637B2 (en) 1990-12-25 1990-12-25 Method for producing allyl chloride

Publications (2)

Publication Number Publication Date
JPH04224531A JPH04224531A (en) 1992-08-13
JP2512637B2 true JP2512637B2 (en) 1996-07-03

Family

ID=18522352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413782A Expired - Fee Related JP2512637B2 (en) 1990-12-25 1990-12-25 Method for producing allyl chloride

Country Status (1)

Country Link
JP (1) JP2512637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884254B2 (en) * 2007-08-08 2011-02-08 Honeywell International Inc. Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts

Also Published As

Publication number Publication date
JPH04224531A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
EP0344494B1 (en) Process for production of 1,1,1-trifluoro-2,2-dichloroethane
JP3818398B2 (en) Process for producing 1,1,1,3,3-pentafluoropropane
JP4746544B2 (en) Production of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) at low temperature
EP0408005A1 (en) Process for preparing 1,1,1,2-tetrafluoroethane
EP0346612A1 (en) Process for production of 1,1,1-trifluoro-2,2-dichloroethane
JPH02258610A (en) Production of hydrogen peroxide
NO161136B (en) Locking mandrel.
US6291729B1 (en) Halofluorocarbon hydrogenolysis
KR100618465B1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
JP2512637B2 (en) Method for producing allyl chloride
JP3516324B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
JP2006500216A (en) Catalysts for the catalytic oxidation of hydrogen chloride
US5302765A (en) Catalytic process for producing CF3 CHClF
EP0537760A2 (en) Process for purifying 1,1,1-trifluoro-2,2-dichloroethane from isomer 1,1,2-trifluoro-1,2-dichloroethane
JPH09169672A (en) Production of pentafluoroethane
JPH0149334B2 (en)
US3592840A (en) Production of vinyl acetate
US2399361A (en) Manufacture of cyanogen
JPH021813B2 (en)
WO1995013256A1 (en) Process for producing 1,1,1,3,3-pentafluoropropane
US5602288A (en) Catalytic process for producing CF3 CH2 F
JP4666728B2 (en) Method for purifying pentafluoroethane from chloropentafluoroethane
JP4245482B2 (en) Method for producing isopropyl chloride
US3059034A (en) Process of hydrohalogenation of acetylene
JPH0251533B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees