JP2512174B2 - Oxide superconducting fine powder and method for producing oxide superconductor - Google Patents
Oxide superconducting fine powder and method for producing oxide superconductorInfo
- Publication number
- JP2512174B2 JP2512174B2 JP1294699A JP29469989A JP2512174B2 JP 2512174 B2 JP2512174 B2 JP 2512174B2 JP 1294699 A JP1294699 A JP 1294699A JP 29469989 A JP29469989 A JP 29469989A JP 2512174 B2 JP2512174 B2 JP 2512174B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- silver
- oxide superconducting
- oxide
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002887 superconductor Substances 0.000 title claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 23
- 239000004332 silver Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 10
- 229910002651 NO3 Inorganic materials 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005118 spray pyrolysis Methods 0.000 description 4
- 101710134784 Agnoprotein Proteins 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導微粉末およびこの微粉末を用い
た超電導体の製造方法に係り、特に銀の添加により超電
導特性を改善する方法の改良に関する。The present invention relates to an oxide superconducting fine powder and a method for producing a superconductor using the fine powder, and in particular, an improvement in a method for improving superconducting properties by adding silver. Regarding
[従来の技術] Y−Ba−Cu−O系(Y系)やBi−Sr−Ca−Cu−O系
(Bi系)等の酸化物系超電導物質は、その臨界温度が高
く実用化への応用が期待されている。[Prior Art] Oxide-based superconducting materials such as Y-Ba-Cu-O-based (Y-based) and Bi-Sr-Ca-Cu-O-based (Bi-based) have a high critical temperature and are in practical use. Applications are expected.
このような超電導物質を用いて電子デバイスを、例え
ば膜体や成型体を作製することが種々検討されており、
その一つとして酸化物超電導物質や酸化物超電導物質を
構成する元素からなる原料粉末を加圧成型後、熱処理す
ることが行なわれている。この成型体は表面拡散による
焼結体であるため、その粒界の状態が特性に大きな影響
をおよぼすことが知られており、これを改善する方法の
一つとして銀を添加する方法が有力であることが報告さ
れている。銀の添加はY系酸化物の場合、銀が粒界に優
先的に析出または拡散し易いことと、粒内に置換されて
もその特性は低下させることがないため、添加元素とし
ては最も有力なものとして種々の検討が行なわれてい
る。Various studies have been made on producing an electronic device using such a superconducting material, for example, a film body or a molded body,
As one of them, a raw material powder made of an oxide superconducting substance or an element constituting the oxide superconducting substance is pressure-molded and then heat-treated. Since this molded body is a sintered body due to surface diffusion, it is known that the state of the grain boundaries has a great influence on the characteristics, and the method of adding silver is a powerful method to improve this. It is reported that there is. In the case of a Y-based oxide, the addition of silver is the most effective addition element because silver is likely to precipitate or diffuse preferentially at grain boundaries and its characteristics do not deteriorate even if it is replaced within the grain. As a result, various studies have been conducted.
[発明が解決しようとする課題] しかしながら、銀を添加あるいは混合した粉末を焼結
した場合、焼結時に銀が相互に接触する粒界に析出ある
いは拡散せず、粒間の空隙部、すなわち粒界の三重点近
傍に凝集してしまい、銀を添加した効果が発揮されない
という問題がある。[Problems to be Solved by the Invention] However, when a powder to which silver is added or mixed is sintered, silver is not precipitated or diffused at the grain boundaries where they are in contact with each other during sintering, and voids between grains, that is, grains There is a problem that the effect of adding silver is not exhibited because the particles are aggregated near the triple point of the boundary.
これは原料粉末の粒径が大きく、かつその形が不均一
なために粒間の大きな空隙部が形成され易いことと、銀
を均一に含有あるいは分散させることが困難なことによ
る。This is because the raw material powder has a large particle size and its shape is non-uniform, so that large voids between the particles are easily formed and it is difficult to uniformly contain or disperse silver.
本発明は上記の問題点を解決するためになされたもの
で、銀を添加した球形の超電導微粉末を製造するととも
に、成型体を製造する際に、銀を相互に接触する粒界に
優先的に析出あるいは拡散せしめ、その超電導特性を改
善する方法を提供することをその目的とする。The present invention has been made to solve the above-mentioned problems, and produces a spherical superconducting fine powder to which silver is added, and when producing a molded body, silver grains are preferentially applied to grain boundaries in contact with each other. It is an object of the present invention to provide a method of improving the superconducting property by depositing or diffusing on the surface.
[課題を解決するための手段] 上記目的を達成するために、本発明の酸化物超電導微
粉末の製造方法は、酸化物超電導物質を構成する元素を
所定比率で脱イオン水に溶解した溶液と銀を脱イオン水
に溶解した溶液とを蒸発させ、この蒸気を酸素を含むキ
ャリアガスにより所定温度に保持された反応管に通過さ
せて粒径1μm以下の銀を含む酸化物超電導微粉末を生
成するものである。[Means for Solving the Problems] In order to achieve the above object, a method for producing an oxide superconducting fine powder according to the present invention comprises a solution in which elements constituting an oxide superconducting substance are dissolved in deionized water at a predetermined ratio. A solution of silver dissolved in deionized water is evaporated, and this vapor is passed through a reaction tube held at a predetermined temperature by a carrier gas containing oxygen to produce an oxide superconducting fine powder containing silver having a particle size of 1 μm or less. To do.
上記の微粉末を成型後、熱処理を施すことにより優れ
た特性の酸化物超電導体を容易に製造することができ、
これは本願第2の発明として記述される。After molding the above fine powder, it is possible to easily produce an oxide superconductor having excellent properties by applying heat treatment,
This is described as the second invention of the present application.
本発明における酸化物超電導物質を構成する元素を所
定比率で含む溶液としては、例えば硝酸塩の混合脱イオ
ン水溶液をあげることができ、この場合は超電導物質を
構成する元素(酸素を除く)の比率に従ったモル比で混
合した脱イオン水溶液として用いる。また銀を含む溶液
としては、硝酸塩脱イオン水溶液を同様に用いることが
でき、これは上記の脱イオン水溶液に対して所定のモル
比で予め混合して用いることもできる。The solution containing the elements constituting the oxide superconducting material in the present invention in a predetermined ratio can be, for example, a mixed deionized aqueous solution of nitrate, in which case the ratio of the elements constituting the superconducting material (excluding oxygen) is It is used as a deionized aqueous solution which is mixed in a molar ratio according to the above. Further, as the silver-containing solution, a nitrate deionized aqueous solution can be similarly used, and this can also be used by premixing with the above deionized aqueous solution at a predetermined molar ratio.
微粉末を成型した後の熱処理は、好ましくは酸化性雰
囲気中で施され、例えばY系の場合、酸素雰囲気下で90
0〜1000℃、Bi系に対しては800〜900℃の温度範囲で行
われる。この熱処理により成型体は焼結され粒界にAgが
優先的に析出あるいは拡散する。熱処理法としては、電
気炉による他、レーザ照射等の方法も用いることができ
る。The heat treatment after molding the fine powder is preferably performed in an oxidizing atmosphere.
It is carried out in the temperature range of 0 to 1000 ° C and 800 to 900 ° C for Bi system. By this heat treatment, the molded body is sintered and Ag is preferentially precipitated or diffused in the grain boundaries. As the heat treatment method, a method such as laser irradiation can be used as well as an electric furnace.
本発明において、微粉末は噴霧熱分解法によって生成
される。この方法に用いられる装置の概略を図に示す。
第2図において1は超音波噴霧器、2は反応管、3はコ
ールドトラップ、4は帯電補集器である。超音波噴霧器
1内に収容された、例えばY、Ba、CuおよびAgの各硝酸
塩をモル比で1:2:3:1の割合で脱イオン水に溶解させた
混合硝酸塩脱イオン水溶液は約70MHz程度で蒸発せしめ
られ、長さ約1mの反応管2へ酸素を含むキャリアガスに
より導入される。反応管2は電気炉5内に保持され、温
度制御器6によりコントロールされている。反応管2内
で熱分解したガスは微粒子となってコールドトラップ3
で乾燥された後、帯電補集器4で補集される。In the present invention, the fine powder is produced by a spray pyrolysis method. The outline of the apparatus used in this method is shown in the figure.
In FIG. 2, 1 is an ultrasonic atomizer, 2 is a reaction tube, 3 is a cold trap, and 4 is a charge collector. A mixed nitrate deionized aqueous solution containing, for example, Y, Ba, Cu, and Ag nitrate contained in the ultrasonic atomizer 1 dissolved in deionized water at a molar ratio of 1: 2: 3: 1 is about 70 MHz. It is evaporated in a certain degree and introduced into the reaction tube 2 having a length of about 1 m by a carrier gas containing oxygen. The reaction tube 2 is held in an electric furnace 5 and controlled by a temperature controller 6. The gas thermally decomposed in the reaction tube 2 becomes fine particles and cold trap 3
After being dried by, it is collected by the charge collector 4.
上記の方法で作成された粉末は、他の方法による粉末
とは著しい差があり、粒子は球状を呈するとともに1μ
m以下の均一な粒径を有する。The powder produced by the above method is significantly different from the powders produced by other methods, and the particles are spherical and have a particle size of 1 μm.
It has a uniform particle size of m or less.
これに対して酸化物または炭酸塩を混合する固相法に
よる粉末は、製造は簡便であるが組成の均一性や微粒子
化に限度があり、例えば粒径0.15〜20μm程度の粒度分
布を有し均一でかつ球状の粒子が得られない。On the other hand, the powder by the solid phase method in which an oxide or a carbonate is mixed is easy to manufacture, but has a limitation in the uniformity of the composition and the formation of fine particles. Uniform and spherical particles cannot be obtained.
一方、液相法では溶液中で混合あるいは反応を行うた
め、組成が均一で比較的微粒子の粉末を得ることが可能
である。しかしながら、蒸発乾固法で得られる粒径は数
μm以上であり、共沈法ではサブミクロンの微粒子粉末
が得られるが沈澱条件により組成ズレを生じ易く、pH調
整を正確に行わなければならない。また共沈法やゲル法
では球状の粒子が得られないという問題がある。On the other hand, in the liquid phase method, since mixing or reaction is performed in a solution, it is possible to obtain a powder having a uniform composition and relatively fine particles. However, the particle size obtained by the evaporation-drying method is several μm or more, and sub-micron fine particle powder can be obtained by the coprecipitation method, but composition deviation easily occurs due to precipitation conditions, and the pH must be adjusted accurately. There is also a problem that spherical particles cannot be obtained by the coprecipitation method or the gel method.
従って、このような粉末を用いて成型体を製造した場
合には高密度化等により臨界電流密度(以下Jcと称す
る。)を向上させることが困難となる。Therefore, when a molded body is manufactured using such a powder, it becomes difficult to improve the critical current density (hereinafter referred to as Jc) by increasing the density.
[作用] 本発明の方法においては、球状で均一な粒径を有し、
かつ予め銀の添加された微粒子を噴霧熱分解法により直
接合成することができ、これを用いてJcの高い成型体を
製造することができる。[Operation] In the method of the present invention, a spherical and uniform particle size,
Moreover, fine particles to which silver has been added in advance can be directly synthesized by a spray pyrolysis method, and a molded product having a high Jc can be produced using this.
上記の微粒子中で銀の一部は粒内部で置換し、かつ他
は表面に析出しているものと考えられる。It is considered that in the above fine particles, some of the silver is replaced inside the grains and the other is deposited on the surface.
[実施例] 以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.
Y(NO3)3、Ba(NO3)2、Cu(NO3)2の各硝酸塩
をY:Ba:Cu=1:2:3のモル比で混合し、脱イオン水に溶解
後、濃度がYBa2Cu3Xに対して0.05mol/になる迄稀釈し
た。次いで同様にAgNO3と脱イオン水を用いて0.05mol/
のAgNO3脱イオン水溶液を調整した。これらYBC硝酸塩
脱イオン水溶液とAgNO3脱イオン水溶液を用いてYBa2Cu3
X対Agのモル比が(A)3:1、(B)1:1、(C)1:3の混
合脱イオン水溶液を調整し、この混合硝酸塩脱イオン水
溶液を70MHzの超音波噴霧器で蒸発させ、キャリアガス
として酸素ガスを5/minの割り合で供給して、950℃
に保持された反応管に通過させ、平均粒径0.7μmの微
粒子を作製した。Y (NO 3 ) 3 , Ba (NO 3 ) 2 and Cu (NO 3 ) 2 nitrates were mixed at a molar ratio of Y: Ba: Cu = 1: 2: 3, dissolved in deionized water, and then concentrated. Was diluted with YBa 2 Cu 3 X until it became 0.05 mol /. Then similarly using AgNO 3 and deionized water at 0.05 mol /
A deionized aqueous solution of AgNO 3 was prepared. Using these YBC nitrate deionized aqueous solution and AgNO 3 deionized aqueous solution, YBa 2 Cu 3
Prepare a mixed deionized aqueous solution with a molar ratio of X to Ag of (A) 3: 1, (B) 1: 1 and (C) 1: 3, and evaporate this mixed nitrate deionized aqueous solution with an ultrasonic atomizer of 70 MHz. And supply oxygen gas as a carrier gas at a rate of 5 / min, and 950 ℃
The particles were passed through the reaction tube held by to prepare fine particles having an average particle size of 0.7 μm.
これら3種類の微粒子のAgの形態をエネルギ分散型X
線アナライザ(SEM EDX)にて分析した結果、3種類共A
gは微粒子全体に均一に分散していると共に、原液のAg
濃度に対応した1粒子当たりのAgを含有する事が確認さ
れた。同様の結果がX線回折(XRD)によっても得られ
た。Energy dispersion type X of these three types of fine particles of Ag
Analysis by line analyzer (SEM EDX)
g is uniformly dispersed throughout the fine particles, and the Ag
It was confirmed that each particle contained Ag corresponding to the concentration. Similar results were obtained by X-ray diffraction (XRD).
これらの結果を第1図に示す。 The results are shown in FIG.
次にこれら3種類の粉末を成型後900℃で焼結させた
試料のJcを測定した結果、いずれの試料も>103A/cm
2(77K、1T)の高い値を示した。Next, the Jc of the samples obtained by molding these 3 kinds of powders and sintering them at 900 ° C. were measured, and as a result, all samples were> 10 3 A / cm
It showed a high value of 2 (77K, 1T).
上記の実施例において反応管の炉温900℃未満ではBaC
O3、Y2Cu2O5等が生成され、一方1000℃を越えるとBaCuO
2、Y2BaCuO5等が生成されるため、Agを含有したYBa2Cu3
O7−xを熱分解によって直接合成することが困難とな
る。In the above example, BaC was used when the reactor temperature was lower than 900 ° C.
O 3 , Y 2 Cu 2 O 5, etc. are generated, while BaCuO is generated when the temperature exceeds 1000 ° C.
2 , Y 2 BaCuO 5 etc. are generated, so YBa 2 Cu 3 containing Ag is produced.
It becomes difficult to directly synthesize O 7- x by thermal decomposition.
[発明の効果] 以上述べたように本発明による酸化物超電導微粉末お
よびこの粉末を用いた超電導体の製造方法によれば、銀
の添加された微粉末を噴霧熱分解法により直接合成する
ことができ、この微粉末を用いて粒界特性の改善され
た、即ちJcの大きな成型体を容易に製造することができ
る。[Effects of the Invention] As described above, according to the oxide superconducting fine powder and the method for producing a superconductor using this powder according to the present invention, the fine powder to which silver is added is directly synthesized by the spray pyrolysis method. Using this fine powder, it is possible to easily produce a molded body having improved grain boundary characteristics, that is, having a large Jc.
また本発明の方法においては、銀の添加量は容易に制
御することができるため、用途に応じた銀添加微粉末を
得ることができる。Further, in the method of the present invention, since the amount of silver added can be easily controlled, it is possible to obtain a silver-added fine powder according to the application.
第1図は本発明の方法により得られたY系微粉末の銀添
加量と微粒子中のXRD強度比およびSEMEDX強度比の関係
を示すグラフ、第2図は本発明に用いられる噴霧熱分解
装置の概略図である。 1……超音波噴霧器 2……反応管 3……コールドトラップ 4……帯電補集器FIG. 1 is a graph showing the relationship between the amount of silver added to the Y-based fine powder obtained by the method of the present invention and the XRD intensity ratio and SEMEDX intensity ratio in the fine particles, and FIG. 2 is a spray pyrolysis apparatus used in the present invention. FIG. 1 ... Ultrasonic atomizer 2 ... Reaction tube 3 ... Cold trap 4 ... Charge collector
───────────────────────────────────────────────────── フロントページの続き (73)特許権者 999999999 川崎重工業株式会社 兵庫県神戸市中央区東川崎町3丁目1番 1号 (72)発明者 長屋 重夫 愛知県名古屋市熱田区六野2丁目4番1 号 財団法人国際超電導産業技術研究セ ンター超電導工学研究所名古屋研究室内 (72)発明者 宮島 正道 愛知県名古屋市熱田区六野2丁目4番1 号 財団法人国際超電導産業技術研究セ ンター超電導工学研究所名古屋研究室内 (72)発明者 西尾 光司 愛知県名古屋市熱田区六野2丁目4番1 号 財団法人国際超電導産業技術研究セ ンター超電導工学研究所名古屋研究室内 (72)発明者 平林 泉 愛知県名古屋市熱田区六野2丁目4番1 号 財団法人国際超電導産業技術研究セ ンター超電導工学研究所名古屋研究室内 (56)参考文献 特開 平3−37105(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (73) Patent holder 999999999 Kawasaki Heavy Industries, Ltd. 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo (72) Inventor Shigeo Nagaya 2--4, Rokuno, Atsuta-ku, Nagoya-shi, Aichi No. 1 International Superconductivity Industrial Technology Research Center Superconductivity Research Institute Nagoya Laboratory (72) Inventor Masamichi Miyajima 2-4-1, Rokuno, Atsuta-ku, Nagoya-shi, Aichi International Superconductivity Industrial Technology Research Center Superconductivity Institute of Engineering, Nagoya Laboratory (72) Inventor Koji Nishio, 2-4-1, Rokuno, Atsuta-ku, Nagoya, Aichi International Superconductivity Engineering Research Center Superconductivity Laboratory, Nagoya Laboratory (72) Inventor Izumi Hirabayashi 2-4-1, Rokuno, Atsuta-ku, Nagoya-shi, Aichi International Superconducting Industry Foundation Operative Research Center Superconductivity Research Institute Nagoya laboratory (56) Reference Patent flat 3-37105 (JP, A)
Claims (2)
率で脱イオン水に溶解した溶液と銀を脱イオン水に溶解
した溶液とを蒸発させ、この蒸気を酸素を含むキャリア
ガスにより所定温度に保持された反応管に通過させて粒
径1μm以下の銀を含む酸化物超電導微粉末を生成する
ことを特徴とする酸化物超電導微粉末の製造方法。1. A solution in which elements constituting an oxide superconducting substance are dissolved in deionized water at a predetermined ratio and a solution in which silver is dissolved in deionized water are evaporated, and the vapor is heated to a predetermined temperature by a carrier gas containing oxygen. A method for producing oxide superconducting fine powder, characterized in that the oxide superconducting fine powder containing silver having a particle size of 1 μm or less is produced by passing through the reaction tube held by the above.
率で脱イオン水に溶解した溶液と銀を脱イオン水に溶解
した溶液とを蒸発させ、この蒸気を酸素を含むキャリア
ガスにより所定温度に保持された反応管に通過させて粒
径1μm以下の銀を含む酸化物超電導微粉末を生成し、
次いで前記微粉末を成型後、熱処理を施すことを特徴と
する酸化物超電導体の製造方法。2. A solution in which elements constituting an oxide superconducting substance are dissolved in deionized water at a predetermined ratio and a solution in which silver is dissolved in deionized water are evaporated, and the vapor is heated to a predetermined temperature by a carrier gas containing oxygen. To pass through a reaction tube held by to produce an oxide superconducting fine powder containing silver having a particle size of 1 μm or less,
Next, a method for producing an oxide superconductor, characterized by subjecting the fine powder to heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1294699A JP2512174B2 (en) | 1989-11-13 | 1989-11-13 | Oxide superconducting fine powder and method for producing oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1294699A JP2512174B2 (en) | 1989-11-13 | 1989-11-13 | Oxide superconducting fine powder and method for producing oxide superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03153562A JPH03153562A (en) | 1991-07-01 |
JP2512174B2 true JP2512174B2 (en) | 1996-07-03 |
Family
ID=17811161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1294699A Expired - Fee Related JP2512174B2 (en) | 1989-11-13 | 1989-11-13 | Oxide superconducting fine powder and method for producing oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2512174B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2835083B2 (en) * | 1989-07-03 | 1998-12-14 | 古河電気工業株式会社 | Manufacturing method of oxide superconductor |
-
1989
- 1989-11-13 JP JP1294699A patent/JP2512174B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03153562A (en) | 1991-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ardekani et al. | A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter | |
Beke | A review of the growth of V2O5 films from 1885 to 2010 | |
Yang et al. | Influence of molar ratio of citric acid to metal ions on preparation of La0. 67Sr0. 33MnO3 materials via polymerizable complex process | |
Rao et al. | Essentials of inorganic materials synthesis | |
DE60218697T2 (en) | METHOD AND REACTORS FOR PRODUCING SUPERCIAL LAYERS | |
Díez-Sierra et al. | High critical current density and enhanced pinning in superconducting films of YBa2Cu3O7− δ nanocomposites with embedded BaZrO3, BaHfO3, BaTiO3, and SrZrO3 nanocrystals | |
Li et al. | Synthesis of monocrystalline composite oxides La1− xSrxFe1− yCoyO3 with the perovskite structure using polyethylene glycol-gel method | |
JP3548801B2 (en) | A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film. | |
Lei et al. | Structure properties and sintering densification of Gd2Zr2O7 nanoparticles prepared via different acid combustion methods | |
Hamadneh et al. | Characterization of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O y ceramic superconductor prepared via coprecipitation method at different sintering time | |
Chadda et al. | Synthesis of YBa2Cu3O7− γ and YBa2Cu4O8 by aerosol decomposition | |
JP2512174B2 (en) | Oxide superconducting fine powder and method for producing oxide superconductor | |
US5066636A (en) | Citrate/ethylenediamine gel method for forming high temperature superconductors | |
CN1063155C (en) | Technology for preparing hydrosol of superfine metal oxide powder | |
Eledath et al. | Sol-gel synthesis of multifunctional bismuth ferrite nanostructures: effect of heating conditions on their photocatalytic activity | |
US5210069A (en) | Preparation method of high purity 115 K Tl-based superconductor | |
US4996189A (en) | Method of producing mixed metal oxide material, and of producing a body comprising the material | |
KR101542660B1 (en) | Manufacturing method for metal-doped ZnO (Zinc Oxide) ultra-fine powders by using plasmas | |
Wang et al. | Fabrication of Ag-Sheathed Bi-2223 tapes using powders produced by aerosol spray pyrolysis | |
JPH03153560A (en) | Production of oxide superconductor | |
JPH03153503A (en) | Production of oxide superconducting film | |
Mančić et al. | Structural Properties of Ultradispersed Bi-Pb-Sr-Ca-Cu-O Particles Synthesized from Aerosol | |
JPH0572332B2 (en) | ||
KR0149421B1 (en) | Superconductive materials synthesized by using sol-gel process | |
JPH07110766B2 (en) | Method for manufacturing oxide superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |