JP2512290B2 - Liquid crystal element driving method - Google Patents

Liquid crystal element driving method

Info

Publication number
JP2512290B2
JP2512290B2 JP6158353A JP15835394A JP2512290B2 JP 2512290 B2 JP2512290 B2 JP 2512290B2 JP 6158353 A JP6158353 A JP 6158353A JP 15835394 A JP15835394 A JP 15835394A JP 2512290 B2 JP2512290 B2 JP 2512290B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
pulse
crystal element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6158353A
Other languages
Japanese (ja)
Other versions
JPH0756144A (en
Inventor
慶治 長江
正人 磯貝
英昭 川上
文雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6158353A priority Critical patent/JP2512290B2/en
Publication of JPH0756144A publication Critical patent/JPH0756144A/en
Application granted granted Critical
Publication of JP2512290B2 publication Critical patent/JP2512290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶素子の駆動方法に係
り、特に強誘電性液晶を用いる液晶素子の駆動方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a liquid crystal element , and more particularly to a method of driving a liquid crystal element using a ferroelectric liquid crystal.

【0002】[0002]

【従来の技術】強誘電性液晶として、例えば、表1に示
す様なカイラルスメクチックC相(Sm*C),カイラ
ルスメクチックH相(Sm*H)を呈する液晶等が知ら
れている。
2. Description of the Related Art As ferroelectric liquid crystals, for example, liquid crystals exhibiting a chiral smectic C phase (Sm * C) and a chiral smectic H phase (Sm * H) as shown in Table 1 are known.

【0003】[0003]

【表1】 [Table 1]

【0004】これ等の強誘導性液晶分子の印加電界に対
する状態を図1に示す。
FIG. 1 shows the state of these strongly inductive liquid crystal molecules against an applied electric field.

【0005】図1(b)に示す様に、電界Eを印加しな
い場合、強誘電性液晶分子1は、軸2に対してθ(例え
ば、DOBAMBC では、20〜25度である)の角度を有し
て螺旋状2に配向する。
As shown in FIG. 1B, when the electric field E is not applied, the ferroelectric liquid crystal molecule 1 has an angle of θ (for example, 20 to 25 degrees in DOBAMBC) with respect to the axis 2. Helical orientation.

【0006】このように配向した強誘電性液晶分子1に
しきい値電界Ec以上の電界Eを印加すると、図1
(a)に示す様に、強誘電性液晶分子1は、電界Eの方
向と垂直な平面上に螺旋軸2に対してθの角度を有して
配向する。また、図1(a)の電界Eの極性を反転させ
ると、図1(c)に示す様に、強誘電性液晶分子1は電
界Eの方向と垂直な平面上に螺旋軸2に対してθの角度
を有して配向する。
When an electric field E equal to or higher than the threshold electric field Ec is applied to the ferroelectric liquid crystal molecules 1 thus oriented,
As shown in (a), the ferroelectric liquid crystal molecules 1 are oriented on a plane perpendicular to the direction of the electric field E at an angle of θ with respect to the helical axis 2. When the polarity of the electric field E in FIG. 1A is reversed, as shown in FIG. 1C, the ferroelectric liquid crystal molecules 1 are aligned with the helical axis 2 on a plane perpendicular to the direction of the electric field E. It is oriented with an angle of θ.

【0007】この現象は非常に高速であることが特徴
で、十分な大きさの電界を印加すればμsオーダのパル
ス幅を持つ電圧パルスに応答することが知られており、
画素数が多くなる大型ディスプレイ,光シャッタ,偏光
器等への適用が期待されている。
This phenomenon is characterized by a very high speed, and it is known that if a sufficiently large electric field is applied, it responds to a voltage pulse having a pulse width on the order of μs.
It is expected to be applied to large displays, optical shutters, polarizers, etc. in which the number of pixels increases.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来、
印加電圧と光透過状態との関係が明らかにされず、強誘
電性液晶を具体的にどのような電圧を印加して駆動すれ
ば良いか明らかにされていなかった。
However, conventionally,
The relationship between the applied voltage and the light transmission state has not been clarified, and it has not been clarified what specific voltage should be applied to drive the ferroelectric liquid crystal.

【0009】また強誘電性液晶素子の明暗を維持させる
ために直流電圧をそれぞれ印加するが、印加し続けると
液晶中のイオンが電極側に引きよせられ、電極又は液晶
自体の寿命を短くしてしまう問題があった。
In order to maintain the brightness of the ferroelectric liquid crystal element, a DC voltage is applied. If the DC voltage is continuously applied, ions in the liquid crystal are attracted to the electrode, thereby shortening the life of the electrode or the liquid crystal itself. There was a problem.

【0010】本発明の目的は上記欠点を除去し、本発明
者等が見い出した印加電圧と強誘電性液晶の光透過状態
との関係から、強誘電性液晶の劣化を防ぎ、かつ、所望
の光透過状態を高速で得ることができる液晶素子の駆動
方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, prevent the deterioration of the ferroelectric liquid crystal, and prevent the deterioration of the ferroelectric liquid crystal from the relationship between the applied voltage and the light transmission state of the ferroelectric liquid crystal found by the present inventors. Driving a liquid crystal element that can obtain a light transmission state at high speed
To provide a method .

【0011】[0011]

【課題を解決するための手段】上記目的を達成する本発
明の特徴とするところは、液晶の光透過特性のしきい値
電圧より大きい第1のパルス電圧と、このパルス電圧の
印加の直前に印加される、この電圧パルスと波高値が等
しく極性が異なる第2のパルス電圧からなる一対のパル
ス電圧を印加することにより上記液晶の第1の光透過状
態を確立維持し、この一対のパルス電圧の極性を反転し
た第3及び第4のパルス電圧からなる他の一対のパルス
電圧を印加することにより上記液晶の第2光透過状態を
確立維持するようにしたことにある。
The feature of the present invention that achieves the above-mentioned object is that the threshold value of the light transmission characteristic of liquid crystal is
The first pulse voltage greater than the voltage and this pulse voltage
Immediately before the voltage is applied, this voltage pulse is equal to the peak value.
A pair of pulses consisting of a second pulse voltage with extremely different polarities.
By applying a scanning voltage to the first light transmitting state of the liquid crystal.
State is established and the polarity of this pair of pulse voltages is reversed.
Another pair of pulses consisting of third and fourth pulse voltages
By applying a voltage, the second light transmission state of the liquid crystal is changed.
I tried to maintain it .

【0012】[0012]

【作用】波高値が等しく極性が異なる一対のパルス電圧
を印加することによって一方の光透過状態を確立維持
し、この一対のパルス電圧の極性を反転した他方の一対
のパルス電圧を印加することによって他方の光透過状態
を確立維持できる。更に、これらの一対のパルス電圧に
より、直流成分が低減でき、電極又は液晶の電気化学反
応による劣化を防止できる。
[Operation] A pair of pulse voltages having the same peak value but different polarities
One of the light transmission states is established and maintained by applying
Then, the other pair with the polarity of this pair of pulse voltages reversed
The other light transmission state by applying the pulse voltage of
Can be established and maintained. Furthermore, these paired pulse voltage
As a result, the direct current component can be reduced, and deterioration of the electrode or liquid crystal due to an electrochemical reaction can be prevented.

【0013】[0013]

【実施例】本発明は、本発明者等が実験的に見い出した
以下に述べる実験事実に基づくものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the following experimental facts that the present inventors have found experimentally.

【0014】図2に示す様に、ガラス,プラスチック等
の一対の基板121,122の対向面に厚さ500〜1
000ÅのLn23,SnO2 、及びこれらの混合物等
から成る表示電極11を設け、さらに厚さ100〜10
00Åの有機樹脂、SlO2等の配向膜14を必要に応
じて設け、基板121,122のギャップ(約10μ
m)間に、強誘電性液晶であるDOBAMBC10を73〜9
3℃で挾持する。尚、15にDOBAMBC10 を封入するた
めの封止剤である。このとき、強誘電性液晶分子の螺旋
軸2が、基板121,122に略平行になるように配向
膜14を配向する。さらに、基板121,122の表示
電極11が設けられていない面に偏光板131,132
を隣接させる。
As shown in FIG. 2, a pair of substrates 121 and 122 made of glass, plastic, etc.
A display electrode 11 made of 000 Å Ln 2 O 3 , SnO 2 , and a mixture thereof is provided, and the thickness is 100 to 10
If necessary, an alignment film 14 of organic resin, SIO 2, or the like, having a thickness of about 100 μm, is provided.
m), DOBAMBC10, which is a ferroelectric liquid crystal, is placed between 73 and 9
Hold at 3 ° C. Incidentally, a sealing agent for enclosing DOBAMBC10 in 15 is used. At this time, the alignment film 14 is oriented so that the helical axis 2 of the ferroelectric liquid crystal molecules is substantially parallel to the substrates 121 and 122. Further, the polarizing plates 131 and 132 are formed on the surfaces of the substrates 121 and 122 on which the display electrodes 11 are not provided.
Are adjacent.

【0015】このとき、図3に示す様に偏光板131の
偏光軸方向31と偏光板132の偏光軸方向32とを略
直交させ、さらに一方の偏光軸の偏光軸方向を、強誘電
性液晶10のしきい値電界|Ec|以上の電界を印加し
たときの強誘電性液晶分子1の配向方向と略一致させ
る。図3では、偏光板131の偏光軸方向31を、紙面
の手前から紙面を貫く方向に電界を印加したときの螺旋
軸2の方向と一致させている。尚、以後、この方向の電
界を負の符号をつけて−Eと表わし、さらに、図2に示
す構造の液晶素子を例にとって説明するが、本発明はこ
れに限定されるものではない。例えば、図2において、
偏光板132の代わりに反射板を基板122に隣接させ、
強誘電性液晶10に二色性色素を混入したものを使用し
た場合にも適用できる。この場合、螺旋軸2に対する強
誘電性液晶分子の角度θは45度が最適となる。
At this time, as shown in FIG. 3, the polarization axis direction 31 of the polarizing plate 131 and the polarization axis direction 32 of the polarizing plate 132 are made substantially orthogonal, and the polarization axis direction of one of the polarization axes is changed to the ferroelectric liquid crystal. The orientation direction of the ferroelectric liquid crystal molecules 1 when an electric field of 10 or more threshold electric field | Ec | In FIG. 3, the polarization axis direction 31 of the polarizing plate 131 is made to coincide with the direction of the spiral axis 2 when an electric field is applied from the front side of the paper surface to the direction penetrating the paper surface. Hereinafter, the electric field in this direction is represented by -E with a negative sign, and the liquid crystal element having the structure shown in FIG. 2 will be described as an example. However, the present invention is not limited to this. For example, in FIG.
A reflecting plate is arranged adjacent to the substrate 122 instead of the polarizing plate 132,
The present invention can be applied to a case where a ferroelectric liquid crystal 10 mixed with a dichroic dye is used. In this case, the angle θ of the ferroelectric liquid crystal molecules with respect to the helical axis 2 is optimally 45 degrees.

【0016】図3(a)は−Eの電界を印加した場合を
示しており、このとき紙面手前から人射した光(自然
光)は、上側偏光板131により偏光軸方向31に偏光
され、強誘電性液晶分子1の長軸方向にのみ振動成分を
もつ直線偏光となり、長軸方向の屈折率nに従って直線
偏光のまま液晶層10を通過する。
FIG. 3A shows the case where an electric field of -E is applied, and at this time, the light (natural light) emitted from the front side of the paper surface is polarized in the polarization axis direction 31 by the upper polarizing plate 131, and is intense. It becomes linearly polarized light having a vibration component only in the major axis direction of the dielectric liquid crystal molecule 1, and passes through the liquid crystal layer 10 as linearly polarized light according to the refractive index n in the major axis direction.

【0017】その後、下側偏光板132に入射するが、
この偏光板132の偏光軸方向32と偏光板131の偏
光軸方向31は垂直であるから、光は遮断され、表示素
子では暗く見える。
Thereafter, the light enters the lower polarizing plate 132,
Since the polarization axis direction 32 of the polarizing plate 132 is perpendicular to the polarization axis direction 31 of the polarizing plate 131, light is blocked and the display element looks dark.

【0018】なお、図3(b)は+Eを印加した場合を
示しており、このとき強誘電性液晶分子1の長軸は、上
下の偏光板131,132の偏光軸31,32のどちら
とも一致しない方向を向いている。この場合、上側偏光
板131により直線偏光となった光のうち、強誘電性液
晶分子1の長軸方向の成分は、長軸方向の屈折率n,短
軸方向の成分は短軸方向の屈折率n⊥に従って液晶層1
0を通過するので、液晶層10を出た光は、だ円偏光と
なる。しがたって、下側偏光板132を透過する光成分
を有するため、表示素子では明るく見える。
FIG. 3B shows a case where + E is applied. At this time, the major axis of the ferroelectric liquid crystal molecule 1 is set to be the same as the polarization axes 31 and 32 of the upper and lower polarizers 131 and 132. They are not in the same direction. In this case, of the light linearly polarized by the upper polarization plate 131, the component in the major axis direction of the ferroelectric liquid crystal molecule 1 is the refractive index n in the major axis direction, and the component in the minor axis direction is the refractive index in the minor axis direction. Liquid crystal layer 1 according to the rate n⊥
Since the light passes through 0, the light exiting the liquid crystal layer 10 becomes elliptical polarized light. Therefore, since it has a light component that passes through the lower polarizing plate 132, it looks bright on the display element.

【0019】このようにして、+E,−Eの印加により
明暗の切替えができ、表示素子,光シャッタ,偏光素子
として機能し得る。なお電界が印加されない場合は、両
者のほぼ中間の明るさになっている。また本現象をここ
では、強誘電性液晶の電気光学効果と呼ぶことにする。
In this way, switching between light and dark can be performed by applying + E and -E, and can function as a display element, an optical shutter, and a polarizing element. When no electric field is applied, the brightness is almost intermediate between the two. This phenomenon will be referred to herein as the electro-optic effect of the ferroelectric liquid crystal.

【0020】この電気光学効果をくわしく調べた結果、
図4に示すような特性を持つことが明らかになった。
As a result of closely examining the electro-optic effect,
It has become clear that it has characteristics as shown in FIG.

【0021】すなわち、強誘電性液晶に加わる印加電圧
LCを零から上昇させると明るさBは増加して行き、し
きい値電圧+VC を超えると明るさBは一定値になる。
同様にして印加電圧VLCを負の方向に増加すると、明る
さBは減少し、しきい値電圧−VC を超えると飽和す
る。
That is, when the applied voltage V LC applied to the ferroelectric liquid crystal is increased from zero, the brightness B increases, and when the applied voltage V LC exceeds the threshold voltage + V C , the brightness B becomes a constant value.
Increasing the applied voltage V LC in the negative direction in the same manner, the brightness B is reduced, saturation exceeds the threshold voltage -V C.

【0022】次に、パルス電圧VP に対する対応を調べ
るため、図5に示すようなしきい値電圧VC より大きな
波高値を持つ正の電圧パルスVP を強誘電性液晶に印加
したところ、同図に示した通り、パルス電圧VP 印加に
従い急激に明るさBが増加し、立上り時間t1 が短い
が、パルス電圧VP 印加後の復帰時間t2 は図示したよ
うに長いことがわかった。
Next, in order to investigate the correspondence to the pulse voltage V P , a positive voltage pulse V P having a peak value larger than the threshold voltage V C as shown in FIG. 5 was applied to the ferroelectric liquid crystal. As shown in the figure, it was found that the brightness B rapidly increased as the pulse voltage V P was applied and the rise time t 1 was short, but the recovery time t 2 after the pulse voltage V P was applied was long as shown. .

【0023】例えば本発明者等が波高値がしきい値電圧
(5〜10V)より大きいパルス電圧VP(パルス幅t0
=500μs)を強誘電性液晶に印加したところ、t1
=120μs,t2=8ms であることを確認した。
For example, the present inventors have determined that a pulse voltage V P (pulse width t 0 ) having a peak value larger than a threshold voltage (5 to 10 V).
= 500μs) was applied to the ferroelectric liquid crystal, t 1
= 120 μs and t 2 = 8 ms.

【0024】また負のパルス電圧−VP に対する応答も
図6に示したように、パルス電圧印加による応答にくら
べ電圧除去時の応答は遅く、復帰時間が長いことがわか
った。
[0024] As shown in respond 6 for negative pulse voltage -V P, slow response at voltages removal than the response due to the pulse voltage application, recovery time is found longer.

【0025】また、図7に示すようなパルス電圧列を印
加するとき、同図のような正のパルス電圧列、図8のよ
うな負のパルス電圧列により、平均的な明るさに大きな
差異が生じ、明暗の二値の光透過状態の設定が可能であ
る。
When a pulse voltage train as shown in FIG. 7 is applied, a large difference in average brightness is caused by a positive pulse voltage train as shown in FIG. 7 and a negative pulse voltage train as shown in FIG. Is generated, and it is possible to set a binary light transmission state of light and dark.

【0026】このような、方法により良好な表示を得る
には、表示のチラツキ(フリッカ)をなくすための強誘
電性液晶に印加するパルス電圧のくり返し周期を少なく
とも30ms以下にしなければならない。
In order to obtain a good display by such a method, the repetition period of the pulse voltage applied to the ferroelectric liquid crystal in order to eliminate display flicker must be at least 30 ms or less.

【0027】しかしながら、このような駆動方法では、
表示部が、明るい表示時間と暗い表示時間が等しくない
かぎり、強誘電性液晶に印加される電圧VLCに直流成分
が存在する。
However, in such a driving method,
As long as the display unit does not equal the bright display time and the dark display time, a DC component exists in the voltage VLC applied to the ferroelectric liquid crystal.

【0028】極端な例では、常に明るい表示状態のセグ
メントでは常に正の直流成分が印加され、常に暗い表示
状態のセグメントは常に負の直流成分が印加されている
ことになる。
In an extreme example, a positive DC component is always applied to a segment that is always in a bright display state, and a negative DC component is always applied to a segment that is always in a dark display state.

【0029】液晶素子では、駆動中に直流成分が印加さ
れると電気化学反応により素子の劣化が促進され寿命低
下をきたすことがよく知られており、図7及び図8に示
した方法は劣化の点で重大な欠点を持っている。
It is well known that, when a DC component is applied during driving of a liquid crystal device, the deterioration of the device is accelerated due to an electrochemical reaction and the life is shortened. The method shown in FIGS. It has significant drawbacks in terms of:

【0030】図9及び図10は本発明の第1の実施例を
示す駆動波形であり、図7及び図8に示したパルス電圧
P 直前に、逆極性,同じパルス幅,波高値を持つパル
ス電圧−VPを印加する。
[0030] FIGS. 9 and 10 is a driving waveform illustrating a first embodiment of the present invention, the pulse voltage V P immediately before as shown in FIGS. 7 and 8, have opposite polarities, the same pulse width, the peak value applying a pulse voltage -V P.

【0031】図9は、入射光が透過する状態すなわち表
示素子では明るい表示をする場合の強誘電性液晶に印加
する電圧VLCと、図2に示す液晶素子の光透過状態(明
るさB)との関係を示す図であり、図10は、人射光が
遮断される状態すなわち表示素子では暗い表示をする場
合印加電圧VLCと明るさBとの関係を示す図である。図
9に於いて、時刻t0で波高値−VP(5V〜20V),
パルス幅T1(500μs〜100μs)の負のパルス電
圧が印加されると、一旦暗くなるが、時刻t0 で波高値
P ,パルス幅T1 の正のパルス電圧が印加されると、
急激に明るくなり、時刻t2 で印加電圧が零になると、
明るさが徐々に低下する。この動作をフリッカが生じな
い様な所定周期T(1ms〜30ms)で繰り返すこと
により、平均的な明るさを十分大きくすることができ
る。このように所定周期内に2つ以上のパルスを連続し
て印加する場合には、しきい値電圧Vcより大きな波高
値を持つ最後のパルスによって光の透過状態が規定され
る。
FIG. 9 shows the voltage V LC applied to the ferroelectric liquid crystal in a state where the incident light is transmitted, that is, when the display element displays a bright image, and the light transmission state (brightness B) of the liquid crystal element shown in FIG. FIG. 10 is a diagram showing the relationship between the applied voltage V LC and the brightness B in the case where the incident light is cut off, that is, when the display element displays a dark image. In FIG. 9, the peak value −V P (5V to 20V) at time t 0 ,
When a negative pulse voltage of the pulse width T 1 (500μs~100μs) is applied, but once darker, the peak value V P at time t 0, a positive pulse voltage of the pulse width T 1 is applied,
Suddenly bright, when the applied voltage at the time t 2 is zero,
Brightness gradually decreases. By repeating this operation at a predetermined period T (1 ms to 30 ms) such that flicker does not occur, the average brightness can be sufficiently increased. Thus, when two or more pulses are continuously applied within the predetermined period, the light transmission state is defined by the last pulse having a peak value higher than the threshold voltage Vc.

【0032】このとき、光透過状態を定めるパルス電圧
P とは、逆極性でかつ絶対値が等しいパルス電圧を所
定周期内Tに強誘電性液晶に印加するので、強誘電性液
晶に印加される電圧の平均値は零となり直流成分が全く
存在せず、前述の電気化学反応に起因する強誘電性液晶
の劣化は生じない。
At this time, the pulse voltage V P that determines the light transmission state is applied to the ferroelectric liquid crystal because a pulse voltage having the opposite polarity and the same absolute value is applied to the ferroelectric liquid crystal within a predetermined period T. The average value of the applied voltage is zero, and there is no DC component at all, so that the ferroelectric liquid crystal does not deteriorate due to the above-mentioned electrochemical reaction.

【0033】さらに、本実施例に於いては、光透過状態
を定めるパルス電圧VP を印加する直前に、パルス幅及
び波高値の絶対値が等しくかつ逆極性のパルス電圧−V
P を印加するので、図10に示す様にパルス電圧の極性
を反転させるだけで、入射光が遮断される状態が得られ
る。
Further, in this embodiment, immediately before the pulse voltage V P that determines the light transmission state is applied, the pulse voltage −V having the same absolute value of the pulse width and the peak value and the reverse polarity is used.
Since P is applied, a state in which incident light is blocked can be obtained only by inverting the polarity of the pulse voltage as shown in FIG.

【0034】図11は図9及び図10に示す様な駆動波
形を実現する具体的な回路の一例である。
FIG. 11 shows an example of a concrete circuit for realizing the driving waveforms shown in FIGS. 9 and 10.

【0035】図11において、81は排他的オアゲー
ト、82はインバータ、83,84はアンドゲート、Q
1,Q2,Q3,Q4はスイッチング用トランジスタ、R
1,R2,R3は抵抗、A,B,Cは入力端子、Eは出
力端子であり、LCは出力端子に接続される液晶素子で
ある。
In FIG. 11, 81 is an exclusive OR gate, 82 is an inverter, 83 and 84 are AND gates,
1 , Q 2 , Q 3 , Q 4 are switching transistors, R
1, R2 and R3 are resistors, A, B and C are input terminals, E is an output terminal, and LC is a liquid crystal element connected to the output terminal.

【0036】図11の回路の各信号のタイミングは、表
2に示す通りであり、それぞれの信号波形を図12に示
す。
The timing of each signal in the circuit of FIG. 11 is as shown in Table 2, and the respective signal waveforms are shown in FIG.

【0037】Aはパルス幅を定める信号、Bはパルス電
圧を出すタイミングを定める信号、Cは出力電圧Eの位
相を定める信号で、Cを制御することによって、光透過
状態を定めることができる。
A is a signal that determines the pulse width, B is a signal that determines the timing of outputting the pulse voltage, and C is a signal that determines the phase of the output voltage E. By controlling C, the light transmission state can be determined.

【0038】なお、図9及び図10の実施例では、光透
過状態を定めるパルス電圧VP とは逆極性でかつ絶対値
が等しいパルス電圧を液晶に印加したが、絶対値が必ず
しも等しい必要はない。すなわち、直流成分が少しでも
減少しさえすれば、本発明の効果をかなり得ることがで
きるので、本発明では単に逆極性の電圧を印加しさえす
ればよい。以下の実施例においても同様である。
[0038] In the embodiment of FIGS. 9 and 10, the pulse voltage V P which defines the light transmission state is a pulse voltage and the absolute value opposite polarities are equal and applied to the liquid crystal, the absolute value must always equal Absent. That is, as long as the DC component is reduced even a little, the effect of the present invention can be considerably obtained. Therefore, in the present invention, it is only necessary to apply a voltage of the opposite polarity. The same applies to the following examples.

【0039】[0039]

【表2】 [Table 2]

【0040】図13及び図14は本発明の第2の実施例
を示す駆動波形であり、図13が明るい表示をする場
合、図14が暗い表示をする場合をそれぞれ示す。
FIGS. 13 and 14 show driving waveforms according to the second embodiment of the present invention. FIG. 13 shows a case where bright display is performed, and FIG. 14 shows a case where dark display is performed.

【0041】図9及び図10の第1の実施例と異なるこ
とは、強誘電性液晶に印加される電圧の直流成分を零に
するために新たに設けた逆方向パルス電圧のパルス高さ
P1をしきい値電圧VC より小さくし、その分だけパル
ス幅を広げたものである。このとき、数1に示す様に直
流成分を零にするためには正パルスと負パルスの直流成
分S1,S2とは、互いに極性が反対で絶対値を等しくす
る。
The difference from the first embodiment shown in FIGS. 9 and 10 is that the pulse height V of the reverse pulse voltage newly provided to make the DC component of the voltage applied to the ferroelectric liquid crystal zero. P1 is made smaller than the threshold voltage V C and the pulse width is widened accordingly. At this time, in order to make the direct current component zero as shown in Expression 1, the positive and negative pulse direct current components S 1 and S 2 have opposite polarities and equal absolute values.

【0042】 S1=−S2 …(数1) 本実施例に於いても、強誘電性液晶に印加される電圧の
平均値は零となり、直流成分が全く存在しないので、強
誘電性液晶の劣化が生じなく、かつ所望の光透過状態を
高速で得ることができる。
S 1 = −S 2 (Equation 1) Also in this embodiment, the average value of the voltage applied to the ferroelectric liquid crystal is zero, and there is no DC component, so the ferroelectric liquid crystal is present. No deterioration occurs, and a desired light transmission state can be obtained at high speed.

【0043】さらに、本実施例に於いては、直流成分を
零にするためのパルス電圧の波高値が、強誘電性液晶の
しきい値電圧VC より小さいので、第1の実施例に比し
て、コントラスト比が大きくなる。
Further, in this embodiment, the peak value of the pulse voltage for making the DC component zero is smaller than the threshold voltage V C of the ferroelectric liquid crystal, so that it is higher than that in the first embodiment. Then, the contrast ratio becomes large.

【0044】図15及び図16は本発明の第3の実施例
を示す駆動波形であり、図15が明るい表示をする場
合、図16が暗い表示をする場合をそれぞれ示す。
FIGS. 15 and 16 are drive waveforms showing a third embodiment of the present invention. FIG. 15 shows a case where a bright display is made and FIG. 16 shows a case where a dark display is made.

【0045】図15及び図16に於いても、液晶素子の
光透過状態を定める第1の電圧信号であるパルス電圧の
時間積分S1と、第2の電圧信号の時間積分(S2+S3
4)との関係は、数2に示す様に、互いに極性が反対
で、絶対値は等しくなっている。
Also in FIGS. 15 and 16, the time integration S 1 of the pulse voltage, which is the first voltage signal that determines the light transmission state of the liquid crystal element, and the time integration (S 2 + S 3) of the second voltage signal. +
The relationship with S 4 ) is that the polarities are opposite to each other and the absolute values are equal, as shown in Equation 2.

【0046】 S1=−(S2+S3+S4) …(数2) 図17及び図18が本発明の第4の実施例を示す駆動波
形であり、図17が明るい表示をする場合、図18が暗
い表示をする場合をそれぞれ示す。
S 1 = − (S 2 + S 3 + S 4 ) ... (Equation 2) FIGS. 17 and 18 show drive waveforms according to the fourth embodiment of the present invention. When bright display is shown in FIG. FIG. 18 shows a case where dark display is performed.

【0047】図17及び図18に於いても、液晶素子の
光透過状態を定める第1の電圧信号であるパルス電圧の
時間積分S1と、第2の電圧信号の時間積分(S2+S3
+S4+S5+S6)との関係は、数3に示す様に、互い
に極性が反対で、絶対値は等しくなっている。
Also in FIGS. 17 and 18, the time integration S 1 of the pulse voltage, which is the first voltage signal that determines the light transmission state of the liquid crystal element, and the time integration (S 2 + S 3) of the second voltage signal.
As for the relationship with + S 4 + S 5 + S 6 ), the polarities are opposite to each other and the absolute values are equal, as shown in Formula 3.

【0048】 S1=−(S2+S3+S4+S5+S6) …(数3) 図19及び図20は本発明の第5の実施例を示す駆動波
形であり、図19が明るい表示をする場合、図20が暗
い表示をする場合をそれそれ示す。
S 1 = − (S 2 + S 3 + S 4 + S 5 + S 6 ) (Equation 3) FIGS. 19 and 20 are driving waveforms showing the fifth embodiment of the present invention. FIG. 19 shows a bright display. FIG. 20 shows a case where a dark display is made.

【0049】図19及び図20に於いても、液晶素子の
光透過状態を定める第1の電圧信号であるパルス電圧の
時間積分S1 と、第2の電圧信号の時間積分S2 との関
係は、数1に示す様に、互いに極性が反対で、絶対値は
等しくなっている。
[0049] Also in the 19 and 20, the time integral S 1 of the pulse voltage is a first voltage signal for determining the light transmission state of the liquid crystal element, the relationship between the time integral S 2 of the second voltage signal As shown in Formula 1, the polarities are opposite to each other and the absolute values are equal.

【0050】本実施例に於いても、前述の実施例と同様
な効果が得られ、さらに、光透過状態を定めるパルス電
圧が印加される期間tD が、直流成分を零にするための
パルス電圧が印加される期間tC より充分長いので、コ
ントラスト比が大きくなる。以上述べた本発明の第1〜
第5の実施例に於いては、図3に示す様に、偏光板13
1の偏光軸方向31を、電界−Eを印加したときの強誘
電性液晶分子の螺旋軸2の方向と一致させたが、電界E
を印加したときの強誘電性液晶分子の螺旋軸2の方向と
一致させても良く、この場合、第1〜第5の実施例に於
いて、明るい表示と暗い表示が逆になる。
Also in this embodiment, the same effect as that of the above-mentioned embodiment can be obtained, and the period t D in which the pulse voltage for determining the light transmission state is applied is the pulse for making the DC component zero. Since the period t C during which the voltage is applied is sufficiently long, the contrast ratio becomes large. The first to the present invention described above.
In the fifth embodiment, as shown in FIG.
1, the polarization axis direction 31 is made to coincide with the direction of the helical axis 2 of the ferroelectric liquid crystal molecules when the electric field -E is applied.
May be made to coincide with the direction of the spiral axis 2 of the ferroelectric liquid crystal molecule, in which case bright display and dark display are reversed in the first to fifth embodiments.

【0051】さらに、第1〜第5の実施例に於いては、
液晶素子の光透過状態を定めるパルス電圧が印加される
直前及び直後に、直流成分を零にする電圧信号を印加し
たが、これに限定されず、光透過状態を定めるパルス電
圧が印加される周期内であれば、いつでも良い。
Further, in the first to fifth embodiments,
Immediately before and immediately after the pulse voltage that determines the light transmission state of the liquid crystal element, a voltage signal that makes the direct current component zero is applied, but the invention is not limited to this, and the pulse voltage that determines the light transmission state is applied. As long as it is inside, it is always good.

【0052】また、本発明の実施例では、スタティック
駆動を例にとって説明したが、線順次走査,点順次走査
等のダイナミック駆動に於いても、本発明は適用でき、
さらに、DOBAMBC に限定されなく、例えば表1に示され
る他の強誘電性液晶に於いても本発明は適用できる。
In the embodiment of the present invention, the static drive has been described as an example. However, the present invention can be applied to dynamic drive such as line sequential scanning and dot sequential scanning.
Furthermore, the present invention is applicable not only to DOBAMBC but also to other ferroelectric liquid crystals shown in Table 1, for example.

【0053】[0053]

【発明の効果】以上述べた様に、本発明によれば、強誘
電性液晶の劣化を防ぎ、かつ、所望の光透過状態を高速
で得られる液晶表示装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a liquid crystal display device which can prevent the deterioration of the ferroelectric liquid crystal and can obtain a desired light transmission state at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】強誘電性液晶の印加電界に対する状態を示す
図。
FIG. 1 is a diagram showing a state of a ferroelectric liquid crystal with respect to an applied electric field.

【図2】本発明が適用できる液晶素子の一実施例を示す
断面図。
FIG. 2 is a cross-sectional view showing one embodiment of a liquid crystal element to which the present invention can be applied.

【図3】図2に於ける強誘電性液晶分子1の螺旋軸2の
方向と偏光板の偏光軸方向31,32との関係を示す
図。
3 is a diagram showing the relationship between the direction of the spiral axis 2 of the ferroelectric liquid crystal molecule 1 and the polarization axis directions 31 and 32 of the polarizing plate in FIG.

【図4】本発明が適用できる強誘電性液晶の光透過特性
の一例を示す図。
FIG. 4 is a diagram showing an example of light transmission characteristics of a ferroelectric liquid crystal to which the present invention can be applied.

【図5】本発明のパルス電圧VP に対する光透過状態の
応答を示す図。
It illustrates the response of the light transmitting state to the pulse voltage V P of the present invention; FIG.

【図6】本発明のパルス電圧VP に対する光透過状態の
応答を示す図。
It illustrates the response of the light transmitting state to the pulse voltage V P of the present invention; FIG.

【図7】パルス電圧列に対する光透過状態の応答を示す
図。
FIG. 7 is a diagram showing a response of a light transmission state to a pulse voltage train.

【図8】パルス電圧列に対する光透過状態の応答を示す
図。
FIG. 8 is a diagram showing a response of a light transmission state to a pulse voltage train.

【図9】本発明の第1の実施例における駆動波形を示す
図。
FIG. 9 is a diagram showing driving waveforms according to the first embodiment of the present invention.

【図10】本発明の第1の実施例における駆動波形を示
す図。
FIG. 10 is a diagram showing driving waveforms in the first embodiment of the present invention.

【図11】図9及び図10に示す駆動波形を実現する具
体的回路の一例を示す図。
FIG. 11 is a diagram showing an example of a specific circuit for realizing the driving waveforms shown in FIGS. 9 and 10;

【図12】図11の回路の各信号のタイミングを示す
図。
12 is a diagram showing the timing of each signal in the circuit of FIG.

【図13】本発明の第2の実施例における駆動波形を示
す図。
FIG. 13 is a diagram showing driving waveforms in a second embodiment of the present invention.

【図14】本発明の第2の実施例における駆動波形を示
す図。
FIG. 14 is a diagram showing driving waveforms in a second embodiment of the present invention.

【図15】本発明の第3の実施例における駆動波形を示
す図。
FIG. 15 is a diagram showing driving waveforms according to a third embodiment of the present invention.

【図16】本発明の第3の実施例における駆動波形を示
す図。
FIG. 16 is a diagram showing drive waveforms in the third embodiment of the present invention.

【図17】本発明の第4の実施例における駆動波形を示
す図。
FIG. 17 is a diagram showing driving waveforms in a fourth embodiment of the present invention.

【図18】本発明の第4の実施例における駆動波形を示
す図。
FIG. 18 is a diagram showing driving waveforms in a fourth embodiment of the present invention.

【図19】本発明の第5の実施例における駆動波形を示
す図。
FIG. 19 is a diagram showing driving waveforms according to a fifth embodiment of the present invention.

【図20】本発明の第5の実施例における駆動波形を示
す図。
FIG. 20 is a diagram showing driving waveforms according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…強誘電性液晶分子、11…表示電極、121,12
2…基板。
DESCRIPTION OF SYMBOLS 1 ... Ferroelectric liquid crystal molecule, 11 ... Display electrode, 121, 12
2 ... substrate.

フロントページの続き (72)発明者 中野 文雄 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭49−92948(JP,A) 特開 昭56−107216(JP,A)Front page continuation (72) Inventor Fumio Nakano 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory (56) References JP-A-49-92948 (JP, A) JP-A-56-107216 (JP) , A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対向面に電極を有する一対の基板間に強誘
電性液晶を挾持してなる液晶素子の駆動方法において、 上記液晶の光透過特性のしきい値電圧より大きい第1の
パルス電圧と、このパルス電圧の直前に印加される、こ
の電圧パルスと波高値が等しく極性が異なる第2のパル
ス電圧からなる一対のパルス電圧を印加することにより
上記液晶の第1の光透過状態を確立維持し、 上記一対のパルス電圧の極性を反転した第3及び第4の
パルス電圧からなる一対のパルス電圧を印加することに
より上記液晶の第2の光透過状態を確立維持することを
特徴とする液晶素子の駆動方法。
1. A method of forcing between a pair of substrates having electrodes on opposite surfaces.
In a method of driving a liquid crystal element sandwiching an electronic liquid crystal, the first liquid crystal display device having a first voltage larger than a threshold voltage of the light transmission characteristic of the liquid crystal is used.
The pulse voltage and the voltage applied immediately before this pulse voltage
The second pulse whose peak value is the same as that of the voltage pulse of
By applying a pair of pulse voltages consisting of
The first and second light transmitting states of the liquid crystal are established and maintained, and the polarities of the pair of pulse voltages are inverted.
In applying a pair of pulse voltage consisting of pulse voltage
To establish and maintain the second light transmission state of the liquid crystal.
Characteristic liquid crystal element driving method.
【請求項2】請求項1において、上記第1及び第3のパ
ルス電圧は上記液晶の第1及び第2の光透過状態を定
め、上記第2及び第4のパルス電圧は上記液晶に印加さ
れる電圧の直流成分を低減することを特徴とする液晶素
子の駆動方法。
2. The first and third parts according to claim 1, wherein
The loose voltage determines the first and second light transmission states of the liquid crystal.
Therefore, the second and fourth pulse voltages are applied to the liquid crystal.
Liquid crystal element characterized by reducing the DC component of the applied voltage
How to drive the child.
【請求項3】請求項1又は2において、上記第1の光透
過状態は上記液晶への入射光が透過される状態であり、
上記第2の光透過状態は上記液晶への入射光が遮断され
る状態であることを特徴とする液晶素子の駆動方法。
3. The first light transmitting device according to claim 1 or 2.
The overstate is a state in which the incident light on the liquid crystal is transmitted,
In the second light transmission state, the light incident on the liquid crystal is blocked.
A method for driving a liquid crystal element, characterized in that the liquid crystal element is in a ready state.
【請求項4】請求項1又は2において、上記第1の光透
過状態は上記液晶への入射光が遮断される状態であり、
上記第2の光透過状態は上記液晶への入射光が透過され
る状態であることを特徴とする液晶素子の駆動方法。
4. The first light transmitting device according to claim 1 or 2.
The over state is a state in which the incident light on the liquid crystal is blocked,
In the second light transmission state, the incident light on the liquid crystal is transmitted.
A method for driving a liquid crystal element, characterized in that the liquid crystal element is in a ready state.
【請求項5】請求項1,2,3又は4において、上記液
晶素子はスタティック駆動によって駆動されることを特
徴とする液晶素子の駆動方法。
5. The liquid according to claim 1, 2, 3 or 4.
The crystal elements are driven by static drive.
The driving method of the liquid crystal element.
【請求項6】請求項1,2,3又は4において、上記液
晶素子はダイナミック駆動によって駆動されることを特
徴とする液晶素子の駆動方法。
6. The liquid according to claim 1, 2, 3 or 4.
The crystal elements are driven by dynamic drive.
The driving method of the liquid crystal element.
JP6158353A 1994-07-11 1994-07-11 Liquid crystal element driving method Expired - Lifetime JP2512290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6158353A JP2512290B2 (en) 1994-07-11 1994-07-11 Liquid crystal element driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6158353A JP2512290B2 (en) 1994-07-11 1994-07-11 Liquid crystal element driving method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5082831A Division JPH0731322B2 (en) 1993-04-09 1993-04-09 Liquid crystal element driving method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18680795A Division JP2601244B2 (en) 1995-07-24 1995-07-24 Driving method of liquid crystal element

Publications (2)

Publication Number Publication Date
JPH0756144A JPH0756144A (en) 1995-03-03
JP2512290B2 true JP2512290B2 (en) 1996-07-03

Family

ID=15669809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6158353A Expired - Lifetime JP2512290B2 (en) 1994-07-11 1994-07-11 Liquid crystal element driving method

Country Status (1)

Country Link
JP (1) JP2512290B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236656B2 (en) * 1973-01-10 1977-09-17
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device

Also Published As

Publication number Publication date
JPH0756144A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
JPH0629919B2 (en) Liquid crystal element driving method
US5631752A (en) Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
US6710759B1 (en) Ferroelectric liquid crystal device and driving method to prevent threshold voltage change
JPH10307304A (en) Liquid crystal display element and its driving method
JP2512290B2 (en) Liquid crystal element driving method
JP2681528B2 (en) Liquid crystal light valve device
JP2601244B2 (en) Driving method of liquid crystal element
JPS60235121A (en) Driving method of liquid crystal element
JP3224407B2 (en) Liquid crystal device
JPH0731322B2 (en) Liquid crystal element driving method
KR100192648B1 (en) Dhf liquor cell
JP2791345B2 (en) Ferroelectric liquid crystal panel
JPH11231286A (en) Driving method for antiferroelectric liquid crystal display element
JP2984788B2 (en) Display element device and display element driving method
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPH0728432A (en) Method for driving antiferroelectric liquid crystal element
JPH1082985A (en) Display element and display element device
JP2973242B2 (en) Driving method of liquid crystal electro-optical element
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP2900919B2 (en) Driving method of liquid crystal element
JPH0695179B2 (en) Driving method of liquid crystal matrix display panel
JP3317244B2 (en) Driving method of liquid crystal electro-optical element
JP2984790B2 (en) Display element device and display element driving method
JPH04215616A (en) Liquid crystal display device
JPS61165734A (en) Driving method for liquid crystal element