JP2511048B2 - Control method of oxygen concentration sensor - Google Patents

Control method of oxygen concentration sensor

Info

Publication number
JP2511048B2
JP2511048B2 JP62164394A JP16439487A JP2511048B2 JP 2511048 B2 JP2511048 B2 JP 2511048B2 JP 62164394 A JP62164394 A JP 62164394A JP 16439487 A JP16439487 A JP 16439487A JP 2511048 B2 JP2511048 B2 JP 2511048B2
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
pump
voltage
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62164394A
Other languages
Japanese (ja)
Other versions
JPS649356A (en
Inventor
豊平 中島
敏幸 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62164394A priority Critical patent/JP2511048B2/en
Priority to US07/189,183 priority patent/US4860712A/en
Publication of JPS649356A publication Critical patent/JPS649356A/en
Application granted granted Critical
Publication of JP2511048B2 publication Critical patent/JP2511048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は内燃エンジンの排気系に配設され排気ガス中
の酸素濃度を検出するための酸素濃度センサの制御方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a control method of an oxygen concentration sensor which is arranged in an exhaust system of an internal combustion engine and detects an oxygen concentration in exhaust gas.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等のために排
気ガス中の酸素濃度を酸素濃度センサによって検出し、
酸素濃度センサの出力信号に応じてエンジンへの供給混
合気の空燃比を目標空燃比にフィードバック制御する空
燃比制御装置がある。
BACKGROUND ART In order to purify exhaust gas of an internal combustion engine, improve fuel efficiency, etc., the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor,
There is an air-fuel ratio control device that feedback-controls the air-fuel ratio of an air-fuel mixture supplied to an engine to a target air-fuel ratio according to an output signal of an oxygen concentration sensor.

かかる空燃比制御装置に用いられる酸素濃度センサと
して被測定気体中の酸素濃度に比例した出力を発生する
ものがある。例えば、2つの平板状の酸素イオン伝導性
固体電解質材各々に電極対を設けて酸素ポンプ素子及び
電池素子を形成し、酸素ポンプ素子及び電池素子間に気
体拡散制限域としての気体滞留室を形成し、その気体滞
留室が被測定気体と導入孔を介して連通し、電池素子の
他方の電極面が大気室に面するようにした酸素濃度検出
素子を備えたセンサが特開昭59-192955号公報に開示さ
れている。このような酸素濃度センサにおいては、電池
素子の電極間の発生電圧が基準電圧以上のときにはその
電圧差に応じた電圧を酸素ポンプ素子に供給して酸素ポ
ンプ素子内において酸素イオンを制限域側電極に向って
移動させ、電池素子の電極間の発生電圧が基準電圧以下
のときにはその電圧差に応じた電圧を酸素ポンプ素子に
供給して酸素ポンプ素子内において酸素イオンを外側電
極に向って移動させることによりリーン及びリッチ領域
の空燃比において酸素ポンプ素子の電極間を流れる電流
値、すなわちポンプ電流値は拡散制限域に供給される気
体中の酸素濃度に比例するのである。
As an oxygen concentration sensor used in such an air-fuel ratio control device, there is one that produces an output proportional to the oxygen concentration in the gas to be measured. For example, an electrode pair is provided on each of the two flat plate-shaped oxygen ion conductive solid electrolyte materials to form an oxygen pump element and a battery element, and a gas retention chamber as a gas diffusion limited area is formed between the oxygen pump element and the battery element. However, there is a sensor having an oxygen concentration detecting element in which the gas retention chamber communicates with the gas to be measured through an introduction hole and the other electrode surface of the battery element faces the atmosphere chamber. It is disclosed in the publication. In such an oxygen concentration sensor, when the voltage generated between the electrodes of the battery element is equal to or higher than the reference voltage, a voltage corresponding to the voltage difference is supplied to the oxygen pump element so that oxygen ions are allowed to pass through the oxygen pump element in the limiting area side electrode. When the voltage generated between the electrodes of the battery element is equal to or lower than the reference voltage, a voltage corresponding to the voltage difference is supplied to the oxygen pump element to move oxygen ions toward the outer electrode in the oxygen pump element. Therefore, at the air-fuel ratios in the lean and rich regions, the current value flowing between the electrodes of the oxygen pump element, that is, the pump current value, is proportional to the oxygen concentration in the gas supplied to the diffusion limited region.

ところで、かかる酸素濃度センサにおいては、酸素ポ
ンプ素子に過剰のポンプ電流を供給するとポンプ電流に
よってポンピングされ得る量より拡散制限域内の酸素量
が少ない場合には固体電解質材から酸素が奪われるブラ
ックニング現象が発生することが判明した。例えば、固
体電解質材としてZrO2(二酸化ジルコニウム)が用いら
れた場合、酸素ポンプ素子への過剰電流供給によりZrO2
から酸素O2が奪われてジルコニウムZrが析出される。
By the way, in such an oxygen concentration sensor, when an excessive pump current is supplied to the oxygen pump element, oxygen is deprived from the solid electrolyte material when the amount of oxygen in the diffusion limited region is smaller than the amount that can be pumped by the pump current. Was found to occur. For example, if the ZrO 2 (zirconium dioxide) was used as a solid electrolyte material, ZrO by excessive current supply to the oxygen pump element 2
Oxygen O 2 is depleted from this and zirconium Zr is deposited.

また、かかる酸素濃度比例型の酸素濃度センサにおい
ては、酸素濃度に比例した出力特性を得るためには、酸
素濃度に比例した出力特性を得るためには酸素濃度検出
素子を定常運転時の排気ガス温度より十分高い温度(例
えば、650℃以上)にする必要があり、酸素濃度検出素
子を加熱する加熱素子が固体電解質材上の適所に配設さ
れる。
Further, in such an oxygen concentration proportional type oxygen concentration sensor, in order to obtain an output characteristic proportional to the oxygen concentration, in order to obtain an output characteristic proportional to the oxygen concentration, the oxygen concentration detecting element is set to the exhaust gas during steady operation. It is necessary to make the temperature sufficiently higher than the temperature (for example, 650 ° C. or higher), and a heating element for heating the oxygen concentration detection element is arranged at an appropriate position on the solid electrolyte material.

従って、エンジン始動時においては、酸素濃度検出素
子が未だ低温状態であることが通常であり、できるだけ
素早いヒートアップをなすことが望まれる。また、かか
る場合においては、電池素子の電極間においては発生す
る電圧が十分上昇せず、基準電圧との比較によってポン
プ電流を増減せしめる構成においてはポンプ電流が過剰
になる恐れがある。
Therefore, when the engine is started, the oxygen concentration detecting element is usually still in a low temperature state, and it is desired to heat up as quickly as possible. Further, in such a case, the voltage generated between the electrodes of the battery element does not rise sufficiently, and the pump current may become excessive in the configuration in which the pump current is increased or decreased by comparison with the reference voltage.

発明の概要 そこで、本発明の目的は、エンジン始動直後において
酸素濃度検出素子を素早く動作可能状態にする一方、ブ
ラックニング現象を回避した内燃エンジン用酸素濃度セ
ンサの制御方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for controlling an oxygen concentration sensor for an internal combustion engine, which enables an oxygen concentration detection element to be immediately operable immediately after engine startup, while avoiding a blackening phenomenon.

本発明による内燃エンイン用酸素濃度センサの制御方
法は、所定エンジン始動状態を検出したときにヒータ電
流供給手段から加熱素子へのヒータ電流供給を開始さ
せ、その後、加熱素子の内部抵抗が所定範囲内の値にな
ったことを検出したときにポンプ電流供給手段から酸素
ポンプ素子へのポンプ素子の供給を開始させることを特
徴としている。
The control method of the oxygen concentration sensor for internal combustion engine according to the present invention starts the heater current supply from the heater current supply means to the heating element when the predetermined engine starting state is detected, and thereafter, the internal resistance of the heating element is within the predetermined range. Is detected, the supply of the pump element from the pump current supply means to the oxygen pump element is started.

実施例 以下、本発明の実施例を図面を参照しつつ説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図は本発明の制御方法を適用した酸
素濃度センサを備えた電子制御燃料噴射装置を示してい
る。本装置において、酸素濃度センサ検出部1はエンジ
ン2の排気管3の三元触媒コンバータ5より蒸留に配設
され、酸素濃度センサ検出部1の入出力がECU(Electro
nic Control Unit)4に接続されている。
1 to 3 show an electronically controlled fuel injection device equipped with an oxygen concentration sensor to which the control method of the present invention is applied. In this device, the oxygen concentration sensor detection unit 1 is disposed for distillation from the three-way catalytic converter 5 of the exhaust pipe 3 of the engine 2, and the input and output of the oxygen concentration sensor detection unit 1 is ECU (Electro
nic Control Unit) 4.

酸素濃度センサ検出部1の保護ケース11内には第2図
に示すように例えば、ほぼ直方体状の酸素イオン伝導性
固体電解質材12が設けられている。酸素イオン伝導性固
体電解質材12内には気体拡散制限域として気体滞留室13
が形成されている。気体滞留室13は固体電界質材12外部
から被測定気体の排気ガスを導入する導入孔14に連通
し、導入孔14は排気管3内において排気ガスが気体滞留
室13内に流入するように位置される。また酸素イオン伝
導性固体電解質材12には大気を導入する大気基準室15が
気体滞留室13と壁を隔てるように形成されている。気体
滞留室13と大気基準室15との間の壁部及び大気基準室15
とは反対側の壁部には電極対17a,17b,16a,16bが各々形
成されている。固体電界質材12及び電極対16a,16bが酸
素ポンプ素子18として作用し、固体電界質材12及び電極
対17a,17bが電池素子19として作用する。また大気基準
室15の外壁面には酸素ポンプ素子18及び電池素子19を加
熱するために加熱素子20が設けられている。
As shown in FIG. 2, for example, a substantially rectangular parallelepiped oxygen ion conductive solid electrolyte material 12 is provided in the protective case 11 of the oxygen concentration sensor detection unit 1. In the oxygen ion conductive solid electrolyte material 12, a gas retention chamber 13 is provided as a gas diffusion limited area.
Are formed. The gas retention chamber 13 communicates with an introduction hole 14 for introducing the exhaust gas of the gas to be measured from the outside of the solid electrolyte material 12, and the introduction hole 14 allows the exhaust gas to flow into the gas retention chamber 13 in the exhaust pipe 3. Is located. An air reference chamber 15 for introducing the atmosphere is formed in the oxygen ion conductive solid electrolyte material 12 so as to separate the wall from the gas retention chamber 13. Wall between the gas retention chamber 13 and the atmospheric reference chamber 15 and the atmospheric reference chamber 15
Electrode pairs 17a, 17b, 16a, 16b are respectively formed on the wall portion on the side opposite to. The solid electrolyte material 12 and the electrode pairs 16a and 16b act as the oxygen pump element 18, and the solid electrolyte material 12 and the electrode pairs 17a and 17b act as the battery element 19. A heating element 20 for heating the oxygen pump element 18 and the battery element 19 is provided on the outer wall surface of the air reference chamber 15.

酸素イオン伝導性固体電解質材12としては、ZrO2(二
酸化ジルコニウム)が用いられ、電極16aないし17bとし
てはPt(白金)が用いられる。
ZrO 2 (zirconium dioxide) is used as the oxygen ion conductive solid electrolyte material 12, and Pt (platinum) is used as the electrodes 16a to 17b.

第3図に示すようにECU4には差動増幅回路21、基準電
圧源22、電流検出抵抗24からなる酸素濃度センサ制御部
が設けられている。酸素ポンプ素子18の電極16b及び電
池素子19の電極17bはアースされている。電池素子19の
電極17aには差動増幅回路21が接続され、差動増幅回路2
1は電池素子19の電極17a,17b間の電圧と基準電圧源22の
出力電圧との差電圧に応じた電圧を出力する。基準電圧
源22の出力電圧は理論空燃比に相当する電圧(0.4
〔V〕)である。差動増幅回路21の出力端は制御端を有
するスイッチ23、そして電流検出抵抗24を介して酸素ポ
ンプ素子18の電極16aに接続されている。電流検出抵抗2
4の両端が酸素濃度センサの出力端であり、マイクロコ
ンピュータからなる制御回路25に接続されている。加熱
素子20には直列にヒータ電流検出抵抗51が接続され、加
熱素子20と抵抗51との直列回路にヒータ駆動回路37は加
熱素子20と抵抗51との直列回路に接続されたスイッチン
グ素子(図示せず)を有する。
As shown in FIG. 3, the ECU 4 is provided with an oxygen concentration sensor control unit including a differential amplifier circuit 21, a reference voltage source 22, and a current detection resistor 24. The electrode 16b of the oxygen pump element 18 and the electrode 17b of the battery element 19 are grounded. The differential amplifier circuit 21 is connected to the electrode 17a of the battery element 19, and the differential amplifier circuit 2
1 outputs a voltage corresponding to the difference voltage between the voltage between the electrodes 17a and 17b of the battery element 19 and the output voltage of the reference voltage source 22. The output voltage of the reference voltage source 22 is a voltage equivalent to the theoretical air-fuel ratio (0.4
[V]). The output end of the differential amplifier circuit 21 is connected to the switch 23 having a control end and the electrode 16a of the oxygen pump element 18 via the current detection resistor 24. Current detection resistor 2
Both ends of 4 are output ends of the oxygen concentration sensor and are connected to a control circuit 25 including a microcomputer. A heater current detection resistor 51 is connected in series to the heating element 20, a heater driving circuit 37 is connected to a series circuit of the heating element 20 and the resistor 51, and a switching element connected to a series circuit of the heating element 20 and the resistor 51 (Fig. (Not shown).

制御回路25には例えば、ポテンショメータからなり、
絞り弁26の開度に応じたレベルの出力電圧を発生する絞
り弁開度センサ31と、絞り弁26下流の吸気管27に設けら
れて吸気管27内の絶対圧に応じたレベルの出力電圧を発
生する絶対圧接センサ32と、エンジンの冷却水温に応じ
たレベルの出力電圧を発生する水温センサ33と、大気吸
入口28近傍に設けられて吸気温に応じたレベルの出力を
発生する吸気温センサ34と、エンジンのクランクシャフ
ト(図示せず)の回転に同期したパルス信号を発生する
クランク角センサ35とが接続されている。またエンジン
2の吸気バルブ(図示せず)近傍の吸気管27に設けられ
たインジェクタ36が接続されている。
The control circuit 25 includes, for example, a potentiometer,
A throttle valve opening sensor 31 that generates an output voltage at a level according to the opening of the throttle valve 26, and an output voltage at a level according to the absolute pressure in the intake pipe 27 provided in the intake pipe 27 downstream of the throttle valve 26. Which generates an absolute pressure contact sensor 32, a water temperature sensor 33 which generates an output voltage at a level corresponding to the cooling water temperature of the engine, and an intake air temperature which is provided near the air intake port 28 and generates an output at a level corresponding to the intake air temperature. A sensor 34 and a crank angle sensor 35 that generates a pulse signal in synchronization with the rotation of a crankshaft (not shown) of the engine are connected. An injector 36 provided in an intake pipe 27 near an intake valve (not shown) of the engine 2 is connected.

制御回路25は、上記した駆動回路37の他に、酸素ポン
プ素子18の電極間電圧、電池素子19の電極間電圧、加熱
素子20の端子間電圧及び電流検出抵抗51の両端電圧の1
つを選択的に出力するマルチプレクサ38と、このマルチ
プレクサ38から出力される信号をディジタル信号に変換
するA/D変換器39と、電流検出抵抗24の両端電圧をディ
ジタル信号に変換する差動入力のA/D変換器40と、絞り
弁開度センサ31、絶対圧センサ32、水温センサ33及び吸
気温センサ34の各出力レベルを変換するレベル変換回路
41と、レベル変換回路41を経た各センサ出力の1つを選
択的に出力するマルチプレクサ42と、このマルチプレク
サ42から出力される信号をディジタル信号に変換するA/
D変換器43と、クランク角センサ35の出力信号を波形整
形してTDC信号として出力する波形整形回路44と、波形
整形回路44からのTDC信号の発生間隔をクロックパルス
発生回路(図示せず)から出力されるクロックパルス数
によって計測するカウンタ45と、スイッチ23を駆動する
駆動回路52と、インジェクタ36を駆動する駆動回路46
と、プログラムに従ってディジタル演算を行なうCPU
(中央演算回路)47と、各種の処理プログラム及びデー
タが予め書き込まれたROM48と、RAM49と備えている。A/
D変換器39,40,43、マルチプレクサ38,42、カウンタ45、
駆動回路37,46,52、CPU47、ROM48及びRAM49は入出力バ
ス50によって互いに接続されている。CPU47には波形整
形回路44からTDC信号が供給される。
In addition to the drive circuit 37 described above, the control circuit 25 has one of the inter-electrode voltage of the oxygen pump element 18, the inter-electrode voltage of the battery element 19, the inter-terminal voltage of the heating element 20 and the both-end voltage of the current detection resistor 51.
One of the multiplexer 38 that selectively outputs one of the two, an A / D converter 39 that converts the signal output from the multiplexer 38 into a digital signal, and a differential input that converts the voltage across the current detection resistor 24 into a digital signal. A / D converter 40, and a level conversion circuit that converts each output level of the throttle valve opening sensor 31, the absolute pressure sensor 32, the water temperature sensor 33, and the intake air temperature sensor 34.
41, a multiplexer 42 that selectively outputs one of the sensor outputs that have passed through the level conversion circuit 41, and an A / A that converts the signal output from this multiplexer 42 into a digital signal.
A D converter 43, a waveform shaping circuit 44 that shapes the output signal of the crank angle sensor 35 and outputs it as a TDC signal, and a generation interval of the TDC signal from the waveform shaping circuit 44 to a clock pulse generation circuit (not shown). A counter 45 that measures the number of clock pulses output from the counter 45, a drive circuit 52 that drives the switch 23, and a drive circuit 46 that drives the injector 36.
And a CPU that performs digital operations according to a program
(Central processing circuit) 47, ROM 48 in which various processing programs and data are written in advance, and RAM 49. A /
D converter 39, 40, 43, multiplexer 38, 42, counter 45,
The drive circuits 37, 46, 52, the CPU 47, the ROM 48 and the RAM 49 are connected to each other by the input / output bus 50. The TDC signal is supplied from the waveform shaping circuit 44 to the CPU 47.

なお、RAM49はイグニッションスイッチ(図示せず)
のオフ時にも記憶内容が消滅しないようにバックアップ
される。
The RAM 49 is an ignition switch (not shown)
Is backed up so that the stored contents are not lost even when the power is off.

かかる構成においては、A/D変換器39から酸素ポンプ
素子18の電極間電圧V、電池素子19の電極間電圧
、加熱素子20の電極間電圧VH及び加熱素子20を流れ
るヒータ電流値IHの情報が択一的に、A/D変換器40から
酸素ポンプ素子18を流れるポンプ電流値IPが、A/D変換
器43から絞り弁開度θth、吸気管内絶対圧PBA、冷却水
温TW及び吸気温TAの情報が択一的に、またカウンタ45か
ら回転パルスの発生周期内における計数値を表わす情報
がエンジン回転数Ne情報としてCPU47に入出力バス50を
介して各々供給される。CPU47はROM48に記憶された演算
プログラムに従って上記の各情報を読み込み、それらの
情報を基にしてTDC信号に同期して燃料供給ルーチンに
おいて所定の算出式からエンジン2への燃料供給量に対
応するインジェクタ36の燃料噴射時間TOUTを演算する。
そして、その燃料噴射時間TOUTだけ駆動回路46がインジ
ェクタ36を駆動してエンジン2へ燃料を供給せしめるの
である。
In this configuration, the inter-electrode voltage V P of the oxygen pump element 18 from the A / D converter 39, the inter-electrode voltage V S of the battery element 19, a heater current flowing between the electrodes voltage V H and the heating element 20 of the heating element 20 As an alternative to the information of the value I H, the pump current value I P flowing from the A / D converter 40 through the oxygen pump element 18 is calculated from the A / D converter 43 to the throttle valve opening θth and the intake pipe absolute pressure P BA. , The information of the cooling water temperature T W and the intake air temperature T A, and the information indicating the count value within the generation period of the rotation pulse from the counter 45 to the CPU 47 as the engine speed Ne information via the input / output bus 50. Each is supplied. The CPU 47 reads the above-mentioned information in accordance with the arithmetic program stored in the ROM 48, and in synchronization with the TDC signal based on the information, the injector corresponding to the fuel supply amount to the engine 2 from the predetermined calculation formula in the fuel supply routine. Calculate 36 fuel injection times T OUT .
Then, the drive circuit 46 drives the injector 36 for the fuel injection time T OUT to supply fuel to the engine 2.

燃料噴射時間TOUTは例えば、次式から算出される。The fuel injection time T OUT is calculated, for example, from the following equation.

TOUT=Ti×Ko2 ……(1) ここで、Tiはエンジン回転数Neと吸気管内絶対圧PBA
に応じてROM48からのデータマップ検索により決定され
る空燃比制御の基準値である基準噴射時間、Ko2は酸素
濃度センサの出力レベルに応じて設定する空燃比フィー
ドバック補正係数である。これらTi、Ko2は燃料供給ル
ーチンのサブルーチン(図示せず)において各々設定さ
れる。なお、補正係数としては、加速倍量係数、エンジ
ン温度係数等の補正係数が考えられるがここでは詳述し
ない。
T OUT = Ti × Ko 2 (1) Here, Ti is a reference value for air-fuel ratio control determined by a data map search from ROM 48 according to the engine speed Ne and the intake pipe absolute pressure P BA. The reference injection time, Ko 2 is an air-fuel ratio feedback correction coefficient set according to the output level of the oxygen concentration sensor. These Ti and Ko 2 are respectively set in a subroutine (not shown) of the fuel supply routine. The correction coefficient may be a correction coefficient such as an acceleration amount coefficient or an engine temperature coefficient, but it will not be described in detail here.

次に、本発明の酸素濃度センサの制御方法の手順を第
4図に示したCPU47の動作フロー図に従って説明する。
Next, the procedure of the control method of the oxygen concentration sensor of the present invention will be described with reference to the operation flow chart of the CPU 47 shown in FIG.

CPU47は先ず、エンジン回転数Neを読み込みそのエン
ジン回転数Neがエンジン完爆回転数Ne1(例えば、400rp
m)以上に達したか否かを判別する(ステップ61)。Ne
<Ne1の場合には酸素濃度センサが不活性状態であると
判断してヒータ電流の供給を禁止すべくヒータ電流供給
フラグFHを0にリセットし(ステップ62)、スイッチ駆
動回路52に対してポンプ電流供給停止指令を発生し(ス
テップ63)、また空燃比フィードバック制御を停止する
ために空燃比フィードバック補正係数Ko2を1.0に等しく
する(ステップ64)。ヒータ電流供給フラグFHを0に等
しくすることによりCPU47が所定周期毎に実行するヒー
タ電流制御サブルーチン(図示せず)においてIH=0を
表わすヒータ電流供給データがヒータ駆動回路37に供給
される。よって、ヒータ駆動回路37は内部のスイッチン
グ素子をオフとして加熱素子20へのヒータ電流の供給を
停止せしめる。またスイッチ駆動回路52はポンプ電流供
給停止指令に応じてスイッチ23をオフせしめるので酸素
ポンプ素子18へのポンプ電流の供給が停止される。
The CPU 47 first reads the engine speed Ne, and the engine speed Ne is the engine complete explosion speed Ne 1 (for example, 400 rpm
It is determined whether or not m) has been reached (step 61). Ne
When <Ne 1 , it is determined that the oxygen concentration sensor is inactive, and the heater current supply flag F H is reset to 0 to prohibit the heater current supply (step 62). Generates a pump current supply stop command (step 63), and makes the air-fuel ratio feedback correction coefficient Ko 2 equal to 1.0 to stop the air-fuel ratio feedback control (step 64). By setting the heater current supply flag F H equal to 0, the heater current supply data representing I H = 0 is supplied to the heater drive circuit 37 in the heater current control subroutine (not shown) executed by the CPU 47 in every predetermined cycle. . Therefore, the heater drive circuit 37 turns off the internal switching element to stop the supply of the heater current to the heating element 20. Further, since the switch drive circuit 52 turns off the switch 23 in response to the pump current supply stop command, the supply of pump current to the oxygen pump element 18 is stopped.

Ne≧Ne1の場合にはエンジン2が完爆したとしてヒー
タ電流の供給を開始させるためにヒータ電流供給フラグ
FHに1をセットする(ステップ65)。フラグFHに1がセ
ットされると、上記したヒータ電流制御サブルーチンの
実行時に加熱素子20の内部抵抗RHを一定値にするように
所定周期毎にヒータ電流供給データが定められてヒータ
駆動回路37に供給され、ヒータ電流供給データの内容に
応じたデューティ比にてスイッチング素子が所定周期で
オンオフする。スイッチング素子のオン時に加熱素子20
及び電流検出抵抗51の直列回路の両端間に電圧VBが印加
されて加熱素子20にヒータ電流が流れるので加熱素子20
が発熱する。次いで、加熱素子20の内部抵抗RHが所定値
RH1,RH2の範囲内にあるか否かを判別する(ステップ6
6)。加熱素子20の内部抵抗RHは加熱素子20の両端電圧V
H及びヒータ電流値IHを読み込み、RH=(VH−IH)/IH
なる式により算出される。RH<RH1、又はRH>RH2なら
ば、酸素濃度センサが不活性状態であると判断してステ
ップ63,64に移行する。RH1≦RH≦RH2の場合には、例え
ば、加熱素子の加熱が酸素濃度センサが所望の酸素濃度
に比例した出力特性となるように適切な温度範囲に保持
することができ、加熱素子の内部抵抗がRH2を越えると
いうことは加熱素子の加熱が過剰となり過ぎたり、或い
は加熱素子内の破壊により電流がほとんど流れない状態
となっている可能性があるので、酸素濃度センサが正常
な動作は行なわない不活性状態とみなすのである。RH1
≦RH≦RH2ならば、加熱素子20の温度が安定温度に達し
たとして酸素ポンプ素子18にポンプ電流を供給すべくス
イッチ駆動回路52に対してポンプ電流供給指令を発生す
る(ステップ67)。スイッチ駆動回路52はポンプ電流供
給指令に応じてスイッチ23をオンせしめるので酸素ポン
プ素子18へポンプ電流が供給される。酸素ポンプ素子18
へのポンプ電流が供給される。酸素ポンプ素子18へのポ
ンプ電流の供給が開始されると、電池素子19の電極間電
圧Vを読み込みその電圧Vが所定電圧VS1,VS2(た
だし、VS1<VS2)の範囲内の電圧であるか否かを判別す
る(ステップ68)、また酸素ポンプ素子18の電極間電圧
VPを読み込みその電圧VPが所定電圧VP1,VP2(ただし、
VP1<VP2)の範囲内の電圧であるか否かを判別する(ス
テップ69)。V<VS1,又はV>VS2の場合、またV
S1≦V≦VS2でもVp<VP1,又はVp>VP2の場合、これ
らの場合には酸素濃度センサが不活性状態であると判断
してステップ64に移行する。VS1≦V≦VS2でかつVP1
≦Vp≦VP2の場合には、酸素ポンプ素子18及び電池素子1
9が所定の温度に達して活性状態になったと判断として
空燃比フィードバック制御を行なうべくKo2算出サブル
ーチンを実行して空燃比フィードバック補正係数Ko2
算出する(ステップ70)。
If Ne ≧ Ne 1 , it is considered that the engine 2 has completed the explosion and the heater current supply flag is set to start supplying the heater current.
Set F H to 1 (step 65). When the flag F H is set to 1, the heater current supply data is set for each predetermined cycle so that the internal resistance R H of the heating element 20 becomes a constant value when the above heater current control subroutine is executed, and the heater drive circuit is set. The switching element is turned on and off in a predetermined cycle at a duty ratio according to the content of the heater current supply data. Heating element 20 when switching element is on
The voltage V B is applied across the series circuit of the current detection resistor 51 and the current detection resistor 51, and the heater current flows through the heating element 20.
Generates heat. Then, the internal resistance R H of the heating element 20 is a predetermined value.
It is determined whether R H1 and R H2 are within the range (step 6)
6). The internal resistance R H of the heating element 20 is the voltage V across the heating element 20.
Read H and heater current value I H , R H = (V H −I H ) / I H
It is calculated by the following formula. If R H <R H1 or R H > R H2 , it is determined that the oxygen concentration sensor is in the inactive state, and the process proceeds to steps 63 and 64. In the case of RH 1 ≦ R H ≦ RH 2 may be, for example, heating of the heating element is held at an appropriate temperature range so that the oxygen concentration sensor is an output characteristic which is proportional to the desired oxygen concentration, the heating element If the internal resistance of the device exceeds RH 2 , it is possible that the heating element is overheated or that the current in the heating element is almost not flowing due to the destruction of the heating element. The operation is regarded as an inactive state in which no operation is performed. R H1
If ≦ R H ≦ R H2, it is determined that the temperature of the heating element 20 has reached a stable temperature, and a pump current supply command is issued to the switch drive circuit 52 to supply the pump current to the oxygen pump element 18 (step 67). . The switch drive circuit 52 turns on the switch 23 in response to the pump current supply command, so that the pump current is supplied to the oxygen pump element 18. Oxygen pump element 18
Pump current is supplied to. When the supply of the pump current to the oxygen pump element 18 is started, the inter-electrode voltage V S of the battery element 19 is read and the voltage V S is within the predetermined voltage V S1 , V S2 (provided that V S1 <V S2 ). It is determined whether the voltage is within the range (step 68), and the interelectrode voltage of the oxygen pump element 18 is also determined.
V P is read and its voltage V P is the predetermined voltage V P1 , V P2 (However,
It is determined whether the voltage is within the range of V P1 <V P2 ) (step 69). If V S <V S1 or V S > V S2 , then V
If Vp <V P1 or Vp> V P2 even if S1 ≦ V S ≦ V S2 , the oxygen concentration sensor is determined to be inactive in these cases, and the process proceeds to step 64. V S1 ≤ V S ≤ V S2 and V P1
If ≦ V p ≦ V P2 , oxygen pump element 18 and battery element 1
When it is determined that 9 has reached a predetermined temperature and is in the active state, the Ko 2 calculation subroutine is executed to perform the air-fuel ratio feedback control, and the air-fuel ratio feedback correction coefficient Ko 2 is calculated (step 70).

酸素濃度センサにおいては、酸素ポンプ素子18へのポ
ンプ電流の供給が開始されると、エンジン2に供給され
た混合気の空燃比がリーン領域であれば、電池素子19の
電極17a,17b間に発生する電圧Vが基準電圧源22の出
力電圧Vrより低くなるので差動増幅回路21の出力レベル
が正レベルになり、この正レベル電圧が抵抗24及び酸素
ポンプ素子18の直列回路に供給される。酸素ポンプ素子
18には電極16aから電極16bに向ってポンプ電流が流れる
ので気体滞留室13内の酵素が電極16bにてイオン化して
酸素ポンプ素子18内を移動して電極16aから酸素ガスと
して放出され、気体滞留室13内の酸素が汲み出される。
In the oxygen concentration sensor, when the supply of the pump current to the oxygen pump element 18 is started, if the air-fuel ratio of the air-fuel mixture supplied to the engine 2 is in the lean region, it is between the electrodes 17a and 17b of the battery element 19. Since the generated voltage V S becomes lower than the output voltage Vr of the reference voltage source 22, the output level of the differential amplifier circuit 21 becomes a positive level, and this positive level voltage is supplied to the series circuit of the resistor 24 and the oxygen pump element 18. It Oxygen pump element
A pump current flows from the electrode 16a to the electrode 16b in the electrode 18, so that the enzyme in the gas retention chamber 13 is ionized at the electrode 16b and moves in the oxygen pump element 18 to be released as oxygen gas from the electrode 16a. Oxygen in the retention chamber 13 is pumped out.

気体滞留室13内の酸素の汲み出しにより気体滞留室13
内の排気ガスと大気基準室15内の大気の間に酸素濃度差
が生ずる。この酸素濃度差に応じた電圧Vが電池素子
19の電極17a,17b間に発生し、この電圧Vは差動増幅
回路21の出力電圧は電圧Vと基準電圧源22の出力電圧
Vrとの差電圧に比例した電圧となるのでポンプ電流値Ip
は抵抗24の両端電圧として出力される。
By pumping out oxygen from the gas retention chamber 13
A difference in oxygen concentration occurs between the exhaust gas in the chamber and the atmosphere in the atmospheric reference chamber 15. The voltage V S according to this oxygen concentration difference is the battery element
This voltage V S is generated between the electrodes 17a and 17b of 19 and the output voltage of the differential amplifier circuit 21 is the voltage V S and the output voltage of the reference voltage source 22.
Since the voltage is proportional to the voltage difference with Vr, the pump current value Ip
Is output as the voltage across the resistor 24.

リッチ領域の空燃比のときには電圧Vが基準電圧源
22の出力電圧Vrを越える。よって、差動増幅回路21の出
力レベルが正レベルから負レベルに反転する。この負レ
ベルにより酸素ポンプ素子18の電極16a,16b間に流れる
ポンプ電流が減少し、電流方向が反転する。すなわち、
ポンプ電流は電極16bから電極16a方向に流れるので外部
の酸素が電極16aにてイオン化して酸素ポンプ素子18内
を移動して電極18bから酸素ガスとして気体滞留室13内
に放出され、酸素が気体滞留室13内に汲み込まれる。従
って、気体滞留室13内の酸素濃度が常に一定になるよう
にポンプ電流を供給することにより酸素を汲み込んだ
り、読み出したりするのでポンプ電流値Ipはリーン及び
リッチ領域にて排気ガス中の酸素濃度に各々比例すので
ある。このポンプ電流値Ipに応じて上記したフィードバ
ック補正係数Ko2がKo2算出のサブルーチンにおいて設定
される。
When the air-fuel ratio is in the rich region, the voltage V S is the reference voltage source.
22 Output voltage Vr is exceeded. Therefore, the output level of the differential amplifier circuit 21 is inverted from the positive level to the negative level. Due to this negative level, the pump current flowing between the electrodes 16a and 16b of the oxygen pump element 18 decreases, and the current direction is reversed. That is,
Since the pump current flows from the electrode 16b in the direction of the electrode 16a, external oxygen is ionized at the electrode 16a and moves inside the oxygen pump element 18 and is released from the electrode 18b as oxygen gas into the gas retention chamber 13, whereby oxygen is gas. It is pumped into the retention chamber 13. Therefore, oxygen is pumped in or read out by supplying a pump current so that the oxygen concentration in the gas retention chamber 13 is always constant, so the pump current value Ip is the oxygen in the exhaust gas in the lean and rich regions. Each is proportional to the concentration. Feedback correction coefficient Ko 2 described above in accordance with the pump current Ip is set in the subroutine of Ko 2 calculation.

発明の効果 以上の如く、本発明の酸素濃度センサの制御方法にお
いては、エンジンが完爆すると、加熱素子へのヒータ電
流供給を開始して加熱素子の発熱によりポンプ素子及び
電池素子からなる酸素濃度検出素子を素早く加熱し、そ
の後、加熱素子の温度上昇により加熱素子の内部抵抗が
所定範囲内の値に上昇したことを検出したときに酸素ポ
ンプ素子へのポンプ電流の供給を開始する。よって、加
熱素子の温度、すなわち酸素濃度検出素子の温度が十分
高くなってから酸素ポンプ素子へのポンプ電流の供給を
開始するので、過剰のポンプ電流が流れることが防止さ
れブラックニング現象を回避することができる。
As described above, in the oxygen concentration sensor control method of the present invention, when the engine is completely detonated, the heater current supply to the heating element is started, and the heat generation of the heating element causes the oxygen concentration of the pump element and the battery element. The detection element is quickly heated, and then, when it is detected that the internal resistance of the heating element has risen to a value within a predetermined range due to the temperature rise of the heating element, the supply of the pump current to the oxygen pump element is started. Therefore, since the supply of the pump current to the oxygen pump element is started after the temperature of the heating element, that is, the temperature of the oxygen concentration detection element, becomes sufficiently high, the excessive pump current is prevented from flowing and the blackening phenomenon is avoided. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の酸素濃度にセンサの制御方法を適用し
た電子制御燃料噴射装置を示す図、第2図は酸素濃度セ
ンサ検出部内を示す図、第3図はECU内の回路を示すブ
ロック図、第4図はCPUの動作を示すフロー図である。 主要部分の符号の説明 1……酸素濃度センサ検出部 3……排気管 4……ECU 12……酸素イオン伝導性固体電解質材 13……気体滞留室 14……導入孔 15……大気基準室 18……酸素ポンプ素子 19……電池素子 25……制御回路 27……吸気管 36……インジェクタ
FIG. 1 is a diagram showing an electronically controlled fuel injection device to which a sensor control method for oxygen concentration of the present invention is applied, FIG. 2 is a diagram showing the inside of an oxygen concentration sensor detection unit, and FIG. 3 is a block showing a circuit in an ECU. 4 and 5 are flow charts showing the operation of the CPU. Explanation of symbols of main parts 1 …… Oxygen concentration sensor detection unit 3 …… Exhaust pipe 4 …… ECU 12 …… Oxygen ion conductive solid electrolyte material 13 …… Gas retention chamber 14 …… Introduction hole 15 …… Atmosphere reference chamber 18 …… Oxygen pump element 19 …… Battery element 25 …… Control circuit 27 …… Intake pipe 36 …… Injector

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃エンジンの排気系に配設され各々が酸
素イオン伝導性固体電解質材及びこれを挟む電極からな
り気体拡散制限域を形成する酸素ポンプ素子及び電池素
子を有する酸素濃度検出素子と、前記酸素ポンプ素子の
電極間にポンプ電流を供給するポンプ電流供給手段と、
供給される電流に応じて前記酸素濃度検出素子を加熱す
る加熱素子と、前記加熱素子にヒータ電流を供給するヒ
ータ電流供給手段とからなる酸素濃度センサの制御方法
であって、所定エンジン始動状態を検出したときには前
記ヒータ電流供給手段から前記加熱素子へのヒータ電流
供給を開始させ、その後、前記加熱素子の内部抵抗が所
定範囲内の値になったことを検出したときに前記ポンプ
電流供給手段から前記酸素ポンプ素子へのポンプ電流の
供給を開始させることを特徴とする酸素濃度センサの制
御方法。
1. An oxygen concentration detecting element having an oxygen pump element and a battery element, which are arranged in an exhaust system of an internal combustion engine and each of which comprises an oxygen ion conductive solid electrolyte material and electrodes sandwiching the solid electrolyte material to form a gas diffusion limited area. A pump current supply means for supplying a pump current between the electrodes of the oxygen pump element,
A method for controlling an oxygen concentration sensor, comprising: a heating element that heats the oxygen concentration detection element in accordance with the supplied current; and a heater current supply means that supplies a heater current to the heating element. When it detects, it starts the heater current supply from the heater current supply means to the heating element, and then when it detects that the internal resistance of the heating element reaches a value within a predetermined range, the pump current supply means A method for controlling an oxygen concentration sensor, characterized in that supply of pump current to the oxygen pump element is started.
JP62164394A 1987-07-01 1987-07-01 Control method of oxygen concentration sensor Expired - Lifetime JP2511048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62164394A JP2511048B2 (en) 1987-07-01 1987-07-01 Control method of oxygen concentration sensor
US07/189,183 US4860712A (en) 1987-07-01 1988-05-02 Method of controlling an oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62164394A JP2511048B2 (en) 1987-07-01 1987-07-01 Control method of oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPS649356A JPS649356A (en) 1989-01-12
JP2511048B2 true JP2511048B2 (en) 1996-06-26

Family

ID=15792296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62164394A Expired - Lifetime JP2511048B2 (en) 1987-07-01 1987-07-01 Control method of oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP2511048B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909884C2 (en) * 1988-03-31 1995-02-09 Vaillant Joh Gmbh & Co Device for checking the functionality of an exhaust gas sensor arranged in an exhaust gas duct of a burner-heated device
JPH0491347A (en) * 1990-07-31 1992-03-24 Mitsubishi Motors Corp Oxygen concentration sensor and air-fuel ratio control device of internal combustion engine having oxygen concentration sensor
US5050045A (en) * 1990-10-01 1991-09-17 Nippondenso Co., Ltd. Self-luminescent pointer device for a gauge
JP5021601B2 (en) * 2008-10-16 2012-09-12 日本特殊陶業株式会社 Gas sensor system
JP5119305B2 (en) * 2010-01-14 2013-01-16 日本特殊陶業株式会社 Gas sensor control device and gas sensor control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197459A (en) * 1981-05-29 1982-12-03 Toshiba Corp Oxygen density measuring device
JPS6276449A (en) * 1985-09-30 1987-04-08 Honda Motor Co Ltd Method for controlling oxygen concentration sensor

Also Published As

Publication number Publication date
JPS649356A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JP2947353B2 (en) Air-fuel ratio control method for internal combustion engine
JPH073404B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
US4860712A (en) Method of controlling an oxygen concentration sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
JP2548131B2 (en) Control method of oxygen concentration sensor
JP2601455B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62182645A (en) Method for controlling oxygen concentration sensor
JP2511048B2 (en) Control method of oxygen concentration sensor
JPH0737776B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62203050A (en) Method for correcting output of oxygen concentration sensor for internal combustion engine
JP2511049B2 (en) Activity determination method for oxygen concentration sensor
JPS61244848A (en) Air-fuel ratio controller
JPH07198679A (en) Control device for oxygen concentration sensor
JP2511087B2 (en) Heater temperature controller for oxygen concentration sensor
JP2511086B2 (en) Heater temperature controller for oxygen concentration sensor
JPS61116652A (en) Heater controller for oxygen sensor
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6388243A (en) Air-fuel ratio control device
JPS62261629A (en) Air-fuel ratio control method for internal combustion engine
JPS62214249A (en) Method for correcting output of oxygen density sensor for internal combustion engine
JPS62251443A (en) Air-fuel ratio control method for internal combustion engine
JP2613591B2 (en) Air-fuel ratio control method for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12